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COMPUTATIONAL INTELLIGENCE 
IN 

CAD/CAM APPLICATIONS 

Chaman L. Sabharwal’, Thomas G. Melson2, Martin D. Fraseg 

%Jniversity of Missouri-Rolla, 8001 Natural Bridge Road, St. Louis, MO 63121 
qomputer Aided Technology, McDonnell Douglas Corporation, St. Louis, MO 63166 
3Georgia State University, University Plaza, Atlanta, GA 30303 

ASSTRACT 

This paper presents a fundamental, direct, and powerful 
approach to the surface/surface intersection problem in 
CAD/CAM applications. The algorithm is designed and 
implemented in three steps: a) Preprocessing- locate the 
potentially intersecting sections of the surfaces and 
decompose the surfaces into surface elements within 
specified flatness tolerance; b) Intersection- decompose 
the possibly intersecting pairs of surface elements into 
continuous surface triangulations to find the approximate 
intersections between the pairs of surface elements; c) 
Postprocessing- assemble the intersection primitives into 
curves of intersection, refine the accuracy of computed 
intersection points, and compact the intersection curves. 
This surface/surface intersection algorithm is applicable 
to the widest class, Co, of parametric surfaces, an 
enhancement over the existing algorithms applicable to 
only Ck, k 2 1, surfaces. This implementation, based 
on computational intelligence, requires no human 
interaction for intersection curve pattern recognition. 

INTRODUCTION 

The development of an intelligent surface/surface 
intersection algorithm is of practical interest in the 
geometric modeling and manufacturing areas. The 
recognition and extraction of the intersection curves 
automatically is clearly a non-trivial task in CAD/CAM 
systems. The value of a software package is primarily a 
function of the degree to which it is used, The area of 
manufacturing where surface/surface intersection has been 
extensively applied is the aircraft design. This research 
evolved from a desire to present the design, in general, 
and an intelligent implementation, in particular. 
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For a pair of surfaces, three questions arise: a) Existence- 
does there exist an intersection between the two surfaces? 
b) Uniqueness- is the intersection a single curve or 
several curves? and c) Solution Method- is the method of 
solution analytic or numerical for calculating the 
intersection curves when they exist? These questions are 
addressed in the Intersection, Decomposition, and 
Composition sections, in that order. It is not enough to 
tell the computer to intersect two surfaces, the surface 
definition has a direct affect on the degree of automation 
that can be achieved. One must specify the kind of 
surfaces and the procedure to process them. Thus, given 
the type of the parametric surfaces, (e.g., Bezier, 
B-Spline, or free-form surfaces), there are two 
approaches: generative and variant. In the generative 
approach to the intersection problem, separate algorithms 
are generated for all possible surface pairs and then an 
algorithm appropriate for the application is used. 
Currently, this approach is used in Advanced Integrated 
Mathematical Systems (AIMS) at McDonnell Douglas 
Corporation. Special purpose algorithms are used for 
analytic and numerical solutions and a general purpose 
algorithm is used for sculptured surfaces. The generative 
approach can be computationally prohibitive in all but 
most trivial applications. Also, in general, a closed form 
solution does not exist. The general purpose algorithm, 
the variant approach based on the divide-and-conquer 
strategy, is adopted to handle all types of surfaces 
without explicit knowledge of the surface type whether it 
is analytic or synthetic. 

There are many specialized algorithms for intersection 
between two Ck, k 11, parametric surfaces, defined 
over a rectangular parametric space. These methods for 
the surface/surface intersection problem depend on the 
intrinsic characteristics of the surfaces. The methods 
developed at McDonnell Douglas [Melson 1978, 
Houghton et al 19851 and by [Barnhill et al 19873 
depend on the availability of first partial derivatives. The 
method developed at Automation Technology Products 
Filip et al 19861 requires the use of second order 
derivatives. The specialized and widely used methods 
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&ane et al 1980, Dokken 19851 have been developed for 
composite surfaces, such as B-spline or Bezier surfaces, 
depend on the control points. The first step in the design 
of a solution to perform intersections between Co 
parametric surfaces was proposed by Sabharwal & Factor 
[ 19881. An example of a Co, but not Cl, surface is the 
accordion type surface [see Figure 11. This surface is 
normally used as four planar surfaces in a B-rep solid 
modeler, it can now be treated as a single Co surface. 
For example, performing the intersection between two 
surfaces [see Figure 23 can be reduced to applying the 
intersection algorithm once to two surfaces instead of 
applying the algorithm four times to the surface pairs 
(i.e., all possible combinations of planar surfaces from 
each surface). 

The basic considerations for designing a general purpose 
algorithm then become: (1) the quality of intersection in 
terms of robustness and accuracy; (2) the computational 
cost in terms of run time memory space and algorithm 
speed for minimal CPU time. To achieve these 
objectives, expert knowledge is embedded in the decision 
process using: (a) recursive, selective, and adaptive 
decomposition of surfaces; intelligent interpretation and 
use of surface curvature without calculating it; systematic 
filtering of trivially disjoint surface elements, (b) 
computationally efficient triangulation of surface and 
intersection method, (c) polytree data structure for 
geometric integration for curve pattern recognition, and 
(d) expert refinement process. 

The SSINT algorithm is a complete design and 
implementation that handles all Ck, k 10, parametric 
surfaces. These surfaces are defined on a rectangular 
parametric space. The earlier approaches required the 
evaluator to supply the position values as well as the 
partial derivatives. In the current approach, the 
parametric evaluator supplies only the surface points 
during decomposition and the accuracy refinement of the 
approximate computed points. The computations are 
independent of the intrinsic properties that some surfaces 
possess. 

DECOMPOSITION OF SURFACES 

An intelligent surface decomposition plays a central role 
in determining the success of subsequent steps in 
locating the surface intersections. Surface decomposition 
is an adaptive, selective and recursive method for filtering 
out trivially disjoint surface parts and determining the 
potentially intersecting sections of the surfaces. The 
divide-and-conquer strategy transforms the problem of 
intersecting complex surfaces into interscc ting almost 
planar surfaces. It is worthwhile to spend time for divide 
(the decomposition of surfaces) to make conquer ( the 

intersection betwet. the surfaces) straightforward. Thus, 
surface decomposition centers around the possibly 
intersecting sections of surfaces. In order to apply 
decomposition intelligently to the surface/surface 
intersection problem [see Figure 31, several criteria are 
used: (a) which way to decompose, in one or both 
parametric directions [see Figures 4,53, (b) how to 
subdivide, uniformly or adaptively[see Figures 5,7], (c) 
how to select parts of the surfaces for decomposition[see 
Figures 5,8], and (d) what is the flamess threshold level 
of decomposition[see Figures 6,7,8,9]. 

Adaptive decomposition is a function of the morphology 
of surfaces. The primary purpose of the decomposition 
technique is to automatically detect where the curvature is 
high and then subdivide accordingly. The previous 
method [Sabharwal & Factor 19881 for calculating 
curvature was based on approximate derivatives similar to 
that developed by Akima [1984]. This led to a 
significant increase in evaluator call. Expert knowledge, 
based on experience and on the general principles to 
reason about the surface calculations, is used to simulate 
surface curvature eliminating these evaluator calls. An 
expert may use testimates, rough approximations, and 
general knowledge, even when such exact derivatives are 
readily available. In the present technique, no formal 
calculations for derivatives are made. The approximate 
calculations draw closely on the theory of analytic 
derivatives and are based on only the precomputed grid 
values utilizing relaxation method. The distinction is 
that the previous methods required surface derivatives and 
direct calculation of surface normals, whereas the new 
procedure does not. 

Recursive decomposition partitions the surfaces into 
elements, at varying threshold levels of curvature, until 
the decomposition tolerance is reached. The threshold 
levels of decomposition correspond to increasing levels 
of flatness resolution of the surface elements. 

Selective decomposition filters out all surface pairs 
which are irrelevant to intersection as an initial step. 
Selective decomposition is based on successively 
lowering the decomposition threshold and eliminates the 
costIy evaluator calls pertaining to decomposition. The 
filtering process is done by enclosing the two surfaces in 
bounding volumes and determining if the bounding 
volumes intersect. This divide-and-conquer algorithm 
avoids proceeding recursively when the size of the object 
no longer justifies further decomposition or a surface 
element is no longer a candidate for intersection. In the 
former case, it is easier to apply the basic intersection 
procedure given in the Intersection section. The 
divide-and-conquer strategy also produces a non-binary 
tree of surface pairs whose leaves represent surface pair 
elements that are most likely to yield non-empty 
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intersection. However, this tree is intelligently replaced 
by a binary tree called polytree. Binary trees implement 
dictionaries as well as other complicated integration 
operations efficiently. 

INTERSECTION 

Next, the possibly intersecting surface elements, within 
the specified flamess tolerance, are to be considered for 
actual intersection. Traditionally, the techniques [Melson 
1978, Barnhill 19871 for intersection depend on a start 
point. The ability to visually detect the start points is 
well suited to humans. Thus, human interaction is 
required to determine the start point or points when there 
are several curves of intersection. The object is to 
bypass the intermediate step of locating the start point. 
Then the Newton-Raphson technique is used to trace the 
path until a complete curve is obtained. The success of 
this technique depends on the availability of exact 
derivatives. The estimated start point is decisive to the 
determination of the entire curve of intersection, since the 
accuracy of the curve depends on the accuracy of the 
starting point. 

An intelligent method, independent of surface derivatives, 
for intersecting two surfaces is the triangular 
decomposition technique. Individual surface elements are 
decomposed into triangles to yield continuous 
triangulation of surfaces [see Figure 131. The parametric 
representation of triangles is used to intersect triangle 
pairs. The implementation of parametric representation 
shows that it is on the average 50% faster than the 
heuristic approach to intersect triangle pairs [see Figures 
10,111. The intersection between pairs of triangles, if it 
exists, is represented by two end points of the 
intersection line segment, called the curve “primitive”. 

Four problems arise when the triangle pair intersection 
technique is used. First, surface “cracks” appear in the 
triangular approximation of the surfaces[see Figure 121. 
The surface “cracks” are eliminated by judicious 
triangulation [see Figure 131 of surface elements by 
including additional decomposition points on the surface 
boundary where the adjoining surface elements have 
vertices. Secondly, multiple copies of identical 
intersections may be calculated if the triangles intersect 
along the edges [see Figure 141. The previous method 
creates a new data structure to store potentially duplicate 
primitives. Due to space and time considerations, this 
algorithm applies an intelligent beam search through the 
intersection primitives to eliminate duplicate 
intersections. Thirdly, when two surface elements are 
planar, redundant collinear points may be calculated [see 
Figure 151. They can be removed by eliminating the 
intermediate points for each set of three collinear points 

[see Figure 161. Finally, the computed points are 
approximations, not actual points on the curves of 
intersection. This is the accuracy problem of computed 
intersection points [see Figures 17,18,19]. The algorithm 
for improving the accuracy of approximate intersection 
curves is designed in the Refinement section. 

The intersection primitives am stored only in terms of 
the end points of intersection primitives in a polytree of 
surface pairs. The polytree data structure facilitates the 
process of integrating intersection primitives into curves, 
because the search procedure takes you quickly to the 
intersection primitives without looking at the data at the 
internal nodes. 

COMPOSITION OF INTERSECTION ELEMENTS 

Another issue with intersection with the triangulation 
method is that the totality of intersection primitives is 
not organized in the form of curves. The composition 
step synthesizes the computed intersections primitives. 
The composition process collects the clusters of 
intersection curve primitives, coalesces them into a set 
of continuous intersection curves and compacts the 
intersection curves by eliminating the redundant collinear 
points Figures 15,161. The intersection primitives are 
stored in a data structure that promotes a method for 
limiting the search space that needs to be investigated. 
The geometric composition is an intelligent composition 
method that prevents fruitless searching of the entire 
polytree of intersection primitives. The end points of the 
primitives in the intersection curves are connected on the 
basis of absolute “nearness” with machine epsilon. This 
algorithm takes advantage of the spatial coherence of the 
intersection primitives so that the points are connected in 
a hierarchical manner. In this branched reasoning tree, 
composition becomes slightly more recursive but it is 
worth it. 

The composition process, in principle, is the same 
throughout the historical development of the algorithm. 
It is similar to feature detection techniques used in 
geometric modelers. However, the polytree data structure 
used here promotes the method of limmiting the search 
space. The current implementation differs significantly 
from the previous implementations. Previously, 
primitives were first linked manually at the leaf level and 
recursively at the parent levels of the polytree. The 
algorithm has been revised and improved. The new 
algorithm is also recursive but it connects the 
intersection primitives automatically at all levels of the 
polytree of surface pairs. The points on intersection 
curves are approximations of the actual points on 
intersection curves. Thus, the computed points do not 
necessarily lie on either surface. This requires improving 
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the accuracy of these points to representative intersection 
points closer to the two intersecting surfaces. 

REFINEMENT 

The refinement process analyzes the computed points to 
determine if they can be brought closer to the surfaces. It 
improves the accuracy of computed intersection points 
that constitute curves of intersection. For complex 
surfaces, these approximate points work well for quick 
refinement to new points so that the new points he on 
the surfaces or are as close to the surfaces as possible. 
For simple surfaces, these estimates represent the exact 
points. A new criteria to find the points on the surfaces 
or close to the surfaces within a specified tolerance is 
given . In the previous methods, first surface points Pl 

and P2 that are closer to P are determined. The 
refinement of the approximate intersection points to new 
points closer to the surfaces is obtained by calculating 
the intersection point among three planes: tangent plane 
at Pl, tangent plane at P2, and the plane through PI, P2, 

and P. The tangent planes to the surfaces which require 
analytic calculation of normals to the surfaces. In the 
current implementation, the need for tangent planes has 
been eliminated. Expert knowledge is extracted from the 
locations of surface points Pl , P2, the computed point 
P and used to calculate the new point Pnew closer to the 

surfaces. This eliminates the calculation of tangent 
planes which depend on surface derivatives and their 
intersection. For each computed point calculate two 
points, one point on each surface, which are at a 
minimum distance from the given point. Refine the 
given point as follows. In the plane of the given point P 
and the two surface points PI and P2, find Pnew such 
that Pnew PI and Pnew P2 are orthogonal to PlP and 

P2P respectively [see Figure 171. By replacing P with 
Pnew, the loop for refinement terminates once the new 

point is within specified tolerance of the two surfaces. 
Consider special cases when PlP or P2P becomes 
degenerate [see Figure 181. 

Final step is refining the midpoints: if PI and P2 are 
two points, Pmid is the middle point, the this point is 
refined, if it is not within specified tolerance of the two 
surfaces, to Pnew [see Figure 191. This process is 
applied recursively to all primitives so the ewes are 
truly representative of intersection curves. 

CONCLUSION 

This paper presented a method for cross intersection 

between both smooth and non-smooth parametric 
surfaces in three steps: Preprocessing, Intersection, and 
Postprocessing. These steps include Decomposition, 
Intersection, Composition, and Refinement. The present 
work is a complete design and implementation which is a 
major enhancement over the previous surface/surface 
intersection implementations at McDonnell Douglas 
[Melson 1978, Houghton et al 1985, Sabharwal & 
Melson 19891. This method is applicable to all 
parametric surfaces depending only on the surface 
definition and not the surface smoothness. This 
technique eliminates complete digitization or the use of a 
Newton-Raphson type method. This method is 
completely independent of the surface derivatives on 
which the Newton-Raphson technique depends. This 
algorithm was tested on a variety of surfaces about which 
the results were known. The test results were quite 
satisfactory. This presentation automates the 
surface/surface intersection algorithm as used in 
CAD/CAM applications. No human interaction is 
required for intersection curve pattern recognition. 
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Figure 1. Co Surface Figure 2. Intersection 
Between Co Surfaces 

FIGURE 3. Intersection Of A Cylinder And A 
Paraboliod Of Revolution With Decomposition 
Threshold Of 10 Degrees. 

FIGURE 5. The Surface Of Paraboloid Of 
Revolution Uniformly Subdivided In Both 
Parametric Directions With Decomposition 
Threshold Of 20 Degrees. 

FIGURE 6. The Surface Of Paraboloid Of 
Revolution Adaptively Subdivided In Both 
Parametric Directions With Decomposition 
Threshold Of 40 Degrees. 
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FIGURE 7. The Surface Of Paraboloid Of 
Revolution Adaptively Subdivided In Both 
Parametric Directions With Decomposition 
Threshold Of 20 Degrees. 

FIGURE 8. The Surface Of Paraboloid Of 
Revolution Selectively Subdivided In Both 
Parametric Directions With Decomposition 
Threshold Of 10 Degrees, 

FIGURE 9. The Surface Of Paraboloid Of 
Revolution Selectively Subdivided With 
Decomposition Threshold Of 5 Degrees To Yit 
Realistic Intersection Curve. 
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Figure 10 
Intersection Via Heuristics 

Figure 11 
Intersection Via 

Parametric Method 

Figure 12. surface “crack“ Figure 13. 
surface continuity 

FigurelA Multiple intersections. (Tl, T2 
triangulate one surface element, and T3, T4 triangulate 
second surface element. Intersection of two surface elements 
yields four identical intersections of Tl,T3; Tl,T4; TZ,T3; 
TZ,T4.) 
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Figure 15 Figure 16 

Redundant (Figure 15), No Redundant (Figurel6) 
Collinear Intersection Points 

Figure 17 Figure 18 

Computed Intersection Point Not On Any 
Surface (Figure 17), On One Surface (Figure 18) 

P 
new 

Figure 19. Refining The Middle Point. 
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