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AN INTELLIGENT APPROACH TO DISCRETE

SAMPLING OF PARAMETRIC CURVES

CHAMAN L. SABHARWAL

UMR Engineering Center, University of Missouri-Rolls

Abstract

1ss graphics and animation applications, two of the problems
are: (1) representation of an analytic curve by a discrete set of
sampled points and (2) determining the similarity between two
parametric curves. It is necessary to measure the accuracy of
approximation and to have a metric to calculate the dkptity

between two parametric curves. Both of these problems have
been associated with the reparameterization of the curves with
respect to arc length. One of the methods uses Gaussian
Quadrature to determine the arc length parameterization
[Guenter and Parent 1990], while another interesting technique

is approximation method
[Fritsc;and N;;;~rrl;990]. There are various ways to
compute the similarity between two curves. For 2D Cartesian

curves, max norm yields a satisfactory distance metric. For
parametric curves, Euclidean norm is frequently used. kc
length is reasonable parametrization, but explicit arc length
parameterization is not easy to compute for arbitrary
parametric curves. We give a new technique for discretizing
parametric curves. These sampled points can be used to
approximate curves, &termine arc length pararneterization ,
and similarity between them. This technique is accurate,
robust and simpler to implement. Comparisons of the
previous methods with the new one are presented.

Introduction

In graphics and animation applications, analytic curves are
approximated by discrete seta of points. It is necessary to
measure the accuracy of approximation. Also it is &sirable to
have a metric to calculate the disparity between two parametric
curves. Both of these problems involve the
reparsmeterization of the curves with respect to arc length.
The numerical arc length parameterization methods are either
od hoc or based on Gaussian Quadrature.

When an analytic curve is approximated by a discrete sampled
cwve, it is desirable to have a metric to measure the accuracy of
approximation. There are several ways compute the dktance
between two curves. For 2D Cartesian curves, max norm yields
a satisfactory distance metric. For parametric curves,
Euclidean norm is frequently used. The Euclidean norm of
difference curve between two different parameterirzttions of the
same curve may yield non -zero Euclidean norm that is not
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acceptable. For two Cartesian curves y = f(x) and y = g(x),
as xs b, in the xy-plane, the distance between two curves
is &fmed by the metric

m a X If(x) - g(x)l = ~i<n
D ~ (f*g) ~<xgb max If(xi) - g(xi)l

For two parametric curves F(t) = (f I(t), f2(t)),

G(t) = (g I(t). g2(t)), a s t s b, the distance between two

curves may be &fiied by

D2(F,G) =~m~; llF(t) - G(t)ll - ‘ax NF(ti). - G(ti)llOSiSkr

Since parameterization is not unique, a curve can always be
represented with different parsmeterizations. For exsmpie, a

2t I -t2
semi-circle may be parametrized by (— —

l+t2 ‘ 1+t
z) or

lr(l-t) . ?r(l-t)
(Cos z‘, sm ~) on the interval [-1, 1]. There are

various ways to reparameterize a curve, e.g., v-splines

[Nielson 1974], f3-splines [Barsky 1981], y-splines
[Boehm 1985], and Wilson-Fowler splines in [ Fritsh 1986].
Since parameterization is not unique, the application of
straightforward Euclidean metric D2(F,G) is not satisfactory.

It is &sirable to have a satisfactory parameterization before
the distance metric can be applied. An arc length
parameterization is reasonable, but not foolproof. The arc
length parameterization is not easy to compute for arbitriuy
free form parametric comes. If the curves are parsmeterized
with respect to arc length, s E [0, IL], the distance metric

D3(F,G) = o<:::IIF(s)- (i(s)lt

is relatively but not quite satisfactory. The arc length

parametrization involves integration with respect to the
curve defining parameter. In general, there is no closed form
solution to the calculation of s = s(t) is a non-trivial
proposition for an arbitrary curve. A very simple
reparameterization to arc len8th parameterization is given by
an example of semi-circle.
The semi-circle

n(l-t) lt(l-t)
R(t) = (COS ~ . sln~) -l<t<l

can be repararnetcrized with arc length pmameter, s, as

R(s) = (-cm.(s), sin(s)) O<s<!r

The problem of determining a metric to measure the disparity
between two curves is related LOthe parameterizalion of the
curves. This Ieads to a problem of &termining a satisfactory
reparameterization of the parametric curves. The arc length
reparameterization provides a reasonable answer.
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Previous Reiated Work

Here we discuss two of the schemes used to approximated a
parametric cume. One of the techniques for caictdating the arc
length function is based on Gaussian Quadrature [Guenter and
Parent 1990]. This is an adaptive technique for integrating a
parametric function. The numerical intwrai of the marmitude

‘w l; is calculated byof the derivative function, II d t

recursively subdividing a parametric interval. The value of
numericai Quadrature on the intervai and its subdivision are
compared. If the difference is acceptabl~ then the pr~sa
terminates, otherwise the recursive process continues on each
of the subintervais. The technique of integration by recursive
and adaptive suMiviaion is tailed Gaussian Quadrature. The
end pints of the subdivision intervais constitute the partition
of the originai parameter interval. The arc length function is
itterpdated from this partition of the parameter s-. ( ti]. If

( Si) is corresponding sequence of arc lengths, then the arc
length function s(t) at the parameter vaiue t is interpolated as:
si-l + non-adaptive quadrature on the intend [ti ~, t ] where

i-l < t S ti. The optimal number of partition pointa dependst

on the criteria for acceptable emor.

Here the parameter space and arc length space are both
partitioned non-uniformly. The inverse process of
determining t from given arc length s is based on Newton-
Raphaon iteration technique. Usuaily, this technique may faii
for extremely rare pathological cases, but it works here
because of the judicious partitioning of the parameter space.
So in practice it is complex and robust.

The second numerical technique uses arc-length
parametrization. Arc-length parameterization refers to a
prtrameterization where a unit change in parametrizing
variable resuita in unit change in the curve length. The
uniform arc length partition of [0, ~] is used to detennirte a

non-uniform partition of the parameter space [% b]. ‘fltis
helps selecting curve points which are equidmtant, and
determining a partition a = TO < T ~ c ...< Tm = b, of

parameter space [a, b] with a fite number of _ints.
This parameter space partition is used to generate the arc
length parameterization: for j =1,2, .... m;

C2kLs(t) = Sj-1 + (Sj - ‘j-l) Tj - Tj- 1 Tj-l St<Tj

4
where Sj. j;, j.O,l , ..wm, ~ is the length of the curve

to be Caicuiated later.

One interesting numericai technique for arc length
parametrization is presented in Fritach and Nielson [1990].

Let R(t~tt[~b], he acurve. kt(ti=a+i~ i= O,l,

....n ) be a uniform partition of [a, b]. The approximate arc
length partition is defined as so<s ~<,..< sn where so = O,

Si = ,-1)11, t = Sn.si-l + llR(ti)-R(t. Then, arc length

~ameter s is a function oft with s(a) = O, s(b) = ~, and is

linearly approximated as
t- t.-

~ ti-~<t<tis(t) = Si-1 + (Si - ‘i-l) ti - ti - ~

for i =1, 2, .... n.

With this arc length function, the vaiuea Si are not necassariiy

equaiiy spaced. Now the inverse f~ction of this apjwoximate

s(t), is defined ss z such tht ~s(t) = t where s(t)= si if d

only t = ti. If 7(O)= A @) = b, and

‘- ‘i-1
7(5) = ‘i-l + (ti - ‘i-l) s. Si-~ S s < St

1 - ‘i-1
for i = 1,2 ..., n

then ~(s) defines a uniq~ invera% parameter function of arc

length s.

Let (Sj :0< j <m] be a uniform partition of [0, ~] detined by

t
SJ=J~ O<j Sm. Let the function ~(s) define

{Ti : Os js m), the new partition of t parameter space,
d

_wkLTj=~(Sj )=ti-l +(ti-ti.l)s. - Si ~

1-

for ‘i-l S Sj < Sl,.“ i = 1, ~ .... n; j = O, 1, .. .. m.

The sequence (Tj :0< j s m] is a non-uniform intet@ted

partition of [A b]. The distance metric baaed on the partition
(Tj :0 s j s m} is more reliable than the metric baaed on the

partition ( ti :OSi Sri). Thiaisan adhucprocedure, in fac~

an optimal value of n and m wili depend on the form of the
curve.

Using these m+n+2 values of t for partition of parameter
space, we get an arc iength parametrization

-. .-
1 .-[

‘(t)=sj-l Tj - T.
K!kl.-

J-1
+ ‘j Tj. T.-i

dTi-l s t< i forj=l, z .... m
and

S.-s s, s.-
t(s)=Tj-l sj -s. ‘Tj(l - S.. Sj ~)

J-1
Sj-~S SJ<Sj for j =1, 2, . ... m.

This is a technique for partitioning the parameter space so that
the parameter vaiues correspond to the uniform partitioning of
length parameter apace. The contribution of titia intapolated
partition (T; :OSj Sm) totheaccuracy ofdistance metric can

be improv~ by repiacing iinear inteqmlation with non-iinear
interpolation. Such non-linear interpolant may aiao be
defined by the formula

“= O, i, .... m.fOr Si-1 ~ Sj < Si; i = 1, 2. ..=It;J

where q may be a non-linear function satisfying the
conditions:

tp(o)=cql(l)=l

such as q(s)= Sk for k = 123

or 9(S) = S2(3-2S)

There are two advantages of this method. FirsL it yields a
satisfactory arc length parameterimtion. It yields a method for
measuring the accuracy of approximation. Secondiy, it yields
a metric for measuring the disparity between two parametric
curves. However, this non-iinear function cakdation is mom
extxmsive than the linear aooroximation. F*v. there exist
ex--ples ~tach and Ni~~on 1990] where th~ curve using
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arc-wise equally spaced points give incomect results. This
happens in the case of perturbed quarter circle.

New Approach

Various questions arise immediately. How is arc length
parametrization determined? How are m & n determined and
what are the optimal values of m & n? Optimal vahses of m & n
improve the accuracy of approximation. The above procedure
is an ud hoc method based on experimentation. It yields
different metric values for different choices of m and n.
Similar questions arise about the adaptive Gaussian Quadrature
technique. None of these techniques take into account the
curvature of the curve.

A better approach is to base the partition on the curvature of
ihe curve. The purpose of this paper is to determine the
parameter space partitioning which can be used to determine
(1) approximate arc length function, and (2) the accurate
distance between two parametric curves. We present a new
approach to this problem which uses only linear
approximation and improves the accuracy of previous arc
length functions. The new technique yields better numerical
results. We present experimental results comparing the
previous methods and the new technique.

The amount of partition can be controlled by the curvature of
the curve and pre specified upper bound on the number of
partition points. This algorithm is also suitable for
parallelization. This algorithm partitions the curve into
chunks of decreasing-curvature size. This method is based on
recursive and adaptive subdivision of the parameter space.

Main idea is to determine values ti, a < ti < b, for the given

curve
R(t) = (x(t), y(t), z(t)), a < t < b,

such that they are distributed in such a manner that the linear

approximation is as C1OWto the curve as desired. An analytic

technique for curvature, which requires C2 continuity to
compute upper bound on the overall curvature, is found in
Emery [1986]. The new technique does not impose any
continuity constraints. The new formulation is based on
approximate curvature of the curve, not the Gaussian curvature.
That is, the approximate curvature of the curve between ti and

t.,+ ~ is the same as that between tj and t. i#j. It will be
J+l’

shown that the new partition technique is a better than the
previous two methods.

The key to the new technique is to use adaptive subdivision,
and use position values only, not the derivative data. One
starts with parametrically uniformly distributed n+ 1 points,

tl=a+i ‘, i =0, 1, .... n. Usually, n = 4 is sufficient for
n

all practicrd purposes. In all the examples, n = 4 is used. The
next step is to calculate the maximum of the angles between
the vectors R(ti) - R(ti-l), R(ti+l ) - R(ti) with double

nested loop for j = i, .. .. n-l, for i = 1, .... n. If the
calculated maximum angle is greater than the tolerance angle,
the number of subdivision pints is less than a pre specified
upper bound, and the length of the vector R(t~tart) - R(tend)

on a subinterval is greater than the pre specified length-
tolerance, the parameter interval is subdivided into two equal
subintervals. The subdivision point, also called break point,
is retained for future use. In fact, for implementation

consi&ration, there is no need to calculate the angles. The dot
products between the unit vectors along R(ti) - R(ti- ~) and

R(ti+ 1) - R(ti) are sufficient for computation purposes. The

abo~e procedhe continues on each of the subintervals. At any
stage, if the length of the vector R(tstut) - R(tend) on the

subinterv al is less than the prespecified length-tolerance, or
the calculated maximum angle is less than the tolerance angle,
or the number of subdivision points exceeds a pre specified
upper bound, then the subdivision process terminates. Let the
sequence of break points be: ti for j = O, 1, 2, .... m. The

arc length parameter s is &fiied hy tJrelinear equation
t.-t t:t. -l

‘(t) = ‘j-l t. - t ‘Sjtj -t. ‘j-l <t <t.

J-1 J-1 J

for j =1’, 2, .... m.
The inverse relation t is defined in terms ofs as

S.-S s- s.,
t(s) =

1 1-1

‘j-Is. -Si-l ‘tjsi-sj-l
s. , <s<s

I J- J

for j =f, 2, ~.., m. - -
For comparing two parametric curves, the “correspondence”

problem arises. If ~ = g(t) is correspondence function, then

ti = g(ti) are corresponding points. The Euclidean metric may

~ used-to find the distance ketween them

D4(F,G) = a~~; llF(t) - G(t)ll 5 o&; llF(ti) - G(Ti)ll

This value of this metric is zero for different parameterizations
of the same curve, the zero metric value indicates identical
curves. The smaller the value of the metric the stronger the
similarity between the two curves. But the correspondence

function g(t) may not be known. In this case new values of T.1
may be generated as follows. To determine the distance
between two parametric curves, curvature method is used to get
points on the curves: tli , i = O, 1, . ... nl; >i , i = O, 1, ....

n2. Using these break points, two sequences of the same

length N are generated : ti, i=O, 1, . . .. N;

ti, i =0, 1, . . .. N, then the distance metric becomes:

D5(F,G ) = ~<~Nx llF(ti) - G(ri)ll

Although pathological examples can be created to frustrate any
numerical technique, such cases have not appeared in the test
cases considered so far. It should be noted that no derivative
calculations are required in this method, nor is any
experimentation with m and n required to arrive at an optimal
solution.

This discussion can be summarized in the following algorithm.

In the algorithm, all user defiied procedures and data elements
begin with upper case letters, All types, counters and system
procedures are in lowercase. Also the text is used as padding to
facilitate reading the algorithm is in lowercase .

Conceptual Algorithm (Discrete Sampling of Points)

Initialize(a Tree with Curve, a linked TempList with Curve
and an empty linked List);

Initialize(the curvature tolerance with Curv_Tol, number of

break points upper bound with Num_Tol, segment length
tolerance with Seg_Tol);

repeat
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{

)

Remove(the Curve from the TempList);
Determine NeedToSubdivide = Subdivi&(the Curve~
I/This criteria is based on subdivide if

(Calculates_curvature_angle > Curve_Tol and Count
< Numb_Tol and Seg_Len > Se~Tol )

if (NeedToSubdivide)
{ Partition(the Curve into Cuwel and Curve2 at the

parametric mid point);
Make(Cuwel and Curve2 as the Child nodes in the

Tree);
Insert(the Curvel into the TempList);
Insert(the Curve2 into the TempList);

)
else

Insert(the Curve into the List);

until (TempList is empty)

Create_List(of discrete sample points from partition Points
in the Tree);

Interpolate(arc length S using the partition Points)
End of the Conceptual Algorithm

To determine the similarity/disparity between two curves, an
additional step is required. Since the two curves may yield
different numbers of sample points on the two curves, the
following steps may used to determine the equal number of
partition points.

Conceptual Algorithm {for Similarity Metric)

(1)

(2)

Use the above algorithm to determine partitions of the two
curves Rl(t) and R2(T) based on cUIVatUKe

‘i: i = 0,1,2,..., nt.

Tj: j = 0,1,2,..., NT.

Based on these partitions, determine approximate arc-
Iength functions -

-.

‘o :Q So. o

Si = Si-l + llR1(ti) - Rl(ti- 1 )11 i e L2, ....n~

‘j= ‘j-1 + llR1(Tj) - R2(Tj- 1)11j a 192.....NT

(3) Normalixe Si and Sj to a range of unit length

Si = Si Isn
t

Sj = Sj /sN
T

(4) Merge the two sequnces to
“k=O12 N.mk. , , ,...,

(5) G~nerate the sequences of parameter values for
k = 0,1,2,...,N
t =0o

m
k - ‘i-l (ti-ti-l )wheresi-l ~rnk<si for

‘k=ti-l+ Si-si-l

some i: i = 1,2,...,nt

and

To=o
‘k - ‘i-1

‘k= Tj-l + Sj - Sj-l O’j- Tj-l ) WhereSj-1 ~ ‘k < Sj

for some j: j = 1,2,...,NT

(6) Now define the distance metic as

‘ax llR1(tk) - R2(T#‘5( R1.R2) “&k<N

Experimental Results

The experimental results suggest that the curvature method is
preferable to the other two methods. Three examples are used
for illustration. The fnt example deals with two straight line
segments cmnectd at (O, 1/3). This exampIe is used due to ita
extensive use in literature ~ritach and Nielson 1990]. The
error is calculated as the deviation between the parametric mid
point on the curve and straight line segment connecting the
end points of each curve segment. The second example is used
due to the non-linear nature of the curve. The third example is
used due to the non-linear behavior at one end and approximate
linear behavior at the end of the curve. For testing purposes,
thirty four points are used to approximate the curves. The
curvature tolerance of 2 degrees is used.

lyp--7.92697 le-04 2.266252e-02 1.4901 16e-08
AVG 2.734580e-05 7.8 14803e-04 9.099892e-09

1.472886s-04 4.210912e-03 1.225224e-08
1

Table 1. R(t) = (0,1/3) + (l-t)z (-l, 2/3) Ost<l;

R (t) = (0,1/3 + (t-1)2(1, 2/3) lStS2. The maximum,
average, standard deviation of errors using the three methods:
Uniform parametric, uniform arc length, and uniform curvature
method.

1:- c“-MAX 9.518231e-04 9.518162e-04 1.204573e-04
AVG 9.517809e-04 9.517723e-04 1.C413801e-04

5.328747e-08 5.328650e-08 2.086170e-08 I
Table 2. R(t) = ( L Itlz) -lsK1. The maximum, average,
standard &viation of errors using the three methods Uniform
parametric, uniform arc length, and uniform curvature method.

Iv c“”2.512092e-03 1.554835e-03 2.088427e-04
AVG 6.499185e-04 6.048873e-04 3.594497e-04

7.533531e-04 5.813080s-04 5.685419e-04 1

Table 3. R(t)= ( L 1- e-g~ Ostsl. The
maximum, average, standard &viation of errors using the three
methork Uniform parametric, uniform arc length, and uniform
curvature method.

It is clear from these experiments that the maximum error,

average error, and standard deviation in error are consistently
less for the curvature method as compared to the uniform
parametric and uniform arc length methods. The similarity ‘
metric for the distance between two parametric curves yields
similar results.

Similar experiments are performed for the similarity metric
between pairs of curves: The error is calculat~ as the
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ieviation between the corresrmndirrg mmunetric uoints on
mth the curves. For testing purpo~-s,-thirty four ‘pints are
used to approximate the curves. The curvature tolerance of 2
degrees is used. In this case also, three examples are used for
illustration. The first example &als with two straight line
segments connected at (O, 1/3) with differenl
parameterizations. This example is used due to its extensive
use in literature [Fritsch and Nielson 1990]. The second
example is used due to the different non-linear behavior of the
two curves. The third example is used due to the non-linear
behavior at one end and approximate linear behavior at the end
of both the curves.

approximak smpled points. This paper presents a curvature
based technique which is independent of the Gaussian
Quadrature and ad hoc experimentation. The experimental
results show that new technique is preferable to the other
methods. It is clear from these experiments that the maximum
error, average error, and standard deviation in error are
consistently less for the curvature method as compared to the
uniform parametric and uniform arc length methods. Secondly,
it is shown that the curvature method naturally lends itself to
determine a similarity metric between two parametric curves.
This method is easier to understand and simpler to implement.

17 “ cm-0.30018669 0.00674229 0.0000OoOo
AVG 0.19423853 0.00350765 0.00000000

0.09018283 0.00176407 0.00000000 I
r !
Table 4. (1) R (t)= (0.1/3) + (l-t)(-l, 2/3) OSt<l:
R(t) = (O,lti i (t-ij(l, i3)’ lkts2. ‘(2)’R(tj = (0;1/3) + (1:

t)2(-1, 2/3) 0ss1; R(t) = (0,1/3 + (t-1)2(1, 2/3) 1<K2.
The maximum, average, standard &viation of erTora using the
three methods: Uniform parametric, uniform arc length, and
uniform curvature method.

1=’-- c“’”-MAX 0.24977043 0.17863822 0.17774135
AVG 0.16161619 0.11449315 0.11197755

0.07503668 0.05339361 0.06019229 I
Table 5. (1) R(t)= ( ~ Itl) -lsM1. (2) R(t) = ( L it?) -lSK1.
The maximum, average, standard deviation of errors using the
three methods: Uniform parametric, uniform arc length, and
uniform curvature method.

Ir ‘1”c–MAX 0.53465772 0.22260903 0.22039755
AVG 0.18221708 0.12150877 0.11505167

0.19532605 0.07824913 0.07034623 I
Table 6. (1) R(t)= ( L j - e-g~ Ost< 1.

(2) R(t) = ( L 1- e-8t ) WK1. The maximum, average,
standard &viation of errors using the three methods: Uniform
parametric, uniform arc length, and uniform curvature method.

The similarity metric for the distrm~ between two parametric
curves yields similar results.. It is clear from these
experiments [see tables 4-6] that the maximum error, average
error, and standard deviation in error are consistently less for
the curvature method as compared to the uniform parametric
end uniform arc length methods.

Conclusion

This paper presents a new technique for solvin8 the two
problems. First, this paper addressed the problem of
representation of analytic curves by a discrete set of sampled
points. Previous techniques used Gaussian Quadrature and ad
hoc methods to determine the arc length parameterization to

The author may be reached at UMR Engineering Center,
University of Missouri-Roll~ 8001 Natural Bridge Road, St.
Lmis, MO 63121,E-mail: Chamarr@umrvmb. umr.edu
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