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AN INTELLIGENT APPROACH TO DISCRETE
s SAMPLING OF PARAMETRIC CURVES

Check for
Updates

CHAMAN L. SABHARWAL

UMR Engineering Center, University of Missouri-Rolla

Abstract

In graphics and animation applications, two of the problems
are: (1) representation of an analytic curve by a discrete set of
sampled points and (2) determining the similarity between two
parametric curves. It is necessary to measure the accuracy of
approximation and to have a metric to calculate the disparity
between two parametric curves. Both of these problems have
been associated with the reparameterization of the curves with
respect to arc length. One of the methods uses Gaussian
Quadrature to determine the arc length parameterization
[Guenter and Parent 1990], while another interesting technique
is a simple approximation method
[Fritsch and Nielson 1990]. There are various ways to
compute the similarity between two curves. For 2D Cartesian
curves, max norm yields a satisfactory distance metric. For
parametric curves, Euclidean norm is frequently used. Arc
length is reasonable parameterization, but explicit arc length
parameterization is not easy to compute for arbitrary
parametric curves. We give a new technique for discretizing
parametric curves. These sampled points can be used to
approximate curves, determine arc length parameterization ,
and similarity between them. This technique is accurate,
robust and simpler to implement. Comparisons of the
previous methods with the new one are presented.

Introduction

In graphics and animation applications, analytic curves are
approximated by discrete sets of points. It is necessary to
measure the accuracy of approximation. Also it is desirable to
have a metric to calculate the disparity between two parametric
curves. Both of these problems involve the
reparameterization of the curves with respect to arc length.
The numerical arc length parameterization methods are either
ad hoc or based on Gaussian Quadrature.

When an analytic curve is approximated by a discrete sampled
curve, it is desirable to have a metric to measure the accuracy of
approximation. There are several ways compute the distance
between two curves. For 2D Cartesian curves, max norm yields
a satisfactory distance metric. For parametric curves,
Euclidean norm is frequently used. The Euclidean norm of
difference curve between two different parameterizations of the
same curve may yield non-zero Euclidean norm that is not
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acceptable. For two Cartesian curves y = f(x) and y = g(x),
a<x<b, in the xy-plane, the distance between two curves
is defined by the metric

D, (f8) 5, M2% I(x) - g(0)l = oMK If(x)) - g(x,)

For two parametric curves F (1) = (f1 (1), f2(t)),
G(t) = (gl(t), g2(t)). a €t < b, the distance between two
curves may be defined by
— max . « _Mmax ..
DZ(F,G) _aStSb“F(t) Gl 0<i<n IlF(ti) G(ti)ll

Since parameterization is not unique, a curve can always be
represented with different parameterizations. For example, a
. . 2t l—l2
semi-circle may be parameterized by ('—2— , 2) or

1+t 1+t

n(l-t)  wm(i-1) .
(oos—‘?—, sin —2—') on the interval ({-1,1]. There are

various ways to reparameterize a curve, e.g., V-splines

[Nielson 1974], B-splines [Barsky 1981], y-splines
[Boehm 1985], and Wilson-Fowler splines in | Fritsh 1986).
Since parameterization is not unique, the application of
straightforward Euclidean metric DZ(F,G) is not satisfactory.

It is desirable to have a satisfactory parameterization before
the distance metric can be applied. An arc length
parameterization is reasonable, but not foolproof. The arc
length parameterization is not easy to compute for arbitrary
free form parametric curves. If the curves are parameterized

with respect to arc length, s £ [0, L], the distance metic

max
0ss<t

is relatively but not quite satisfactory. The arc length
parameterization involves integration with respect to the
curve defining parameter. In general, there is no closed form
solution to the calculation of s = s(t) is a non-trivial
proposition for an arbitrary curve. A very simple
reparameterization to arc length parameterization is given by
an example of semi-circle.

The semi-circle

R@) = (cos"—(;'—t). sinn(;-t))

D3(F,G) = IF(s) - G(s)t

1€t

can be reparameterized with arc length parameter, s, as
R(s) = (-cos(s), sin(s)) 0<s<sm

The problem of determining a metric to measure the disparity
between two curves is related to the parameterization of the
curves. This leads to a problem of determining a satisfactory
reparameterization of the parametric curves. The arc length
reparameterization provides a reasonable answer.
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Previous Related Work

Here we discuss two of the schemes used to approximated a
parametric curve. One of the techniques for calculating the arc
length function is based on Gaussian Quadrature {Guenter and
Parent 1990]. This is an adaptive technique for integrating a
parametric function. The numerical integral of the magnitude
dR(t)
| at I
recursively subdividing a parametric interval. The value of
numerical Quadrature on the interval and its subdivision are
compared. If the difference is acceptable, then the process
terminates, otherwise the recursive process continues on each
of the subintervals. The technique of integration by recursive
and adaptive subdivision is called Gaussian Quadrature. The
end points of the subdivision intervals constitute the partition
of the original parameter interval. The arc length function is
interpolated from this partition of the parameter space: {t;}. If
{s;} is corresponding sequence of arc lengths, then the arc
length function s(t) at the parameter value t is interpolated as:
St non-adaptive quadrature on the interval [ti-l' t ] where

L Stst. The optimal number of partition points depends
on the cmena for acceptable error.

of the derivative function, | , is calculated by

Here the parameter space and arc length space are both
partitioned non-uniformly. The inverse process of
determining t from given arc length s is based on Newton-
Raphson iteration technique. Usually, this technique may fail
for extremely rare pathological cases, but it works here
because of the judicious partitioning of the parameter space.
So in practice it is complex and robust.

The second numerical technique uses arc-length
parameterization. Arc-length parameterization refers to a
parameterization where a unit change in parameterizing
variable results in unit change in the curve length. The
uniform arc length partition of [0, &] is used to determine a
non-uniform partition of the parameter space [a, b]. This
helps selecting curve points which are equidistant, and
determining a partition a= TO < Tl < ..< Tm =b, of
parameter space [a, b] with a finite number of breakpoints.
This parameter space partition is used to generate the arc

length parameterization: for j =1,2, ..., m;
-T.
, AR ,
S(t)— 1 +(S l)T T 1 T]’lSt<TJ
X :
where §;=j -, j = 0.1, ..m; L is the length of the curve
to be calculated later.

One interesting numerical technique for arc length
parameterization is presented in Fritsch and Nielson [1990).

Let R(t), t € [a, b], be a curve. Let (:i=a+i(h;‘): i=0l,

...n} be a uniform partition of [a, b]. The approximate arc
length partition is defined as sp<s;<..< s, where 55 =0,
s; =s;.1 + IR() - R, N, L= s,- Then, arc length
parameter s is a function of t with s(a) = 0, s(b) = ¢, and is

linearly approximated as
t- t.
s(y=8. 1 + (5 -5; 1) -
i-1 17511 Lot

fori=1,2, ...,n

li_l St< li
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With this arc length function, the values s; are not necessarily
equally spaced. Now the inverse function of this approximate
s(t), is defined as T such that ts(t) = t where s(t) =s; if and

onlyt=t. If1(0)=1a, (L) =b, and
S %i-1

Tu(s) = ti_l + (tl - ti_l) s——_—: si'l Ss< Si,
i i-

fori=1,2,..,n
then 1(s) defines a unique, inverse, parameter function of arc
length s.

Let (Sj : 0 € j € m} be a uniform partition of [0, L] defined by

)
Sj = j o 0 £ j € m. Let the function t(s) define
{Tj :0Sj<Sm}, the new partition of t parameter space,
S.-s-
= = s s O §
Tj-‘r(sj)-ti_l +(ti't1-l)si 5

fors; | < Sj <s; i=1,2,.,mj=0,1,..m

The sequence (Tj: 0 < j < m} is a non-uniform interpolated
partition of [a, b]. The distance metric based on the partition
[Tj : 0 £ j S m} is more reliable than the metric based on the
partition {ti:OsiSn). This is an ad hoc procedure, in fact,

an optimal value of n and m will depend on the form of the
curve.

Using these m+n+2 values of t for partition of parameter
space, we get an arc length parameterization
T.-t t-T,
_J_ =
O=51 T S T

T ISt<'l'! forj=1,2,..

and

S.-s ;
s otTa-

t(s)=T'_l R i
) SJ SJ_l

s, )
sJ'l Ss< SJ forj =l, 2, veey M

This is a technique for partitioning the parameter space so that
the parameter values correspond to the uniform partitioning of
length parameter space. The contribution of this interpolated
partition {Tj:OSjSm) 1o the accuracy of distance metric can
be improved by replacing linear interpolation with non-linear

interpolation. Such non-linear interpolant may also be
defined by the formula
S.-s;
Ti=us) =g+ - D

forsl_lSS <s; i=lL2..mj= Ol

where ¢ may be a non-linear function satisfying the
conditions:

90)=0,9(1)=1
fork =123

or o(8) = 52(3-23)

There are two advantages of this method. First, it yields a
satisfactory arc length parameterization. It yields a method for
measuring the accuracy of approximation. Secondly, it yields
a metric for measuring the disparity between two parametric
curves. However, this non-linear function calculation is more
expensive than the linear approximation. Finally, there exist
examples [Fritsch and Nielson 1990} where the curve using

suchas ¢(s) = sk



arc-wise equally spaced points give incorrect results. This

happens in the case of perturbed quarter circle.

New Approach

Various questions arise immediately. How is arc length
parameterization determined? How are m & n determined and
what are the optimal values of m & n? Optimal values of m & n
improve the accuracy of approximation. The above procedure
is an ad hoc method based on experimentation. It yields
different metric values for different choices of m and n.
Similar questions arise about the adaptive Gaussian Quadrature
technique. None of these techniques take into account the
curvature of the curve.

A better approach is to base the partition on the curvature of
the curve. The purpose of this paper is to determine the
parameter space partitioning which can be used to determine
(1) approximate arc length function, and (2) the accurate
distance between two parametric curves. We present a new
approach to this problem which uses only linear
approximation and improves the accuracy of previous arc
length functions. The new technique yields better numerical
results. We present experimental results comparing the
previous methods and the new technique.

The amount of partition can be controlled by the curvature of
the curve and pre specified upper bound on the number of
partition points.  This algorithm is also suitable for
parallelization. This algorithm partitions the curve into
chunks of decreasing-curvature size. This method is based on
recursive and adaptive subdivision of the parameter space.

Main idea is to determine values t.a < L < b, for the given

curve
R(t) = (x(1), y(t), Z(1)), ast<b,

such that they are distributed in such a manner that the linear

approximation is as close to the curve as desired. An analytic

technique for curvature, which requires C2 continuity to
compute upper bound on the overall curvature, is found in
Emery [1986]. The new technique does not impose any
continuity constraints. The new formulation is based on
approximate curvature of the curve, not the Gaussian curvature.
That is, the approximate curvature of the curve between t and

el is the same as that between lj and tj+1' i#]. It will be
shown that the new partition technique is a better than the
previous two methods.

The key to the new technique is to use adaptive subdivision,
and use position values only, not the derivative data. One
starts with parametrically uniformly distributed n+!1 points,

0—’;)—“%:0,1‘

all practical purposes. In all the examples, n = 4 is used. The
next step is to calculate the maximum of the angles between
the vectors R(ti) - R(ti-l)' R(lj+1) - R(lj) with double

nested loop for j=1i,..,n-1, for i 1, ..., n. If the
calculated maximum angle is greater than the tolerance angle,
the number of subdivision points is less than a pre specified
upper bound, and the length of the vector R(tS tan) - R(ten d)

on a subinterval is greater than the pre specified length-
tolerance, the parameter interval is subdivided into two equal
subintervals. The subdivision point, also called break point,
is retained for future use. In fact, for implementation

j=a+ti ... N Usually, n = 4 is sufficient for
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consideration, there is no need to calculate the angles. The dot
products between the unit vectors along R(ti) - R(ti_ l) and

R(th) - R(tj) are sufficient for computation purposes. The

above procedure continues on each of the subintervals. At any
stage, if the length of the vector R(tsmn) - R(tend) on the

subinterval is less than the prespecified length-tolerance, or
the calculated maximum angle is less than the tolerance angle,
or the number of subdivision points exceeds a pre specified
upper bound, then the subdivision process terminates. Let the
sequence of break points be: ‘j for j=0,1,2,...m. The

arc length parameter s is defined by the linear equation

t. -t t-t:
] -1
s(t):s-_l'__ + s i St<t;
Pl -y TGty i j
forj=1,2, .., m
The inverse relation t is defined in terms of s as
$. -8 s -S:
1 3-1
t(s) = t. +t s: 1 Ss<s;
Jls-—sj-l JSj-Sj_l ] 1 J

for j=1,2, .., m
For comparing two parametric curves, the "correspondence”

problem arises. If T = g(t) is correspondence function, then
= g(li) are corresponding points. The Euclidean metric may

be used to find the distance between them

max max
ast<h 0<ism
This value of this metric is zero for different parameterizations
of the same curve, the zero metric value indicates identical
curves. The smaller the value of the metric the stronger the
similarity between the two curves. But the correspondence

function g(t) may not be known. In this case new values of T

D4(F.G) = HF@) - GOOH = HF(li) - G(t.l)ll

may be generated as follows. To determine the distance
between two parametric curves, curvature method is used to get
points on the curves: t;..i=0, 1, ..np; 4, i= o1, ..

n,. Using these break points, two sequences of the same
length N are generated t, i=0, 1. ... N;
T i=0,1,... N, then the distance metric becomes:
= a
DS(F,G) = OS?SP{ llF(ti)- G(‘ti)|l

Although pathological examples can be created to frustrate any
numerical technique, such cases have not appeared in the test
cases considered so far. It should be noted that no derivative
calculations are required in this method, nor is any
experimentation with m and n required to arrive at an optimal
solution.

This discussion can be summarized in the following algorithm.
In the algorithm, all user defined procedures and data elements
begin with upper case letters. All types, counters and system
procedures are in lowercase. Also the text is used as padding to
facilitate reading the algorithm is in lowercase .

Conceptual Algorithm ({Discrete Sampling of Points}

Initialize(a Tree with Curve, a linked TempList with Curve
and an empty linked List);

Initialize(the curvature tolerance with Curv_Tol, number of
break points upper bound with Num_Tol, segment length
tolerance with Seg_Tol);

repeat



{ Remove(the Curve from the TempList);
Determine NeedToSubdivide = Subdivide(the Curve);
//This criteria is based on subdivide if
(Calculated_curvature_angle > Curve_Tol and Count
< Numb_Tol and Seg_Len > Seg_Tol )
if (NeedToSubdivide)
{ Partition(the Curve into Curvel and Curve2 at the
parametric mid point);
Make(Curvel and Curve2 as the Child nodes in the
Tree);
Insert(the Curvel into the TempList);
Insert(the Curve2 into the TempList);
)
else
Insert(the Curve into the List);
}

until (TempList is empty)

Create_List(of discrete sample points from partition Points
in the Tree);
Interpolate(arc length S using the partition Points)
End of the Conceptual Algorithm

To determine the similarity/disparity between two curves, an
additional step is required. Since the two curves may yield
different numbers of sample points on the two curves, the
following steps may used to determine the equal number of
partition points.

Conceptual Algorithm (for Similarity Metric}

(1) Use the above algorithm to determine partitions of the two
curves Rl(t) and Rz(T) based on curvature
ti: i = 0,1,2,...' nt.
T.:j=01,2,.., NT.

(2) Based on these partitions, determine approximate arc-
length functions
SO=0' SO—O

5i=5i.1+ IIRl(t) Ill(tl 1)II i=12,. ol
Sj = Sj-l + “RI(TJ) RZ(T_]-I)“ )j=12,. ’NT’

(3) Normalize 5 and Sj to a range of unit length

.= s.
s /s

S =8. /SN
(4) Merge the two sequnces {0
my k =0,1,2,...,N.
(5) Generate the sequences of parameter values for

k=0,1,2,....N
to=0

- 8.
k:t_1 ‘—L—(t l)wheresi_lSmk<sifor
some i: i = 12. ,n‘

and
m -S-_l

Tk=TJl sj°sj-l (Tj'Tj-l)Wheresj-lsmk<sj

for some j: j = 1,2,...,NT
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(6) Now define the distance metric as

DS(RI'RZ) ~  max IlRl(tk)-Rz(Tk)ll

O<ks<N

Experimental Results

The experimental results suggest that the curvature method is
preferable to the other two methods. Three examples are used
for illustration. The first example deals with two straight line
segments connected at (0, 1/3). This example is used due to its
extensive use in literature ([Fritsch and Nielson 1990). The
error is calculated as the deviation between the parametric mid
point on the curve and straight line segment connecting the
end points of each curve segment. The second example is used
due to the non-linear nature of the curve. The third example is
used due to the non-linear behavior at one end and approximate
linear behavior at the end of the curve. For testing purposes,
thirty four points are used to approximate the curves. The
curvature tolerance of 2 degrees is used.

7.926971e-04 2.266252e-02  1.490116e-08
2.734580e-05 7.814803e-04 9.099892¢-09 §
1.472886e-04 4.210912e-03  1.225224e-08 |

I MAX

§ AVG
STD

Table 1. R(t)= (O, 113) + (1- t) ( 1, 2/3) 0sisl;
R(t) =(0,1/3 + (t—l)2(l, 2/3) 1st<2. The maximum,
average, standard deviation of errors using the three methods:

Uniform parametric, uniform arc length, and uniform curvature
method.

I MAX
AVG
STD

9.518231e-04 9.518162e-04 1.204573e-04
9.517809e-04 9.517723e-04 1.003801e-04
5.328747¢-08 5.328650e-08 2.086170e-08 }

Table 2. R(t) =( t, It") -1<t<l. The maximum, average,
standard deviation of errors using the three methods: Uniform
parametric, uniform arc length, and uniform curvature method.

2.512092¢-03 1.554835¢-03 2.088427¢-04 |

6.499185e-04  6.048873e-04 3.594497e-04 |
7.533531e-04 5.813080e-04 5.685419¢-04 §

Table 3. R = (1, 1 - 3 Ostsl.  The
maximum, average, standard deviation of errors using the three
methods: Uniform parametric, uniform arc length, and uniform
curvature method.

It is clear from these experiments that the maximum error,
average error, and standard deviation in error are consistently
less for the curvature method as compared to the uniform
parametric and uniform arc length methods. The similarity
metric for the distance between two parametric curves yields
similar results.

Similar experiments are performed for the similarity metric
between pairs of curves. The error is calculated as the



jeviation between the corresponding parametric points on
soth the curves. For testing purposes, thirty four points are
used to approximate the curves. The curvature tolerance of 2
degrees is used. In this case also, three examples are used for
illustration. The first example deals with two straight line
segments connected at (0, 1/3) with differen:
parameterizations. This example is used due to its extensive
use in literature [Fritsch and Nielson 1990). The second

example is used due to the different non-linear behavior of the
two curves. The third example is used due to the non-linear
behavior at one end and approximate linear behavior at the end
of both the curves.

-ArcLength
0.00674229
0.00350765
0.00176407

0.30018669
0.19423853
0.09018283

0.00000000

i
Table 4.

(L R®M= 0,173) + (A1-1)(-1, 2/3)
R(t) = (0,173 + (t-1)(1, 2/3) 1s1<2. () R() = (0,1/3) + (1-
)21, 23) Osish; R(t) = (0,13 + (-1)2(1, 2/3) 1st<2.
The maximum, average, standard deviation of errors using the
three methods: Uniform parametric, uniform arc length, and
uniform curvature method.

0st<1;

| Method  Parametric
0.24977043

_Curvature
0.17774135
0.11197755
0.06019229

0.17863822
0.11449315
0.05339361

0.16161619
0.07503668

Table 5. (1) R(t) = (¢, It}) -1stsl. (2) R(t) =(t, WI7) -1<i<].
The maximum, average, standard deviation of errors using the
three methods: Uniform parametric, uniform arc length, and
uniform curvature method.

0.53465772
0.18221708
0.19532605

0.22260903
0.12150877
0.07824913

0.22039755
0.11505167
0.07034623

Table 6. (1) R(t) =(t, 1 - e'l) Otsl.

2
QRM=(L1- e'8t ) 0<t<l. The maximum, average,
standard deviation of errors using the three methods: Uniform

parametric, uniform arc length, and uniform curvature method.

The similarity metric for the distance between two parameltric
curves yields similar results.. It is clear from these
experiments [see tables 4-6] that the maximum error, average
error, and standard deviation in error are consistently less for
the curvature method as compared to the uniform parametric
and uniform arc length methods.

Conclusion

This paper presents a new technique for solving the two
problems. First, this paper addressed the problem of
representation of analytic curves by a discrete set of sampled
points. Previous techniques used Gaussian Quadrature and ad
hoc methods to determine the arc length parameterization to
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approximate sampled points. This paper presents a curvature
based technique which is independent of the Gaussian
Quadrature and ad hoc experimentation. The experimental
results show that new technique is preferable to the other
methods. It is clear from these experiments that the maximum
error, average error, and standard deviation in error are
consistently less for the curvature method as compared to the
uniform parametric and uniform arc length methods. Secondly,
it is shown that the curvature method naturally lends itself to
determine a similarity metric between two parametric curves.
This method is easier to understand and simpler to implement.

The author may be reached at UMR Engineering Center,
University of Missouri-Rolla, 8001 Natural Bridge Road, St.
Louis, MO 63121,E-mail: Chaman@umrvmb.umr.edu
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