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Sensor Signal Analysis by Neural Networks 
for Surveillance in Nuclear Reactors 

Shahla Keyvan and Luis C. Rabelo 

kbstruct-The application of neural networks as a tool for toring. Signals utilized in a wear-out monitoring system 
reactor diagnostics is examined here. Reactor pump signals 
utilized in a wear-out monitoring system developed for early 
detection of the degradation of a pump shaft [17] are analyzed 
as a semi-benchmark test to study the feasibility of neural 
networks for monitoring and surveillance in nuclear reactors. 
The Adaptive Resonance Theory (ART 2 and ART 2-A) 
paradigm of neural networks is applied in this study. The signals 
are collected signals as well as generated signals simulating the 
wear progress. The wear-out monitoring system applies noise 
analysis techniques, and is capable of distinguishing these sig- 
nals apart and providing a measure of the progress of the 
degradation. This paper presents the results of the analysis of 
these data, and provides an evaluation on the performance of 
ART 2-A and ART 2 for reactor signal analysis. The selection 
of ART 2 is due to its desired design principles such as unsuper- 
vised learning, stability-plasticity, search-direct access, and the 
match-reset tradeoffs. ART 2-A is selected for its speed. Two 
simulators are built. One is ART 2, and the other ART 2-A. The 
result is a success for both paradigms, and the study shows that 
ART 2-A is not only able to learn and distinguish the patterns 
from each other, its learning speed is also extremely fast despite 
the high-dimensional input spaces. 

INTRODUCTION 
UCLEAR reactors are designed with a certain antici- N pated useful life. As the plants approach their design 

life, plans must be devised to extend their operating life as 
long as economically viable. Needless to say, the adequate 
surveillance and monitoring of reactor components are of 
utmost importance from a safety point of view, especially in 
the case of an aging plant. In order to assure safe operation, 
nuclear power plants are designed and built incorporating a 
large number of sensors of various kinds to monitor reactor 
parameters at all time. Examples of these parameters (sig- 
nals) are: coolant flow, temperature, pressure, neutron flux, 
reactor power, pump speed, pump pressure, etc. Signals 
from sensors carry valuable information in their fluctuating 
part which can be utilized for the surveillance and monitoring 
of reactor components. It is this application of the reactor 
instrumentation and sensor signals which is the subject of this 
paper. 

The objective of this research work is to evaluate the 
application of unsupervised neural networks (NN’s) in the 
analysis of sensor signals for reactor surveillance and moni- 

devefopedfor detection and surveillance of the pump shaft 
degradation of the EBR-I1 nuclear reactor are used here. The 
pump shaft degradation was simulated to show the feasibility 
of the monitoring system [17]. The system utilizes informa- 
tion available in operation data in the form of fluctuations, 
and provides indications of changes in equipment perfor- 
mance through time-series analysis of collected signals. The 
pump shaft degradation is due to material (sodium and sodium 
oxide) buildup on the shaft in the running clearance between 
the shaft and the lower labyrinth. 

The diagnosis is based on the monitoring of the perfor- 
mance and the impact of an equipment/component on the 
operation environment through the analysis of associated 
signals from the reactor sensors. The wear-out monitoring 
system which uses noise analysis and regression modeling is 
capable of recognizing the progress of degradation. The 
recognition is achieved using parameters called “wear meas- 
ure parameters” which were developed for the system to 
distinguish each simulated signal, as well as for indicating 
relative degradation furtherance. The wear-out monitoring 
system is based on noise analysis and utilizes the dynamic 
data system (DDS) approach of autoregressive moving aver- 
age (ARMA) regression modeling. The mathematical repre- 
sentation of the model for a univariate system is 

(1 - a , z - ’  - a,z -2  - - 0 , z - n )  Y ( k )  

) R ( k )  = ( b , z - ’  - b 2 - 2  - ...  - b z-0-1) 
n- 1 

where 

Y ( k )  discrete signal data 
R( k) white noise residual 
a, b autoregressive moving average parameters 

k index of time interval 
Z - ’ Y ( k )  Y ( k  - 1). 

The autoregressive and moving average parameters are 
then decomposed into pairs of complex discrete roots (eigen- 
values), i.e., for a second-order dynamic, 

r,,* = a k p i  
where 

a, = rl + r 2 ,  a2 = - r , r , .  

Similarly, 
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The pattern recognition and the measure of wear progress 
in the monitoring system are achieved by introducing new 
parameters (representing an index of wear progress) which 
are based on the increase of the impact of the wear-related 
dynamic on the signal fluctuation as degradation progresses. I 
A detailed description of the system is given in [17]. 

The time involved in the learning process of the neural 
networks is of concern when applying high-dimensional input 

1 
~ .. .. .. ”. .* .. .. .. .- 

,-I 

Fig. 1 .  Measured pump power signal. 

spaces for reactor diagnostics. Hence, the ART 2-A paradigm 
is selected for its high speed in learning, and its performance 
is compared with ART 2. The pump sensor signals utilized in 
the wear-out monitoring system which applies noise analysis 
techniques are used here as a semi-benchmark testing against 
the performance of the monitoring system. 

The main objective here is to test the selected neural 1 
network paradigms ART 2-A and ART 2 for the capability of In) 

\-I 

Fig. 2. Normal pump power data (pattern N ) .  (a) First set of data. (b) 
detecting and recognizing different levels of degradations 
separately. In addition, the goal is to achieve this objective Second set of data. 
without any pre/post signal processing or analysis. 

SIGNAL DESCRIPTION 
The signals utilized in this study are divided into two 

groups, the actual measured signal and the simulated signals. 
The measured signal is the pump power data from pump 
number 1 of the EBR-I1 nuclear reactor which are collected 
from sensors by the plant data acquisition system. Fig. 1 
shows the original plot of these signal data for a 50 s time 
period. The first 25 s from this measured signal are used to 
provide two sets of patterns, with 500 data points represent- 
ing the normal pump power signal in this study. 

Four simulations are performed to generate signals repre- 
senting four levels of pump shaft degradation. In each level, 
the wear dynamic eigenvalue present in the measured or 
collected signal is replaced by a characteristic root of the 
same frequency, but a smaller damping factor; all other 
dynamics including noise in the original collected signal are 
untouched and remain the same. Table I shows the eigenval- 
ues corresponding to each simulated datum [17]. Again, the 
first 25 s of these simulated signals are used in our study to 
provide two sets of patterns of 500 data points for each 
simulation. Fig. 2 shows the two sets of data corresponding 
to the measured pump power signal. Figs. 3-6 show the 
simulated sets of data. The measured signals of Fig. 2 are 
referred to as pattern N. The signals of Figs. 3-6 are 
referred to as patterns A, B, C, D, respectively. Thus, file 
NDABC contains the five sets of data of patterns N ,  D, A ,  
B, and C, respectively. 

I I 
I I 

(a) (b) 

Fig. 3. Simulated pump power data (pattern A ) .  (a) First set of data. (b) 
Second set of data. 

I I 

(a) (b) 

Fig. 4. Simulated pump power data (pattern E ) .  (a) First set of data. (b) 
Second set of data. 

Fig. 5.  First set of data of simulated pump power data (pattern C). 

NEURAL NETWORKS 

N N ’ s  are information processing systems motivated by the 
goals of reproducing the cognitive processes and organiza- 
tional models of neurobiological systems. By virtue of their 
computational structure, NN’s feature attractive characteris- 
tics such as graceful degradation, robust recall with frag- 
mented and noisy data, parallel distributed processing, gener- 
alization to patterns Outside Of the training set, nonlinear 
modeling capabilities, and learning. 

(a) (b) 

Second set of data. 
Fig. 6. Simulated pump power data (pattern D) .  (a) First set of data. (b) 
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TABLE I 
SIMULATED DYNAMICS 

Simulated Level Eigenvalue 

1 (pattern D )  
2 (pattern A )  
3 (pattern B )  
4 (pattern C) 

0.79 k 0.43 i 
0.82 f 0.45 i 
0.84 f 0.48 i 
0.86 * 0.50 i 

The specific characteristics of a neural network depend on 
the paradigm utilized. The paradigm is determined by the 
architecture and the neurodynamics employed. The architec- 
ture defines the arrangement of the neurons and their inter- 
connections (see Fig. 7). The neurodynamics specifies how 
the inputs to the neurons are going to be combined together 
(i.e., short-term memory), what type of function or relation- 
ship is going to be used to develop the output, and how the 
adaptive coefficients (i.e., long-term memory) are going to be 
modified. 

The learning mechanism which handles modifications to 
the adaptive coefficients can be classified under supervised, 
unsupervised, and reinforcement learning. Supervised learn- 
ing takes place when the network is trained using pairs of 
input and desired outputs. In unsupervised learning, the 
network is able to self-organize the categories. Reinforce- 
ment learning adds feedback to unsupervised learning to 
evaluate the pattern classification process. 

The spectrum of different paradigms is quite extensive. For 
example, the network architectures range from simplistic 
perceptrons [ 181 to the hierarchical neocognitron [ 101. In 
addition, there is a large number of algorithms for the 
modification of the adaptive coefficients. The various 
paradigms developed have their limitations and strengths; 
hence, one must identify the suitable application areas for 
which they lend themselves. 

A R T 2  
ART represents a family of NN’s which self-organize 

categories in response to arbitrary sequences of input patterns 
in real time for pattern recognition [6]. A class of these 
networks called ART 1 [3], which is unsupervised, can be 
used only for binary patterns. ART 2 [4], [5], which is also 
an unsupervised class, responds to both binary and analog 
patterns. The class ART 3 [7] features an advanced reinforce- 
ment feedback mechanism which can alter the classification 
sensitivity or directly engage the search mechanism. The 
class “fuzzy” ART [9] is similar in architecture to ART 1; 
however, fuzzy operators are added in order to handle analog 
patterns without losing the advantages of ART 1 architecture. 
The class ARTMAP (“predictive” ART) [8] is built upon 
the basic ART designs, while incorporating supervision in the 
learning process. ART 2-A (“algorithmic” ART) [2] is a 
special case of ART 2 which emphasizes the intermediate and 
fast learning rates, hence accelerating the learning process by 
three orders of magnitude. 

Design Principles: ART 2 networks must utilize several 
combinations of mechanisms to satisfy multiple design princi- 
ples such as the stability-plasticity tradeoff, search-direct 
access tradeoff, match-reset tradeoff, and biological plausi- 
bility [4], [6]. 

1 1  12 
+ excitatory slgnal 

- Inhibi tory slgnal 

(b) 

hidden layer [19]. (b) Shunting network [l], 1131. 
Fig. 7.  Neural networks samples. (a) Backpropagation network with a 

The stability-plasticity tradeoff requires that the architec- 
tural mechanisms must prevent established codes from being 
removed or continuously recoded. However, established 
codes must be plastic over the learning process. 

The search-direct access tradeoff calls for a direct access 
to an established category by the corresponding input pattern 
that has become familiar to the network. Search should only 
occur with unfamiliar input patterns. 

The match-reset tradeoff emphasizes that the network 
should be able to react to small differences between an input 
pattern and an established category. However, if a specific 
category is chosen, reset is inhibited during the learning 
process, even when a new category is being established. 

Biological plausibility requires differential equations and 
locality [20]. The neurons in ART obey differential equations 
based on nonlinear equations describing the membrane con- 
ductances, membrane permeability changes, and nerve be- 
havior based on membrane potentials [ 161. Locality implies 
that the transmission of information is only possible among 
components which are in physical contact. 

Topology and Neurodynamics: The principal architec- 
tural elements of an ART 2 network are the attentional and 
orienting subsystems. 

Attentional Subsystem: The attentional subsystem is 
composed of long-term, memory and short-term memory 
elements. 

Short-Term Memory (STM): F1, the input representa- 
tion field, and F2, the category representation field, are the 
two STM main components (F1 and F2 are both shunting 
networks [l], [7], [13]). 

F1 is composed of three layers, with STM activation 
equations as (see Fig. 8) [4] 

Pi = ui + C g ( u j )  

qi = Pi / II PII 
vi = . f ( x i )  + bf (q i )  

ui = v i /  I1 uII 
wi = Ii + aui 
X i  = wi/ IIwII 
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I ‘ I  

( 1 1  a,b.c,d are  constants 
a relatlvely large 
b relatively large 

c d/( I - d)  I I 11 

(41 - 
%Norm 

h 
LI“, 

- M  
LN MN 

L I=hMI  

Fig. 8. Typical ART 2 architecture [2], [4]. 

where U ,  b, c, and d a r e  constants, yj is the STM activation 
of the j th F2 node, ) I  11 is the L ,  norm, and f() is an 
internal signal function. The normalization mechanism, 
among other tasks, keeps F1 from saturation in spite of the 
constant presence of the input pattern during the learning 
process. The internal signal function f() is critical in noise 
suppression and contrast enhancement (in this research, a 
piecewise linear function was utilized; see Fig. 9) [4] ,  [ 1 2 ] ,  
[ 151. The F1 design provides internal feedback and a correla- 
tion between normalized bottom-up and top-down signals to 
allow stability and matching sensitivity. 

The F2 field, by means of competitive interactions of the 
F2 nodes, chooses the one (i.e., winner) which responds 
maximally to the vector p as p is applied to the bottom-up 
adaptive filter (see Fig. 8). The F2 field also suppresses F2 
nodes (i.e., reset) as guided by the orienting subsystem. 
Consequently, the signals of the F2 nodes are assigned based 
on the F2 nodes’ STM activation according to 

d if the j th F2 node is the winner (J)  

based on max (Cp,z, ,)  and it has 
not been reset in this trial I 0 otherwise. 

g ( Y j )  = 

Long-Term Memory (LTM): LTM is made up of two 
components, the bottom-up adaptive coefficient ( z i j )  and the 
top-down adaptive coefficient ( z,J, where learning (LTM 
changes) and therefore category structuring occurs (see Fig. 
8). 

I 

e 
Fig. 9. Piecewise linear function. 

For bottom-up adaptive coefficients, the following learning 
equation (steepest descent) is utilized [ l ] ,  [4 ] ,  [12] ,  [14]: 

dZiJ/dt  = [ p i  - z ~ J ]  d .  

That is, the weight vector ( z ,  J ,  e ,  z,) keeps track of the 
incoming signal vector p and the Jth node in F2 is identified 
as the winner with its respective output d .  In addition, vector 
p, ’  when the F2 field is active and a winner has been 
selected ( J ) ,  is expressed by 

pi = ui -k d z i J .  
Therefore, 

dZiJ/dt  = d ( l  - d ) [ u i / ( l  - d )  - z i J ] .  

For top-down adaptive coefficients, the following equation 
(steepest descent) is utilized [ 1 1 ,  [4 ] ,  [ 1 1 1 :  

dZJi / dt = [ pi - z J ~ ]  d .  

That is, the weight vector keeps track of the F1 activity 
vector p and d is the output of the winner node. Substituting 
for p i  in the same fashion as in the bottom-up situation will 
result in 

dZJi/dt  = d ( l  - d ) [  u i / ( l  - d )  - z , ~ ] .  

Two kinds of learning could be distinguished in ART 2 :  
slow and fast. In slow learning, the short “rendezvous” 
between an input pattern and the network during a trial does 
not allow sufficient LTM changes for the adaptive coefficients 
to reach their asymptotic values. On the other hand, in fast 
learning, the “rendezvous” is long enough that the adaptive 
coefficients can “approach new equilibrium values on every 
trial” as follows: 
Adjust LTM + Adjust STM + Adjust 

LTM + * * -+ LTM Equilibrium. 
Orienting Subsystem: The orienting subsystem helps to 

direct the search for categories. When the orienting subsys- 
tem is activated, vector U ( U , ,  . - , U , ) ,  containing the bot- 
tom-up processed input, and vector p, containing the top- 
down expectation, are utilized to calculate the degree of 
match (vector r ) :  

ri = (ui + cPi)/(IIuII + IIcPII). 
’ pi = ui if ~2 is inactive. 
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If vectors U and p are similar, then Ilrl( will be close to 
one (e.g., a value of one being a perfect match). Thus, the 
reset rule for the orienting subsystem is as follows. 

IF 11 rll < p ( p  is the match sensitivity parameter or 
vigilance factor) 

THEN reset the winning F 2  node (preventing it from 
competing again during this trial). 

IF FAST LEARNING 
THEN select an uncommitted node and resonate2 

ELSE resonate.2 

ART 2-A (“Algorithmic” ART) 
ART 2-A is a special case of ART 2 designed for large-scale 

pattern recognition tasks [2]. Its algorithmic type nature lends 
itself for rapid prototyping in hardware and software. 

ART 2-A has three fields: FO, F1, and F2.  The output of 
the F 1  field, which is also the output of the F O  field, is the 
vector I defined by 

I = normal (f (normal ( I O ) ) )  

where I o  is the input vector of dimensionality M, normal is 
an operator defined by 

normal (x )  =x / I l x l l ,  

and f() is a piecewise linear function (see Fig. 9) with 

The LTM vector in ART 2-A is scaled, and it could be 
interpreted as the LTM vector of ART 2 divided by 1 /( 1 - 
d). As in ART 2, the F 2  node ART 2-A makes a choice if 
the Jth node becomes maximally active. In addition, the F 2  
STM activation represents the degree of match of the vector I 
and the scaled LTM vector. It can be shown that p* (vigi- 
lance parameter of ART 2-A) is related to the p of ART 2. 

LTM adjustments are performed in a single iteration, and 
are reduced to algebraic equations for fast and intermediate 
learning (which may need more trials to achieve stable 
categories) as follows: 

o < e 5 ( M ) ” ~ .  

’ 

I if J is uncommitted 
normal (6 normal ($) + (1 - @)z,) 

if J is committed 

where 

+i = {: if ZJi’  e 
otherwise 

and 0 I 6 I 1 (e.g., 6 = 1 for fast learning). 
Due to the utilization of algebraic equations and simplistic 

arithmetic procedures which involve fewer iterations, ART 
2-A is typically three orders of magnitude faster than ART 2. 

ANALYSIS OF RESULTS 
To evaluate the performance of the ART networks for 

learning and differentiating patterns N ,  A ,  B, C ,  and D, 
several tests are performed using both ART 2 and ART 2-A 
networks. The first test was to apply the six sets of data of 
500 dimensionality each in the order of “NAB” as one input 

Adjust top-down and bottom-up adaptive coefficients. 

1 l l l . d )  

7 

I I Z J I I  

TlYE [LTY CD.”(l.., -.. 
(b) 

Fig. 10. Fast learning trial (set 1 of pattern N data). (a) Uncommitted 
node. (b) Committed node. 

(a) (b) (C) 

Fig. 11. LTM of categories corresponding to Test 1. (a) Pattern N. (b) 
Pattern A .  (c) Pattern B. 

TABLE I1 
RESULT OF TESTING PATTERN ORDER PRESENTATION IN ART 2-A 

Test File Category Vigilance 

1 NAB 001 122 Medium 
2 NBA 001 122 Medium 
3 NBNA 001 10022 Medium 

file. The result of this test is given in Table 11. The ART 2-A 
network is capable of distinguishing these patterns from each 
other, as well as ART 2. As shown in Table 11, the first two 
sets belonging to pattern N are assigned to category 0, the 
two sets of pattern A are in category 1, and category 2 is 
assigned to the two sets of pattern B. The duration (on 
average) of one of these fast learning trials in ART 2-A is on 
the order of hundreds of milliseconds using a simulator built 
with the C programming language for a Macintosh IIfx 
running under A/UX. The fast learning sessions required 
only one presentation of the input data set to provide stable 
results. However, a second presentation was allowed. LTM 
traces at the end of the second presentation are plotted in Fig. 
11 for test 1. 

The next test was to check the effect of mixing the order of 
presentation of the patterns. Hence, the new file “NBA” 
was created by interchanging the order of presentation of file 
A with file B .  As shown in Table 11, the ART 2-A network 
(as well as ART 2) performance in distinguishing the patterns 
from each other is invariant to the order of presentation of 
the patterns in our study. It’ must be mentioned that in 
presenting the file NBA, the network did not use any of the 
LTM results of file NAB; hence, the categories 0, 1, and 2 
of file NBA are independent of the categories 0, 1, and 2 of 
the file NAB trial. Next, a new file is examined called file 
“NBNA” which is created by repeating file N after present- 
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TABLE 111 
IMPACT OF VIGILANCE PARAMETER ON PATTERN CLASSIFICATION I N  

ART 2-A 

Test File Category Vigilance 

4 NBNA 0 0 1  10022 Medium 
5 NBNA 01230145 High 
6 NAB 012345 High 
7 NAB 000000 Low 

ing file B.  The result shows that neither network (ART 2-A 
or ART 2) is disturbed by the new pattern N being repeated, 
and appropriate categories are established as given in Table 
11. 

The vigilance parameter ( p )  sets the criterion for matching 
by controlling the activation of the orienting subsystem. 
Under the exact same conditions, lower vigilance leads to 
coarser categories and higher vigilance to finer categories. 
Table 111 shows the result of the impact of the vigilance 
parameter on the sensitivity of the pattern matching of the 
ART 2-A network. A high vigilance resulted in six cate- 
gories, one for each set of input data. A low vigilance, on the 
other hand, assigned all of the patterns into one category, and 
a proper medium vigilance resulted in appropriate pattern 
recognition. 

To closely follow the improvement of recognition as the 
vigilance factor increases from a low to a high value in ART 
2-A, an input file consisting of the first 500 data sets of each 
and every pattern N through D is created. As described in 
the signal description section, pattern D corresponds to the 
first level of degradation, and patterns A ,  B, and C to the 
second, third, and fourth levels, respectively. The result of 
this test is given in Table IV. As vigilance is increased, the 
first pattern distinguished is the fourth-level degradation C, 
then third-level B,  and finally, patterns D and A together 
(D and A are more closely related than D and N) before 
all patterns are distinguished from each other at increased 
vigilance. 

The next run, shown in Table V, was for evaluating the 
performance of ART 2-A in recognizing the learned patterns. 
Two files NAB and NBNA were created by adding random 
noise, as well as fragmenting the first 25 s of data sets for 
patterns N, A ,  and B. These files were used as input to an 
ART 2-A simulator which uses the learned LTM’s and 
bypasses the learning process. The result, as shown in Table 
V, again indicates the fine performance of this network in the 
recognition of learned categories. 

All of the tests were performed using fast learning trials. 
Fig. 10 illustrates one of these trials for both a committed 
and an uncommitted node for ART 2. For an uncommitted 
node, 11 Z ,  11 goes from a small value (in this plot, the initial 
values are obtained from z J i )  to 1/(1 - d). For a committed 
node which has accepted a new pattern, 11 Z ,  11 starts from 
1/(1 - d) at the beginning with decreasing behavior, and 
asymptotically goes to 1/(1 - d) at the end. This behavior 
indicates that previous encoded features of relatively low 
importance and not present in the current input pattern are 
being suppressed, and features which are significant to the 
category and the input pattern are reinforced. On the other 
hand, ART 2-A fast learning, which uses algebraic equa- 

TABLE IV 
RESULT OF ART 2-A PERFORMANCE IN RECOGNIZING PATTERNS OF FILE 

NDABC 

Vigilance Category 

00000 
oooO1 
00012 
01 123 
01234 

~~ 

Very low 
LOW 
Relatively low 
Low to medium 
Medium/high 

TABLE V 
RESULT OF ART 2-A PATTERN RECOGNITION TEST OF LEARNED PATTERNS 

File Category Vigilance 

NAB 0 0 1  122 0.0 
NBNA 0 0 1  10022 0.0 

tions, converges in a single iteration. This accelerated pro- 
cess does not preclude ART 2-A from the development of 
stable categories, typically in one presentation (see Fig. 11). 

CONCLUSION 
This study is by no means a comparison between ART 2-A 

and ART 2; rather, it is a feasibility study for the application 
of self-organizing networks to nuclear reactor sensor signals 
for the purpose of monitoring reactor components. The result 
of this work shows that, indeed, the ART networks are 
capable of pattern recognition and detection of fault and 
abnormality in a reactor sensor signal. 

In conclusion, the fast training characteristic of ART 2-A 
is necessary for real-time learning, and is essential for our 
problem due to high-dimensional input patterns. An unsuper- 
vised network is desirable in order to avoid relying on a 
teacher based on theoretical or laboratory results on equip- 
ment qualification tests which do not represent the exact 
condition and true harsh environment existing in a nuclear 
reactor. Reactor surveillance requires systems capable of 
broadening their horizon to evolve and cope with new infor- 
mation/situations. ART networks provide an example of 
such a mechanism (as a difference from other techniques such 
as knowledge-based systems). 

Our final implementation calls for a combination of unsu- 
pervised/supervised hierarchy. The first level of this hierar- 
chy should have real-time learning, degradation detection 
capabilities, and ability in qualitative classification. The sec- 
ond level of the hierarchy is composed of several specialized 
supervised elements yielding a quantitative measure of the 
wear. This quantitative measure will be based on our previ- 
ous studies on wear measure parameters (17) using ARMA as 
a teacher! Finally, the third level, based on an established 
database, will forecast the progress of the wear. In addition, 
this design supports effective human- machine interfaces by 
providing a starting point and direction in fault diagnosis 
through the hierarchy of the various levels of sensitivity for 
recognition and classification. Therefore, the feasibility study 
in this paper encompasses the kind of tasks required for the 
first level. 
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