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OXYGEN TENSION PROFILES IN TUMORS PREDICTED BY 
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Abstract--The dynamic behavior of the oxygen tension distribution in tumors during radiotherapy is 
studied by the development and solution of a diffusion with absorption model involving a moving free 
boundary. The oxygen uptake rates within the tumor are considered to be functions of the oxygen 
concentration and results are presented for zeroth-, half-, first- and second-order rates of absorption, as 
well as when the rate of oxygen absorption is described by the Michaelis-Menten expression, 

The results presented in this work may be used together with the data from the oxygen radiosensitivity 
curve of a tumor, in order to determine the proper radiation dosage that should be applied to the tumor 
during radiotherapy, so as to compensate for the lost killing effectiveness resulting from oxygen 
consumption by the tumor. The model used in this study may also be employed in examining the role of 
oxygen and hypoxia in chemotherapy, when cycle-specific chemotherapeutic agents are used. 

The numerical procedure developed for the solution of the equations of the model may become 
applicable to problems encountered in such diverse areas as statistical decision theory, heat transfer with 
changes of phase, thermal explosions, optimal control and fluid flow in porous media. 

NOMENCLATURE 

C(x, t) = Oxygen concentration in the tumor 
C, = Oxygen surface concentration during the loading 

phase 
D = Effective diffusion coefficient of oxygen in tumor 
Di = Effective diffusion coefficient of oxygen in region 

i of a tumor with multiple regions 
f‘(C) = Rate of consumption of oxygen per unit volume 

of absorbing tissue 
s(0) = Dimensionless rate of consumption of oxygen 

k = Michaelis constant 
K = Dimensionless constant defined in equation (26) 
L, = Length of region i of a tumor with multiple regions 
n = Total number of regions in a tumor with multiple 

regions 
N = Number of internal collocation points 

No2 = Flux of oxygen at the surface of the tumor during 
the loading phase (kg/m’s) 

PN({) = Orthogonal polynomial 
q(x) = Oxygen tension distribution in the tumor at steady 

state (kg/mj) 
t = Time 

t, = Total time required for the moving free boundary 
to recede to the surface of the tumor 

V = Maximum oxygen absorption rate 
X,X(O) = Innermost oxygen penetration in the steady-state 

phase 
x = Spatial position 

X(f) = Position of the moving free boundary 

y = Dimensionless spatial position 
F~(T) = Dimensionless position of the moving free 

boundary 

Greek s)mbols 
c( = Constant in equation (3) 
p = Constant in equation (3) 
.I. = Solubility coefficient of oxygen in region i 
i = Dimensionless oxygen concentration at the mov- 

ing free boundary 
p = (z/D)‘;‘; constant defined in equation (13) 
0 = Dimensionless oxygen concentration 

i, = Dimensionless constant defined in equation (25) 
i., = Dimensionless constant defined in equation (26) 

i- r - Dimensionless space variable defined in 
equation (27) 

T = Dimensionless time 
rr = Total dimensionless time required for the moving 

free boundary to recede to the surface of the 
tumor 

Superscriprs 
s = Form factor; 0, I and 2 for slab, cylinder and 

sphere, respectively 

Subscripts 
i = Index for regions in a tumor with multiple regions 

t Present address: Pharmacia AB, Biotechnology, Research Department, 75182 Uppsala, Sweden. 
$ To whom all correspondence should be addressed. 
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Fig. 1. Relative radiosensitivity vs oxygen tension. (From Hall [3, p. 851, courtesy of Harper & Row.) 

INTRODUCTION 

In the treatment of cancer by radiotherapy the aim is to apply a radiation dosage large enough to 
kill the cancerous cells without damaging surrounding healthy cells, and still remain within the 
tissue tolerance level of radiation. The susceptibility of cancerous cells to radiation has been shown 
to increase with increasing oxygen concentrations within the tumor [l-4] and this is illustrated in 
Fig. 1, taken from Hall [3]. It is observed (Fig. 1) that a steep variation occurs at low oxygen 
tensions with an optimum radiosensitivity at an oxygen tension of approx. 30mmHg. If hypoxic 
cells represent a significant fraction of the cell population in a tumor, then a large number of cells 
would survive administered radiation. These cells, during tumor regression, will come closer to the 
underlying stroma, reoxygenate and then enter the cell cycle causing tumor regrowth. In general 
[3], about two or three times more radiation is needed to kill hypoxic cells than well-oxygenated 
cells. 

For more than 50 years the role of oxygen in tumor biology has been the subject of investigation 

of many researchers in the biological sciences. The experimental results of several investigators 
[5,6] suggest that cell systems with a high rate of cell division generally suffer the most radiation 
damage. Therefore, hypoxic cells should be less sensitive to radiation than well-oxygenated cells 
which enter the cell cycle more frequently. Other studies [3,7-91 indicate that the organic free 
radical R’ which results from incident radiation or from interaction with a hydroxy free radical, 
interacts with oxygen in the following apparent reaction: 

R’ + 0, -+RO,‘. 

The radiation damage is fixed because the organic peroxy radical cannot easily be repaired. Thus, 
the role of oxygen to tumors appears to be twofold and numerous investigations show that hypoxia 
confers resistance on cells that would otherwise be sensitive to radiation therapy [4,10,11]. 

Hypoxic cells have also been found to be significantly more resistant than well-oxygenated cells 
to cycle-specific chemotherapeutic agents like bleomycin, cyclophosphamide, adriamycin and 
actinomycin [12-141. This finding may be explained by the fact that certain chemotherapeutic 
agents require a singlet oxygen or superoxide radical as an intermediate to act on cell structures 
as well as by the observation that cells with a low oxygen tension progress slowly through the cell 
cycle [ 151 and sometimes are arrested altogether. Therefore, the role of oxygen is also of paramount 
importance in chemotherapy when cycle-specific chemotherapeutic agents are used. 

While most normal cells are well-oxygenated, many tumors grow in solid masses which are not 
penetrated by blood capillaries and oxygen will have to reach the inner parts of the tumor by 
diffusion. Depending on the size and type of the cancer, there may be parts within the tumor where 
the oxygen concentration is very low or approximately zero [16]. Gatenby et al. [ 171 made in uiuo 
measurements of oxygen tension profiles within human tumors and their results indicate that in 
large tumors which have significantly outgrown their blood supply, the size of the well-oxygenated 
rim is quite small when compared to the size of the thick tumor mass characterized by hypoxic 
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cells. The technique developed by Gatenby et al. [17] uses a CT-guided polarographic probe and 
the location of each measurement is documented by demonstrating the position of the tip of the 
probe with a CT scan. Measurements of oxygen concentration in tissues using polarographic 
methods have also been reported by Carter and Silver [18], Evans and Naylor [19], Constable 
and Evans [20] and Mueller-Klieser et al. [4]. 

The use of oxygen in human cancer radiotherapy was first reported by Hultborn and Forssberg 
[21]. One-half of the tumor was irradiated with the patients breathing air at atmospheric pressure 
and the other half while they were breathing pure oxygen (also at atmospheric pressure). It was 
shown that the radiation effect was markedly enhanced in the half of the tumor treated while the 
patients were breathing pure oxygen. Similar results have been shown by Churchill-Davidson et 
al. [22] and Van Den Brenk et al. [23]. The studies of these investigators led to the use of hyperbaric 
oxygen in combination with radiation in tumor therapy. Hyperbaric oxygen proved to be an 
efficient tool for improving the oxygen supply to tumor tissue and for eradicating hypoxia in solid 
tumors [24-271. 

Even though intensive research [4] has been directed towards radiosensitizing drugs that could 
replace oxygen application and hyperbaric oxygen, respectively, in improving the radiosensitivity 
of solid tumors, hyperbaric oxygen is still being considered a quantitatively effective and relevant 
radiosensitizer. In a comparative study, Suit et al. [28] showed that there was no benefit in using 
misonidazole at clinical doses compared to hyperbaric oxygen at 3 bar. Despite some controversies 
in this regard [29], and taking into account side-effects of radiosensitizers, such as neurotoxicity, 
it is concluded that the development of radiosensitizing drugs has not yet reached a level of general 
clinical applicability, comparable to that of hyperbaric oxygen. 

While a significant number of experimental studies have been reported where the oxygen 
distribution within tissue has been measured and several techniques have been developed for the 
detection and measurement of hypoxic cells in solid tumors [30], very few attempts have been 
made in predicting theoretically the oxygen tension profiles within solid tumors that result from 
increasing the oxygen level through the supply of pure oxygen under atmospheric or hyperbaric 
conditions as well as during radiotherapy [31-331. The predictions of theoretical models would be 
of interest in clinical radiotherapy and could be used to gain insight into the roles of oxygen and 
hypoxia in the response of tumors to radiotherapy, and even to chemotherapy when cycle-specific 
chemotherapeutic drugs are used. 

PROBLEM STATEMENT 

The method of interest for introducing oxygen within solid tumors involves exposing a surface 
of the tumor to a high oxygen concentration [3,35], often under high pressure, and allowing the 
tumor to absorb oxygen until a steady-state condition is reached where no further penetration of 
oxygen into the tissue occurs. This steady state is characterized by a particular oxygen profile 
within the tumor, resulting from internal consumption of the absorbed oxygen by cancerous cells 
and the diffusional resistance to oxygen transport within the tumor. Therefore, the surface may be 
considered to have an oxygen tension proportional to that of the oxygen source [34] and a point 
exists within the tissue at which the oxygen concentration has dropped to a value close to zero, 
marking the point of innermost penetration. Once this steady state occurs, the outer surface is 
sealed off and radiation treatment may begin. During the period of radiotherapy, the oxygen within 
the tumor continues to be consumed as well as to diffuse because of the existing, although 
decreasing, oxygen concentration gradient. As a consequence of the removal of oxygen, the initial 
steady-state profile changes and the point of innermost penetration where the oxygen tension is 
about zero will gradually move towards the sealed surface until no oxygen remains. 

The objective of this work is to obtain information about the oxygen tension distribution within 
the solid tumor and how it changes with time during radiotherapy, by modeling and solving the 
combined diffusion and absorption processes. The predictions of the model would provide 
knowledge of how deep into the tumor the oxygen penetrates, how this depth depends on the 
oxygen concentration of the source and how the oxygen tension profile varies with time during the 
application of radiation. 

With this information one may determine a priori the safe oxygen tension of the source so as to 
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achieve an initial oxygen penetration depth that is beyond the thickness of the solid tumor, and 
the time at which the oxygen concentration within the tumor has decreased to a critical low value 
below which the oxygen effect is negligible and thus, the treatment should be discontinued. The 
model predictions would also show how the oxygen concentration changes with time at each point 
within the tumor and therefore, by knowing how the radiosensitivity changes with oxygen tension, 
a time-varying radiation dosage may be established so as to maintain the desired effectiveness of 
the radiation treatment. 

MATHEMATICAL FORMULATION 

It has been shown that for oxygen the role of diffusion is significantly more important than that 
of convection in most tumors [4, 33, 36-421. Therefore, the complex transport mechanisms of 
oxygen in absorbing tumors may be simplified by assuming that the transport of oxygen is governed 
by diffusion. The transport mechanism is taken to be one-dimensional and it is assumed that local 
equilibrium exists between the tissue and oxygen at each point, since the process of absorption is 
rarely rate limiting [34,35,43-J. Also, the diffusion with absorption process is taken to be isothermal. 

The continuity equation derived from a differential oxygen mass balance in the absorbing tumor, 
is given by the partial differential equation 

ac ia 
at - x~ax ( > x”DE 

ax - f (CL (1) 

where C(x, t) denotes the concentration of oxygen in the tissue, D is the effective diffusion coefficient 
of oxygen and f(C) represents the rate of consumption (absorption) of oxygen via cell respiration 
per unit volume of absorbing tissue. The oxygen consumption is assumed to be independent of 
glycolysis, and equation (1) is applicable for a slab, cylinder or sphere by setting s = 0, 1 or 2. 

The in uiuo measurements of steady-state oxygen tension profiles within tumors reported by 
Gatenby et al. [17] suggest that in certain tumors a diffuse trend may exist in cell morphology 
from the rim of the tumor (well-oxygenated cells) to a region where no cell respiration occurs 
(necrotic region). King et al. [44] have suggested that for these tumors simple multiregion type 
models may have practical utility but the solutions of their model have been obtained under steady- 
state conditions only. In this case, equation (1) could be used for each region of the tumor and 
should be written as follows: 

aci 1 a x30,% 
at xs ax ( > 1 ax - _fXciL i = 1, 2, 3,. . . ,n, (2) 

where i denotes the various regions of the tumor (i.e. regions of well-oxygenated cells, hypoxic cells 
and necrotic cells) and n represents the total number of regions within a particular solid tumor. 
The effective diffusivity of the well-oxygenated region, where a higher degree of vascularity occurs, 
should be larger than the diffusivities of the other regions and may be thought of as being like an 
advection coefficient which lumps oxygen transport via blood flow and diffusion. In the hypoxic 
region there is sparse vascularity and the contribution of oxygen transport by blood flow is 
insignificant, while in the necrotic region where no cell respiration occurs the rate of consumption 
of oxygen is zero. 

The present work concerns itself with slab geometry, as shown in Fig. 2. The solid tumor is 
considered to be dominated by the region of hypoxic cells, and the effective diffusivity of the oxygen 
in the solid tumor is taken to be constant. Liapis et al. [45] studied the case where the rate of 
oxygen consumption per unit volume of the absorbing tissue is constant [f(C) = const]. However, 
experimental data [ 17, 34,441 indicate that the rate of oxygen consumption by cancerous cells can 
be a function of the oxygen tension. The present work takes this into account by considering two 
different expressions for the rate of oxygen absorption. The first is given by the Freundlich equation 

f(C) = co, (3) 
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I 

x=0 X X 

Fig. 2. One-dimensional slab representing the tumor, with X indicating the position of the moving free 
boundary at the end of the oxygen loading phase. 

where cc and p are constants determined from experimental data. Since fl usually lies in the range 
of O-2 [44,46], the cases presented in this work are for /I = 0.0, 0.5, 1.0 and 2.0. In certain tissues 
the rate of oxygen absorption is described by the Michaelis-Menten [34,44,46] expression, given 

by 

(4) 

where V and k are the maximum oxygen absorption rate and Michaelis constant, respectively. For 
k = 1, equation (4) becomes the well-known Langmuir expression. For oxygen tensions with values 
<<k, the behavior is similar to that for equation (3) with /? = 1.0, whereas for concentrations >> k 
it resembles the case where f(C) = const, i.e. where b = 0.0. 

The combined oxygen diffusion and absorption mechanisms described above, are considered to 

be active during the loading stage of oxygen into the solid tumor (steady-state phase of the problem) 
as well as during radiation treatment (unsteady-state phase of the problem). 

The problem involving a solid tumor with multiple regions [equation(2)] is beyond the scope 

of the present work, but its solution may be obtained by using the procedures presented in the 
following sections for a single region, together with the conditions of continuity of oxygen fluxes 
at the interface between regions given by 

D,aC, = D, G+l 

1 ax r+1 ax at x0 = L,,i = 1,2 ,..., n - 1, 

and appropriate solubility-type conditions at the region interfaces like, 

ci+l = Yi+l.i Ci at Xi = Li, i = 1,2 )...) n - 1. (6) 

If Yi+l,i = 1 V i, this implies the continuity of the oxygen tension at the interface between regions. 

Steady-state phase 

During the initial phase when oxygen is being loaded into the tumor, the oxygen tension at the 
surface has a constant value Co, 

c = co at x = 0. (7) 

A steady state is reached when the concentration gradient becomes zero at a point X in the slab 
where the oxygen tension is also zero. At steadystate the concentration at every point in the tumor 
becomes independent of time, i.e. the accumulation term is zero everywhere since at this state the 
rates of absorption and diffusion are equal to the rate of oxygen supply from the source. The point 
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X marks the innermost penetration of oxygen and no oxygen can diffuse beyond this point. 
Therefore, the following conditions exist: 

ac 0 ax= atx=X 

c=o at x = X. (9) 

The steady-state solution is obtained by solving 

D$-f(C)=O, (10) 

subject to the boundary conditions given by equations (7) and (8); equation (9) is employed in the 
calculation of the innermost penetration X. For the case where f(C) = ctCp and b = 0.0 [31,45], 
the solution of equation (10) gives 

C=$(x-X)2, 

where 

When b = 1.0, the solution of equations (7), (8) and (10) leads to the following expression: 

C cosh[p(x - X)] -_= 
C, cosh(pX) ’ 

(11) 

(12) 

(13) 

where p2 = cc/D. The boundary condition in equation (9) is satisfied as X + a3 in equation (13). 
This may also be the case for other forms off(C). 

An approximate solution to a problem with this property (C -+ 0 as X -+ co) can be obtained 
with a specined degree of accuracy, by incorporating the idea of mnermost penetration where the 
oxygen tension is as small as desired but nonzero [47, p. 671. This implies that a deepest point of 
penetration may be found at a finite length X where C is very small and close to zero, and the 
oxygen tension distribution beyond this point may be neglected. This approximation also makes 
it possible to trace a minimum (critical) oxygen concentration within the tumor below which the 

oxygen effect is negligible. Therefore, X can be estimated from equation (13) by letting C/C, = 6, 
where 6 is taken to be a small number close to zero. When X has been estimated, equation (13) 
provides the steady-state oxygen tension distribution with C = C, at x = 0, and C = K, at x = X. 

For cases where the rate of oxygen absorption, f(C), is a nonlinear function of the oxygen 
tension, the steady-state profile is obtained by solving equation (10) numerically so as to give a 
concentration profile which is cut off at a penetration depth X where the oxygen tension is 6C,. 
The range of values of Co may vary between 1.25 x 10m3 and 4.97 x 10m3g/cm3 [3,4], and Arve 
[46] in his calculations varied the value of 6 between lop3 and 10m4. 

Unsteady-state phase 

Once the surface (x = 0) is sealed off and radiation is applied, no more oxygen is allowed to 
enter the solid tumor but oxygen already present in the tissue, continues to be consumed and 
diffuse. Therefore, the point of innermost penetration, X, moves towards the surface of the slab. 
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This part of the process can be represented by the following equations: 

fg=D$-(C), 0 < x < X(r), t > 0; 

aC 0 ax= at x = 0, t > 0; 

(14) 

(15) 

aC 0 ax= at x = X(t), t > 0; (16) 

c=o at x = X(c), t > 0; (17) 

c = 4(x) at t = 0, 0 d x < X(0); (18) 

where the function q(x) is the oxygen tension distribution obtained from the steady-state phase, 
and is given by equation (12) when /I = 0.0 and by equation (13) when p = 1.0. 

It should be noted that the innermost penetration X of the steady-state phase corresponds to 
X(0) of the unsteady-state phase, and the boundary condition given by equation (17) takes the form 

c = 6Co at x = X(t), t > 0, (17’) 

for the case where p = 1.0 or when f(C) leads to a solution of the steady-state phase, such that 
C+OonlyasX+oo. 

The above equations can be put in dimensionless form by defining the following variables: 

y = X;b)? 

Dt 

7=o)2’ 

X(t) 
Y,(7) = x(0)’ (19) 

where ~~(7) represents how the position of the innermost penetration changes with time, 7. Equations 
(14)-( 18) then become: 

$ = $ - ,&I), 0 G y 6 yo(7), 7 > 0; (20) 

ae 0 ay= at y = 0,~ > 0; (21) 

ae 0 ay= at y = y,(r),r > 0; (22) 

e=o at y = ye(r), T > 0; (23) 

0 = 4(Y) at r = 0, 0 G y < y,(O); 

where y,(O) = 1.0, and the function g(0) has the forms 

(24) 

g(Q) = &@, A = ww2~(coY- l 
1 

D ’ 

and 

(25) 

g(e)=& & ) ( 1 &=qgq 
0 

I+. 
0 
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The form given in equation (25) is used when f(C) is represented by the Freundlich expression, 
while equation (26) is employed in the case where f(C) follows the Michaelis-Menten equation. 
When the absorption rate f(C) is such that C + 0 when X(0) + cc in the steady-state phase, then 

the boundary condition given by equation (23) should become 

6=6 at y = yO(r), 5 > 0. (23’) 

The function q(y) is given by 

4(Y) = +u - YY 

when /I = 0.0, and by 

q(y) = coshCpX(y - 1)l 
cosh(pX) 

(11’) 

(13’) 

for the case where fl = 1.0. The numerical solution of the expressions given by 

9=1 at y = 0, (7’) 

ae 0 
y= 

aty= 1, (8’) 

8=0 aty=l (9’) 

and 

a*0 - - g(e) = 0, w Odybl, (107 

would provide the function q(y) when analytical solutions of the steady-state phase are not available. 
It is important to note that when g(0) is such that 0 = 0 only for X(0) = co, the boundary condition 
given by equation (9’) takes the form, 

8=6 aty= 1. (9”) 

The system of equations (20)-(24) represents a moving boundary problem since the point of 
innermost penetration, X(r), moves towards the surface as time progresses. Because there is no 
oxygen diffusing across the moving boundary at any time and since the oxygen tension is zero at 
the boundary, there is no relationship which contains the velocity of the moving boundary explicitly. 

Moving boundary problems are often tedious and difficult to solve [477513. Often, Crank- 
Nicholson or other finite-difference numerical schemes are used [31,52]. These numerical methods 
usually require large computation times and are often applicable only when the velocity of the 
moving boundary is small. In general, the moving boundary will not coincide with a grid in 
successive time steps, AZ, if AZ is taken to be constant and predetermined. Because of these 
limitations, the solution and parameter estimation of models which involve moving boundaries 
have been, in most cases, intractable. 

Numerical solution procedure 

The numerical method of orthogonal collocation [53,54] is used to solve the differential equations 
of the steady-state and unsteady-state phases. The method of orthogonal collocation is easier to 
apply to problems with model equations of fixed extent than it is to problems with changing 
domains. Equation (20) can have a domain of fixed extent if the position of the moving boundary, 
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y,(s), is fixed, by defining a new space variable as follows [45,46]: 

(=y- 
Y,(T)' 

The transformed model equations of the unsteady-state phase are: 

ae I a20 -= 
aT CYo(r)3’ag’ ’ 

at 5 = 0, T > 0; 

ae 0 -_= 
25 

at r = l,T > 0; 

(27) 

(28) 

(30) 

e=o at r = 1, T > 0; (31) 

e = 4(r) at7=0,0<[<1. (32) 

The function q(l) is obtained from the solution of the following transformed equations of the 
steady-state phase: 

a2e 
- - g(e) = 0, 
at2 

0<5<1; (33) 

e=1 at 4 = 0; (34) 

ae 
cc=O at 4 = 1; 

e=o at 5 = 1. (36) 

If the function g(0) is such that 8 = 0 when X(0) = co, then the boundary condition in equations 
(31) and (36) should take the form 

l3=6 at 5 = 1. (37) 

The method of orthogonal collocation was applied on the space variable and the approximation 
order N of the Jacobi orthogonal polynomials PN(<) ranged from 18 to 58 for the different cases 
studied. The position of the moving boundary is determined by trial and error (since there is no 
explicit expression for its velocity), so as to satisfy the boundary condition given by equations (31) 
and (36) or (37). The details of the numerical procedures used to solve equations (28)-(37) and their 
computer program are presented in Arve’s [46] thesis. 

RESULTS AND DISCUSSION 

In Fig. 3 the innermost penetration, X(O), during the steady-state phase as well as the total time, 
t,, that it takes for the moving boundary to proceed from X(0) to the surface of the tumor during 
the unsteady-state phase, are plotted against the absorption parameter fi. The results are shown 
for two different oxygen loading tensions, and the value of the effective diffusivity, D, is within the 
range of values estimated for various tumors [l, 443. The values of the oxygen loading tension, C,, 
used in the model simulations, are characteristic of those used in clinical radiotherapy [4,55], while 
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the value of CI is taken to be 1 in the numerical experiments reported in this work. The values of 
the kinetic parameter b are varied between 0 and 2, since the experimental data of Gatenby et al. 
[17] and King et al. [44] suggest that the order, /3, of oxygen absorption in tumors is within the 
above-mentioned interval. 

The oxygen concentration throughout the slab is always CC,, because of the continuous 
consumption of oxygen in the tumor. Therefore, in the range of Co < 1, the rate of absorption in 
a tumor with a small /I will be greater than in a tumor with a large j? at a given oxygen tension. 
Thus, the mechanism of diffusion in a tumor with a large value of B will allow the oxygen to 
penetrate deeper into the tumor, before the oxygen concentration reaches the prescribed value 6C,. 
As a result, when C, < 1, the penetration depth, X(O), increases with increasing absorption order 
and this is clearly shown in Fig. 3. When /l = 1, the value of X(0) is the same for both values of 
C,,, because for a selected value of 6 equation (13) will provide the same innermost penetration for 
all values of Co. 

The effect of p on the total time, t,, that it takes for the free boundary to move to the surface of 
the tumor during the unsteady-state phase is similar to the effect of/l on X(O), as shown in Fig. 3. 
From equation (19) it is observed that the time variable, t, is proportional to the square of X(0) 
and varies linearly with the dimensionless time, z. The dimensionless total time, tr, was found to 
be of the same magnitude for all values of j? shown in Fig. 3 [46], and this together with equation 
(19) can explain the similarities in the behavior of t, and X(0) as /I and C,, vary. The total time, t,, 
varies substantially for different values of /I since the rate of absorption decreases as /I increases in 
this range of C,,. Therefore, it takes a longer time to consume the oxygen that is present in the 
tumor for a larger 8, and also for values of C, < 1 the total amount of oxygen at the beginning of 
the unsteady-state phase is larger as the value of /I increases. 

The position of the moving boundary as a function of the dimensionless time, t, is shown in Fig. 
4. It is observed that the qualitative dynamic behavior of the free boundary is the same for all 
values of p, and Arve [46] has shown that the same dynamic behavior as that shown in Fig. 4 is 
obtained when the absorption rate is given by the Michaelis-Menten expression. The velocity of 
the free boundary, given by the slope of the curve, is at first very small and as time proceeds it 
approaches infinity. This behavior occurs because oxygen is continuously consumed with the 
tendency to move the boundary towards the surface of the slab, but the movement is initially 
counteracted by the diffusion process. As the oxygen tension decreases the absorption process is 
gradually overtaking the effect of diffusion, and when all the oxygen has been consumed the free 
boundary has moved to the surface. A close study of the data shown in Fig. 4 indicates that in all 
cases the free boundary has moved at most 20% from its initial position, when 70% of the total 
time of the unsteady-state phase has elapsed. The velocity of the moving boundary, X(t) can be 

Fig. 3. The effect of the absorption parameter /I on the 
innermost oxygen penetration, X(O), and on the time that 
is required for the free boundary to move to the tumor 
surface during the application of radiation. z = 1 
(g/cm3)’ -8/s, D = 10-5cm2/s, 6 = 10m3; the units of Co 

Fig. 4. Variation of the position of the moving free 
boundary, y,(s), with dimensionless time, r (Freundlich 

equation, S = 10e3). 

are g/cm3. 
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evaluated by the following expression: 

dX(r) D dye(r) _=-- 
dt X(0) dr ’ (38) 

Thus, for a given time t, one calculates r from equation (19) and the slope dy,(r)/dr at r is estimated 
from a curve similar to those shown in Fig. 4; then the velocity of the free boundary at t is calculated 
from equation (38). It is important to note that the data shown in Fig. 4 represent the behavior of 
nondimensional variables, and the real-time interpretation of these results should consider the 
appropriate use of these data with equation (19). 

The numerical experiments of Arve [46] show that the value of Co does not only affect the 
penetration depth X(0) and the total time, tf, as shown in Fig. 3, but also the time at which the 
free boundary starts to move appreciably during the unsteady-state phase. Therefore, it may be 
possible for a given oxygen absorption rate function f(C) and effective diffusivity D, to select a safe 
oxygen tension Co so that the minimum concentration required for an oxygen effect during radiation 
treatment is located beyond the innermost depth of the tumor, and also Co is such that the free 
boundary does not start to move significantly until the radiation treatment is completed. This 
would imply that a constant radiation dosage may be used during radiotherapy. If the properties 
of the tissue are such that oxygen cannot penetrate through the length of the tumor when medically 
safe values of Co are used and the times for establishing the oxygen tension profiles of the steady- 
state phase are within an acceptable time interval for oxygen loading, then a time-varying radiation 
dosage should be used to compensate for the loss of the effectiveness of radiation due to the 

depletion of oxygen in the tumor. 
The oxygen tension profiles in the tumor are presented for different dimensionless times, r, in 

Figs 5-10; the Michaelis-Menten parameter K in Figs 9 and 10 is given by K = k/C,, and the 
value of V in equation (4) is taken to be 1 g/cm3s. From Fig. 8 it is clearly observed that for fi = 2.0 
the oxygen concentration of the steady-state phase (r = 0.0) is very low for a large part of the slab, 
and changes significantly only in the neighborhood of the surface during the unsteady-state phase. 
This occurs because of the strong dependence of the rate of absorption on oxygen tension, which 
results in large differences in magnitude of the absorption rate within the slab. The difference is 
106-fold between the surface and the point of innermost penetration at steady state for /I = 2.0. 
However, the rate of absorption is a weak function of oxygen concentration when /I is small, and 
therefore the differences in the absorption rates within the tumor are small. As a result, the oxygen 
tension is fairly large even close to the innermost boundary (Figs 5 and 6). 

As time progresses the oxygen tension gradient that defines the diffusional flux decreases because 
of the continuous consumption of oxygen. This will effect a change in the relative diffusion and 
absorption rates within the tumor but differently for different values of fi. A comparison of the 
results when r = 0.001, shows that only small amounts of oxygen have been consumed for the 
cases where b = 0.0 and 0.5 (Figs 5 and 6); for the larger values of fi, the amount of oxygen 

I ’ I I I 8 I ’ I I 

Y 

Fig. 5. Oxygen tension profiles in the tumor for different Fig. 6. Oxygen tension profiles in the tumor for different 
dimensionless times, r, using the Freundlich equation dimensionless times, I, using the Freundlich equation 

with /3 = 0.0. with /3 = 0.5 (6 = 10m3). 

Y 
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consumed is greater and for /I = 2.0 (Fig. 8) most of the oxygen has been absorbed. 
It is also interesting to note how much the dimensionless surface concentration has decreased 

before the free boundary starts to move significantly. For fi = 0.0 and 0.5 the free boundary has 
moved 10% from its initial position, when the surface concentration has dropped to 24 and 8.2% 
of the initial value of Co, respectively. The corresponding values for p = 1.0 and 2.0 are 0.96 and 
0.17%. This occurs because for higher values of /? the real time that it takes for the free boundary 
to move 10% from its initial position is significantly larger than the time required for lower values 
of jI, since the innermost penetration X(0) is much higher for larger values of/j’ (Fig. 3). Therefore, 
because of these larger-dimensional times the concentration of oxygen at every point in a tumor 
with a high p value, is much lower than that encountered when the value of fl is low. 

A comparison of the oxygen tension profiles shown in Figs 9 and 10 with those in Figs 5-7, 
indicates that for a small K the results obtained with the Michaelis-Menten absorption rate fall 
in between the calculated data using the Freundlich expression with j? = 0.0 and 0.5. For the higher 
value of K (Fig. lo), the results in nondimensional form are closer to the case where jl = 1.0. 
However, the results in dimensional form for K = 5.0 vary substantially from the case where j? = 1.0 

C461. 
The variation of the dimensionless oxygen tension at the surface of the tumor with dimensionless 

time, r, is shown in Figs 11 and 12; in Fig. 12 the data for p = 0.0 and 1.0 are also included in 
order to compare them with the results obtained for small and large values of the Michaelis- 
Menten parameter K. It is observed that for large values of p the surface concentration is very low 
for most part of the process time, while for lower values of /? the surface oxygen tension decreases 
less rapidly during the unsteady-state phase. The data in Fig. 12 suggest that for small values of 
K the dynamic behavior of the oxygen tension at the surface is qualitatively similar to that obtained 
with values of fi close to zero, while for large values of K the dynamic behavior is similar to that 

Fig. 7. Oxygen tension profiles in the tumor for different 
dimensionless times, r, using the Freundlich equation 

with p = 1.0 (6 = 10-s). 

Fig. 9. Oxygen tension profiles in the tumor for different 
dimensionless times, r, using the Michaelis-Menten 

equation with K = 0.05 (S = 10e3). 

Fig. 8. Oxygen tension profiles in the tumor for different 
dimensionless times, T, using the Freundlich equation 

with /? = 2.0 (6 = lo-‘). 

Fig. 10. Oxygen tension profiles in the tumor for different 
dimensionless times, T, using the MichaelissMenten 

equation with K = 5.0 (6 = 10-j). 
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Fig. Il. Variation of the oxygen tension at the surface Fig. 12. Variation of the oxygen tension at the surface 

of the tumor with dimensionless time, T, using the of the tumor with dimensionless time, T, using the 

Freundlich equation (6 = 10m3). Michaelis-Menten equation (6 = 10-j). 

T 

obtained with fl = 1.0. 
With the aid of the data shown in Figs 3-12, a method to control the radiation dosage with 

time may be established. Since the oxygen tension decreases at every point in the tumor during 
radiation treatment, the radiosensitivity may change so that the effectiveness of the radiation 
becomes less than expected. A procedure where the applied radiation dosage is controlled by the 
varying oxygen concentration in the tumor could insure that the desired killing effect of the 
radiation is maintained throughout the time period of the treatment. In order to determine the 
proper radiation dosage, one must know how the radiosensitivity of the cancerous cells changes 
with oxygen tension (oxygen radiosensitivity curve, Fig. 1) in the tumor of interest, and how the 
oxygen concentration distribution varies with time in that tumor. The oxygen radiosensitivity curve 
may be determined experimentally [3,56], and the information about the time variation of the 
oxygen tension distribution may be obtained by the model presented and solved in this work. The 
model parameters D, CI, p, V and K may be established by the procedures reported in the literature. 

When the oxygen tension profile of the steady-state phase is known, one may determine the 
starting radiation dosage. It may be determined so that the point within the tissue where the lethal 
effect of the radiation becomes insignificant (radiation penetration depth), is not beyond the point 
where the oxygen concentration is so low (critical oxygen tension) that the oxygen effect starts to 
decrease. The location of the point where the concentration becomes lower than the critical oxygen 
tension may be found in Figs 5-10 for the pertinent j3 or K, at z = 0.0. If the critical oxygen 
concentration is beyond the innermost boundary of the tumor at r = 0.0, then one may use a 
radiation dosage sufficient to effect therapy through the whole length of the tumor. However, if 
the oxygen tension reaches the critical concentration at a point within the tumor, then a radiation 
dosage should be used at T = 0.0, that effects therapy up to the point within the tumor where the 
oxygen concentration is greater or equal to the critical oxygen tension. 

During the unsteady-state phase the data in Figs 5-10 allow one to follow how the critical 
concentration moves towards the surface of the tumor with time. If it is found that the time it takes 
for the critical oxygen tension to recede to the innermost depth of the tumor is larger than the 
time allowed for safe radiation treatment, then a constant radiation dosage may be used throughout 
the time period of radiotherapy. However, if the oxygen concentration becomes lower than the 
critical tension, during radiation treatment, at the radiation penetration depth, then a time-varying 
radiation dosage is required to maintain the desired effectiveness of radiation. In this case the 
radiation should be changed according to the variation of the concentration at the radiation 
penetration depth. When the oxygen concentration at this point has decreased to a level where the 
oxygen effect is negligible, then the application of radiation should be discontinued. 

More results, similar to those shown in Figs 3-12 for other values of the parameters co, a and 
K as well as data showing the variation of the average oxygen concentration in the slab with time, 
are reported in the work of Arve [46]. The effect of the value of 6 on the numerical values of the 
variables X(O), C(x,t), X(t) and tf as well as on the computational efficiency of the numerical 
procedure used to solve the model, is discussed in great length in the thesis of Arve [46]. Finally, 
it is important to note that the solution procedure presented in this work can become applicable 
11CM 10:3-e 
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to problems encountered in such diverse areas as statistical decision theory [.57], optimal control 
[58], fluid flow in porous media [59,60], heat transfer with changes of phase [61] and chemical 
reactions such as thermal explosions [62]. This numerical method can be extended for the solution 
of spatially, multidimensional diffusion with absorption or reaction problems involving a free 
boundary, by employing collocation on the space variables with orthogonal polynomials in multiple 
variables and the general transformation developed by Saitoh [49] which fixes the position of the 
moving boundary. 

CONCLUSIONS AND REMARKS 

Oxygen tension profiles in tumors are predicted by the solution of a diffusion with absorption 
model involving a moving free boundary. This model describes the oxygen concentration distribution 
and the innermost penetration of oxygen during the loading phase of oxygen in the tumor, as well 
as during the time period of the application of radiation. The expressions of the oxygen absorption 
rates are considered to be functions of the oxygen tension and results are obtained for zeroth-, 
half-, first- and second-order rates of oxygen uptake, as well as for absorption rates described by 
the Michaelis-Menten expression. 

The model predictions during the loading phase of oxygen (provided from an oxygen source) 
into the tumor, can lead to the selection of a medically safe oxygen surface concentration which 
would provide a desirable oxygen tension profile and penetration depth at the end of the loading 
phase. This oxygen profile would determine the starting radiation dosage during the unsteady-state 
phase of radiation treatment. 

The results describing the time variation of the oxygen tension distribution in the tumor during 
the application of radiation, may be used together with the oxygen radiosensitivity data of the 
tumor in order to determine the appropriate radiation dosage that should be administered to the 
tumor, so as to compensate for the lost killing effectiveness resulting from oxygen consumption by 
cancerous cells. The mathematical model may also be used in studies that would optimize the 
therapeutic effect of radiation. 

Furthermore, since hypoxic cells have also been found to be significantly more resistant than 
well-oxygenated cells to cycle-specific chemotherapeutic agents [12-141, it becomes apparent that 
the model presented in this work may be used to gain insight into the role of hypoxia and the role 
of oxygen in the response of tumors to chemotherapy. 

A discussion is also offered and certain expressions are presented that would be required in 
extending the applicability of the model to tumors with multiple regions [17]. Finally, the solution 
procedure developed for the problem presented in this work, may become applicable to problems 
in the areas of statistical decision theory, thermal explosions, heat transfer with changes of phase, 
fluid flow in porous media and optimal control. 
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