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Non-linear Oscillation, Automodulation and Anelasticity

Tetsuro SUZUKI and Manfred WuTTIG

Institute of Applied Physics, University of Tsukuba, Sakura, Ibaraki 305
tDepartment of Metallurgican Engineering, University of Missouri-Rolla,
Rolla, Missouri 65401, U.S.A.

The automodulation observed in the course of internal friction is discussed as a special example of the universal nature of
non-linear oscillations. Universal features of non-linear oscillations are the requirement of energy supply or negative
damping and the period doubling route to chaos. The nagative damping responsible for the automodulation is described in

terms of the soliton model for twinning deformation.

Introduction

§1.

Internal friction measurements have been established as
a powerful tool to study the wide variety of properties of
solids, including the atomic configurations of point defects
and the tunneling states in crystalline and amorphous
materials. However, there have been scattered reports of
troubles in the course of the measurement of internal
friction, which have sometimes been called “gasping”. This
denotes the situation where the amplitude of the oscillation
in the course of the internal friction changes with an
extremely low frequency compared with the oscillation
frequency of the internal friction sample, despite the best
efforts to keep the driving condition strictly stationary. The
purpose of the present paper is to introduce this strange
phenomenon of gasping or automodulation to the general
audience interested in non-linear acoustic phenomena in
various solids and liquids, and to try to establish the
relationship between this special phenomenon and general
non-linear oscillations in various fields of research.

§2. Non-linearity

The general definition of non-linearity is given in terms
of the relationship between the input and the output of a
system or black box. Suppose that we obtain the output
y;(t) for the input x;(2), with i=1 or 2. If we obtain ay, (¢)
+ By (¢) as the output from the system for the input ox; (¢)
+ Bx,(t), the system is defined as linear.

If the output for the sinusoidal input is non-sinusoidal,
the system cannot be linear and is considered non-linear. If
a finite output is obtained for a=§=0, i.e., for zero input,
the system is called an oscillator. An oscillator can be
considered as a special case of a non-linear system, even
when the output waveform is sinusoidal. An oscillator
cannot contradict the requirement from the first law of
thermodynamics—the conservation of energy. A steady
flow of energy is required for the steady oscillation to
continue.

The non-linearity of a given system can be divided into
two categories. Non-linearity (1) is that of the system into
which no energy flow other than the input signal exists as
shown in Fig. 1(a). This is the non-linearity generally
expected from a system in thermodynamical equilibrium.
Nonlinearity (2) is that of a system into which an energy
flow other than the input signal does exist as shown in Fig.
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Fig. 1. The non-linearity (1) of the system in equilibrium (a), and the
non-linearity (2) of the system in thermodynamic non-equilibrium (b).

1(b); this refers to the non-linearity shown by an oscillator.
Because there is a flow of energy into the system, it
represents the non-linearity of the system in thermo-
dynamical non-equilibrium.

2.1 Non-linearity (1)

This is the non-linearity shown by almost all kinds of
material for sufficiently large input amplitudes. The de-
viation from Hooke’s law o = Ce between the stress ¢ and
the strain ¢ inevitably exists for any material with elastic
modulus C. Hooke’s law is the reflection of the parabolic
dependence of the free energy of a material on the strain ¢ as
shown in Fig. 2. Because any material can accommodate
only a very limited value of the strain before it fractures or
is plastically deformed, the parabolic dependence of the
deformation free energy cannot possibly extend beyond a
certain strain limit ¢. In other words, this type of non-
linearity (1) in elastic behavior is ubiquitous. The careful
observation of this kind of nonlinearity by McSkimin and
Andreatch” and Hiki and Granato? has lead to the
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Fig. 2. The deviation from Hooke’s law (a), and the nonparabolic
dependence of free energy on the strain ¢ (b).
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measurement of higher order elastic moduli. As a sophisti-
cated utilization of this kind of non-linearity, the phonon
echo experiment can be mentioned. However, the vast
archives of non-linear acoustics deal with this kind of
nonlinearity and cannot possibly be reviewed by the
~ present authors in a way consistent with their importance.

2.2 Non-linearity (2)

Non-linearity (2) essentially deals with that shown by
any kind of oscillator. A steady flow of energy is requried
for positive feedback in the system to maintain the oscil-
lation. A simple example of the non-linear oscillator is cited
in Fig. 3 from the classical book by Stoker.® The mech-
anism for the music sound production in the violin has also
been discussed by Rayleigh® in terms of the non-linear
mechanism associated with the steady supply of energy.
The bowing supplies the energy flow into the violin.

Although the steady flow of energy is a necessary
condition for the oscillation, it is not by itself sufficient.
Consider as another example of non-linear oscillation the
pupulation variation in a colony consisting of several
species of herbivorous (grass-feeding) and carnivorous
(flesh-eating) animals described by the Volterra equations

dn;

4 = 2 (e r NN, i=1,2.3,.

J

2.1)

where N; indicates the population of the i-th species of
animals, g; the decay constant for the i-th species, and r;; the
constant indicating the predator-prey relationship between
the i-th and j-th species. The decay constant ¢; for the
herbivorous animals should be positive corresponding to
the energy flow into the colony in the form of meadow grass
for them, while that for the carnivorous animals should be
negative. Equation (2.1) has stationary solutions given by

Nj=e./ri;. 2.2)

It is possible that the population of different species takes
on stationary equilibrium if the energy flow in the form of
meadow grass maintains a sufficient population of the
herbivorous species. If the population of one of the species
grows larger than the stationary values given by eq. (2.2),
oscillation in the population of the colony sets in. In other
words, a certain level of energy supply into the colony in the
form of meadow grass is necessary for oscillation in the
population. The existence of a critical value for energy flow
into the system seems to be a common feature of the
oscillator in the system with non-linearity (2). The qualit-
ative features of the trajectories of the solutions of eq. (2.1)

OSCILLATION

<>

ENERGY FLOW

Fig. 3. Oscillation of a block on the belt by Stoker. The oscillation is
sustained by turning the belt against the friction.

for increasing values of energy flow as studied numerically
by Arnedo et al.> are shown schematically in Fig. 4.

§3. Bénard Convection and Oscillation

The Bénard convection in a fluid has been studied as a
typical problem in the thermodynamical non-equilibrium
state. The transitions from the regular convection pattern
through successive transition patterns to turbulence have
been studied by many authors.®” When the temperature
difference AT between the surface and the bottom of the
fluid reaches a criticalyvalue AT, a mono-periodic regular
convection pattern appears. In the Bénard convection
experiment carried out by Maeno, Haucke and Wheatley”
for the mixture fluid of *He + 1.6 mole%,*He, the critical
temperature was 7.706 mK for the cell used in the experi-
ment. At the temperature difference given by e=AT/AT,
—1=3.77, the regular steady periodic convection pattern
set in. Figure 5 shows the observed power spectrum for
oscillations at £¢=4.358 and ¢=4.381. The spectra clearly
show the period doubling route to chaos (PDRC) proposed
as a universal feature of non-linear oscillation by Feigen-
baum.® The trajectory of the population described by the
Volterra equation as shown in Fig. 4 is an ellipsoidal shape
for small values of the energy input. But for increasing
values of the energy input, a successive doubling of the
trajectory period takes place as shown in Fig. 4.

§4. Automodulation in Internal Friction

The strain amplitude used in the internal friction is kept
as low as possible, so that the non-linearity inevitably
associated with large strain may be avoided. However,

L.Dpp
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Fig. 4. Qualitative features of trajectories of the solution of the Volterra
equation as studied by Arnedo, Coullet and Tresser.
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Fig. 5. The power spectrum of oscillation in a Bénard cell for *He + *He
mixture fluid.



Non-linear Oscillation, Automodulation and Anelasticity 25

when the amplitude is purposely kept large in the course of
the measurement of internal friction and frequency, a
strange slow modulation of the vibration amplitude has
been reported by Mizubayashi and Okuda.® Even with the
small strain amplitude for the internal friction, an inevit-
able instability of the amplitude of oscillation associated
with the martensitic transformation in Cu—Al-Ni alloy
has been reported by De Jonghe et al'® A similar in-
stability associated with the twinning has been reported
recently by Yokoyama.!" These kinds of instabilities of the
amplitude of the oscillation during the course of an internal
friction measurement were also observed long ago by
Takahashi'? and Baxter and Wilks!* and were referred to
as “gasping”’.

A systematic effort to utilize this strange gasping or
automodulation (of the amplitude of oscillation) for the
study of the non-linear anelasticity associated with struc-
tural transformation has been initiated by Wuttig and co-
workers.!*~ 17 The apparatus used to measure the automo-
dulation is shown in Fig. 6. It is a standard apparatus to
measure the internal friction by flexural vibration of the
specimen, except the arrangement of Sm-Co magnets on
the specimen and a pair of Helmholtz coils which allows the
large amplitude sinusoidal excitation of the specimen. The
left half of Fig. 7 shows the non-linear resonance curve of
Mg single crystal specimen. As we shift the driving freq-
uency from v, to v, the amplitude of the oscillation moves
up along the non-linear resonance curve. The right half of
Fig. 7 shows the variation of the amplitude measured as a
function of time at four slightly different frequencies, hence
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Fig. 6. Apparatus to measure the automodulation.
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Fig. 7. The non-linear resonance curve and the automodulation obser-
ved at four different levels of oscillation amplitude for a Mg single
crystal specimen.

TIME

at four different levels of oscillation amplitude. At the
amplitude of oscillation larger than that corresponding to
the driving frequency vs, a very slow automodulation of the
amplitude is clearly seen. The automodulation frequency
for the driving frequency v, is doubled compared with the
automodulation frequency for v;. A similar period doubl-
ing in the phase modulation pattern has also been obser-
ved. Furthermore, this type of period doubling, which is
the universal feature of the non-linear oscillation, has been
observed in the recent experiment on a In—-TIl specimen
above its martensitic transformation temperature.

§5. Anelasticity and Automodulation

Because the automodulation is observed when the ampli-
tude of oscillation of the specimen for measurement of
internal friction exceeds a critical value and the period
doubling feature is also noticed, the automodulation may
be interpreted as one variant of the oscillations of a non-
linear oscillator. The energy input for the oscillator is in the
form of the driving of the specimen. The output is the
modulation in the amplitude of the oscillation. Although
the input energy and the output energy are in the same
form, the input and output have entirely different frequen-
cies. Hence, it is not entirely inappropriate to assign the
name of non-linear oscillation to the automodulation
phenomena.

The automodulation is shown to be expected'® when
internal friction measurement is carried out on a specimen
which has the non-linear anelastic stress (r) strain (e)
relationship

T+ bi=C(e)e+d(e)é, (5.1)

where b is a constant, and C(¢) and d(¢) are dependent on
strain ¢ as follows:

C(S):C2+C38+C482+ ey (52)

and

d(e)=d,+2dse+3de*+ . . .. (5.3)
While eq. (5.2) represents the stress-strain relationship in
the completely relaxed state, eq. (5.3) divided by the
constant b represents that relationship in the unrelaxed
state, in other words, the response of the specimen to a
suddenly applied stress or strain. The equation for the
displacement u of a given point in the specimen for the
fundamental mode of specimen vibration is given by

0%u

3
paf+ Cru+ ZC4u3+ .

9 o
+{dza"+ d4u26—l:+ } -0, (5.4)

ot 4
neglecting the damping of external origin. This is a non-
linear differential equation with a non-linear damping
represented by the terms in the second bracket, which has
its origin in the non-linearity of the unrelaxed stress-strain
relationship given by eq. (5.3). It is seen that if the non-
linear elastic modulus d,/b in the unrelaxed stress-strain
relationship is negative, the effective damping term can
become negative for sufficiently large values of the ampli-
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tude of the specimen vibration amplitude, thus providing
the mechanism for the automodulation. The characteristic
of eq. (5.4) is that the negative damping, the maintenance
of the automodulation, is possible only for finite values of
the specimen vibration amplitude and the non-linear unre-
laxed stress-strain relationship required for the negative
damping.

§6. Anelasticity and Soliton Model

It has been discussed in the previous section that the non-
linear characteristics of the unrelaxed modulus—the re-
sponse of the specimen to a suddenly applied stress—is
crucial for automodulation. In the In—-Tl and Cu-AIl-Ni
alloys, in which the automodulation is observed, it is rather
well established that the martensitic transformation in
these alloys almost always accompanies the twinning
process. Zn and Mg form another class of materials in
which automodulation is observed. These metals are
known to be deformed by twinning. The present authors
propose that the automodulation comes from the non-
linear anelasticity associated with twinning.

The standard procedure to study the nucleation process
of the twin has been to use the classical nucleation theory,
which assumes thermal equilibrium between nuclei and
matrix. However, it is not appropriate to use the classical
nucleation theory for the study of the dynamical process
where the concept of the unrelaxed modulus is crucial. An
entirely different approach can be taken by using the
soliton model for structural phase transformation de-
veloped by Krumhansl and Schrieffer.!® The soliton model
has also been completed only for thermodynamical equilib-
rium. However, the effect of the suddenly applied stress can
be more clearly seen by use of the soliton model than by use
of the classical nucleation theory.

If we adopt the soliton model of Krumhansl and
Schrieffer to the study of the twinning process, it is pictured
as the coherent jumping of a chain of atoms—the motion
of a soliton, as shown in Fig. 8. The atoms in the soliton
model are situated in one of the double well potentials and
neighboring atoms are coupled by the springs with a force
constant x. The atoms coupled by the springs are so similar
to the linear chain model for the lattice that the role of the
spring in the soliton model is quite likely to be misunder-
stood. The twinned and untwinned state of a real crystal is
defined with respect to the relative configuration of atoms
in the crystal, while the twinning process in the soliton
model is pictured merely as the jumping of atoms over the
barrier. Hence, the displacement in the model should be
translated to the strain in the real lattice. Accordingly, the
coupling spring in Fig. 8 should be referred to the energy
associated with the gradient of the strain, i.e., the surface
energy. The strain energy in the real crystal is represented
as the potential energy of the double well in the model, but
not as the coupling spring in Fig. 8.

As shown by the statistical theory for the soliton model,

VA VAVAVAVAVAVAVAVAVAS

Fig. 8. Soliton model for the twinning. Each atom is situated in-
dividually in the double well potential and coupled to the neighboring
atom by the coupling spring.

the formation of the soliton, i.e., the formation of the twin,
is possible only below the temperature which is appro-
ximately determined by

(kgT)?
ka?

(Barrier Energy between Double Well). (6.1)

Here, a is the lattice constant and kg the Boltzmann
constant. Above the temperature 7, the formation of the
soliton—the formation of twin boundary—is over-
whelmed by the random anharmonic vibration over the
barrier. The role of the coupling spring in the soliton model
or the surface energy in the real crystal is to organize the
coherent motion of atoms for the formation of the soliton
or twin boundary.

Suppose the external stress is applied adiabatically just
below the temperature given by eq. (6.1), where the average
amplitude of the vibration of the atoms in the soliton model
is slightly lower than the height of the double well barrier.
Then, the external stress creates a coherently over-
populated chain of atoms—analogous to the negative
temperature distribution as shown in Fig. 9, which shows
the statistical distribution'® of atoms in the soliton model.
The release of this overpopulated chain of atoms give rise
to the negative non-linear unrelaxed modulus responsible
for the automodulation.

§7. Summary

The non-linearity of a system-—mainly a crystal or a
liquid specimen—is classified into two types. The first type
appears whenever a large enough input signal is applied to
the system. The second type is that of an oscillator. Energy
flow into the system or negative damping is necessary for
an oscillator to function. As the amount of energy flow
increases, the non-linear oscillation takes on the universal
course, the period doubling route to chaos (PDRC), as
proposed by Feigenbaum. As a typical example of PDRC,
the non-linear oscillation associated with the Bénard con-
vection experiment by Maeno, Haucke and Wheatley is
cited. In the internal friction experiment, where the energy
flow into the system is supplied in the form of the constant
amplitude driving force of a specimen, the non-linear
oscillation appears in the amplitude of the specimen
vibration, which is called automodulation. This requires
negative non-linear damping, which can be described as the
release of the overpopulated states in the soliton model, for
twinning.
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