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Comments on the raindrop problem
I. Adawi

Department of Physics, University of Missouri-Rolla, Rolla, Missouri 65401
(Received 4 April 1985; accepted for publication 28 July 1985)

L. INTRODUCTION

In his paper on the falling raindrop, Krane' raises some
interesting questions which the following comments
should answer and clarify. Specifically, our comments deal
with Krane’s Eqs. (24) and (26), which describe two spe-
cial cases in the limit of g = 0, and Eqgs. (32) and (33),
which describe the general problem. We give solutions to
these problems and clarify the nature of the constant accel-
eration solutions. The notation of Krane will be used and
additional notation will be introduced as needed.

I g = 0 LIMIT

(1) In deriving Krane’s Eq. (24) for the case in which
£=0 and the mass accretion rate of the drop dm/
dt = km?®"v, he states that “This case does not lend itself to
direct integration.” Direct integration is possible, since

d_m — kmz/sv — km2/3 ix_ (l)
dt dt
can be integrated to give
3(m'® —mi?) = kx
or
m = (kx/3 + mi/?)3, 2)

which when substituted in the momentum conservation
equation

m % = mgU, (3)
yields by integration

movot = (3/4k) [ (kx/3 + my™)* — mg”], 4)
which together with Eqgs. (2) and (3) give

v=vo[1+ (4k/3)mg Vot ] 74, (5)

which is Krane’s Eq. (24).
(2) For the case g =0 and

” xv, (6)
Krane’s solution as given by his Eq. (26) is correct only
asymptotically (for large ¢). For small ¢, Krane’s Eq. (26)
gives that the variation of v with # is linear when it is actual-
ly quadratic. Equation (6) gives the time derivatives (de-
noted by overdots) #(0) = 0, 7(0) = km2v? and leads
to the Taylor series expansion

m(t) =my + km%v3t%/2, @)
which when substituted into Eq. (3) gives
v=vo(1 — mg V222/2). (8)

We give now the solution of Eqs. (3) and (6). Since
v = dx/dt, Eq. (6) gives immediately by integration,

3(m'? —mi?y = kx?/2. )
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Equations (3) and (9) are used to eliminate v and x, re-
spectively, from Eq. (6) and obtain

m m1/3dm
J;o (m'® — mi/3)12 = \J6k mquqt, (10)

which can be integrated by the substitution y = m!/? to
give

35k /6mougt = (¥ — ¥5) (5% + 6y 3>

+ 85y + 1653). (11)

For small ¢ Eq. (11) gives

0 — o) 2=l /6ugt, (12)
which reproduces Eqgs. (7) and (8). For large ¢,

Y2~ Tk 76mgv,t, (13)

m~ (Tk /6mg,t)®"?, (14)
and

v~vo(Tk /6mg Vov,t) =5/, (15)

Krane’s Eq. (26) for large # agrees with Eq. (15), butis
incorrect for other values of ¢.

The distance x can be obtained from Eq. (9) once m is
determined; alternatively one can use Eq. (9) to eliminate
m from Eq. (3) and integrate the resulting equation to
obtain

k)3x7 3(k)2
myet ={—} =+ —=(—
oo (6 7755

Xmé’3x5+—l6im§/3x3+mox, (16)

which can be iterated for small and large ¢. In general, for a
given t, Eqs. (11) and (16) have to be solved numerically
for m and x, and one can show easily that there is only one
solution in each case, as is expected physically.

II. GENERAL CASE

(1) We now give a solution to the raindrop problem
under general conditions. Assume the mass accretion rate
of the drop to be given by

m = km®, a<l, 17)

which is more general than the two special cases @ = 0 and
a = 2/3 considered by Krane. The equation of motion

%(mv) =1 + mb = mg (18)
is to be solved simultaneously with Eq. (17) subject to the
initial conditions m = my, x =0, and v = vy at ¢ = 0.

In Eq. (18) substitute s1/km* for v from Eq. (17) to
obtain

d2
7d_t%=(z_a)kgxl/(Z—m), X=m2—a’ (19)
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which is now solved by the substitutions y = p and y =p
dp/dy to give
P —p=22—a)kg
X (X(S—a)/(2—a) _XSS—H)/(Z—a))/(3 _ a)’
(20)
fe J' " m' ~%dm
mo {[2kg/ (3 — @) 1(m* ~* — m3 =) + mipk 2}/’
(21)
which give a table for m and v as a function of time. [ Note
that p = (2 — a)kmv, which is proportional to the linear
momentum.] By integration, Eq. (17) gives x in terms of
m, namely,
(l—a)kx=m'"%—my~° (22)

The acceleration i is determined by Eq. (18), which can be
written as

m'—* = kv*/(g — b). (23)
In general, the integration in Eq. (21) has to be performed
numerically.?

(2) An alternative approach to the problem is to study a
differential equation in v. By differentiating Eq. (23) with
respect to time and substituting for # from Eq. (17) we
obtain

b= (g—-0[(l—-a)g— (3—a)il/v, (24)
which is identical to Krane’s Eqs. (32) and (33) fora =0
and a = 2/3, respectively. Equation (24), like Eq. (19),
can be integrated by the substitutions ) = wand i = w dw/
dv and gives !

w_g 172
Wo—§&
3 —a)wy,— (1 —a)g |1 —0/26-®

B—-—a)w—(l—a)g :

Equations (25), (23), and (26) give tables for 0, v, m, and
x. The time corresponding to these variables is obtained
from the integral ¢ = fdw/w, where w(i) is expressed in
terms of w by using Egs. (24) and (25), namely,

|v/ve| =

(25)

t= + N Vo dw
w (W—)[B—a)w—-(1—-a)g]
X w—g 12 B—-—a)w,— (1 —a)g U—a)/2(3—a)
Wo —8& B-—aw—(1-a)g

(26)

which completes the solution to the problem by this meth-
od.>* Actually, the integral in Eq. (26) can be transformed
to that of Eq. (21) by the substitution given by Eq. (23) in
which v is eliminated by using Eq. (25).

(3) We conclude by making a few remarks about the
nature of the solution. If

kmg— Wi =2¢/(3 —a), 27
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the integration in Eq. (21) is trivial and we obtain the con-
stant acceleration solution

v=(1—a)g/(3—a), (28)

which is root of the quadratic (in ) appearing in Eq. (24).
Indeed, if b, = (1 — a)g/(3 — a), then Eq. (24) shows
that i, and all the higher derivatives are zero and that®
U = ;. The integral in Eq. (26) diverges as w—(1 — a)g/
(3 — a), reflecting the fact that for arbitrary initial condi-
tions » approaches (1 — a)g/(3 — a) asymptotically.

Krane has demonstrated that the constant acceleration
solutions are abundant for this problem. A systematic
method for obtaining them is to solve the mass accretion
equation together with

mv/m =c, (29)

where c is a constant, and if a solution can be found the
constant acceleration solution is

i)=g—c9 (30)

as follows from Eq. (18). To illustrate for this particular
case, rw/m = km®~ 'v* = ¢, which can be used to elimi-
nate m from Eq. (22) and obtain the relation
v* — v} = ¢(1 — a)x, which is characteristic of a motion
with constant acceleration ¥ = ¢(1 — ) /2. Equation (30)
now gives ¢ = 2g/(3 — a). Equations (27) and (28) have
been reproduced with little effort. All the examples in
Krane’s paper can be worked out by this method.

K. S. Krane, Am. J. Phys. 49, 113 (1981).
2The solution to the simple case a = 1 is easily obtained from Eqs. (17)
and (19), namely,

m = mge* = my(coshykgt + vk /g sinhykgt),

which shows that the drop has the limiting velocity vg/k and that the
velocity is constantif v, = yg/k . This is similar to the case tit = km which
is discussed by Krane.

3The 4 sign and the absolute values are easily handled by studying Eq.
(24). If, for example, v,>0and w,> (1 — a)g/(3 — a), the plus sign is
taken, — w + g and — w, + g are positive, w < Wy, and the asymptotic
limit w = (1 — a)g/(3 — a) is approached from above. In the integral
v,/ (g — wy)"/? can be replaced by (m}~°/k)"/? from Eq. (23) which
makes the integral well behaved as v,—0 and wy,—g.

“The interested reader might apply this method to the simple case for
which i = km?, 8<1, and for which Krane gives solutions for 5 =0,
2/3, 1. The differential equationis i = (g — &) [(1 — B)g — (2 — B)b]/
v which is similar to Eq. (24); but the integral corresponding to that of
Eq. (26) is elementary as the integrand contains only a power of the
factor (1 —pB)g— (2 —pB)i. For arbitrary initial conditions
#~(1 —B)g/(2 — B) asymptotically, and for the condition kmf~'
v, = g/(2 — B), the solution is v = (1 — B)g/(2 — B).

5The initial conditions must satisfy Eq. (18) which implies Eq. (27).
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