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DYNAMICS OF TWINNING IN NATURAL a-QUARTZ? 

ALEXANDER ANING and MANFRED WUTTIG 
Department of Metallurgical Engineering, University of Missouri-Rolla, Rolla, MO 65401, U.S.A. 

(Received 18 April 1983; accepted in revised form 28 September 1983) 

Abstract-Finite amplitude internal friction experiments in a-quartz are described and interpreted in terms 
of the theory of nonlinear anelasticity. The theory predicts a linear relationship between the driving force 
of the excitation and the period of the automodulation at its onset. This relation is substantiated by 
experiments performed with a natural a-quartz reed vibrating in flexure at resonance frequencies between 
65 and 170 Hz in the temperature range of 162” and 224°C. The data suggests that Dauphin? twinning 
in a-quartz causes the automodulation governed by an activation energy of 92 kJ/mole. This activation 
energy characterizes short distance oxygen diffusion. 

1. INTRODUCTION 

The dynamics of defect motion can be investigated by 
internal friction studies. [ 1] Well known examples in 
the field of ceramics include the work on i-utile by 
Wachman and Doyle[2] and internal friction studies 
on dislocation motion like the one in cr-quartz[3]. 
Most of these studies have been conducted at ampli- 
tudes of vibration very small when compared to one. 

If studies are made at finite amplitudes, the internal 
friction due to dislocations changes along the general 
lines predicted theoretically by Granato and 
Lticke[3,4]. In a-quartz, however, internal friction 
maxima at harmonics occur which are larger than the 
fundamental peak, indicating a mechanism for energy 
dissipation which is characteristic of finite amplitudes 
of vibration [5]. This paper addresses itself to this phe- 
nomenon. It will be shown that the mechanism is 
twinning. 

Twinning is known to occur at finite deformations 
or stresses. This is shown by the ideal stress-strain 
curve produced in Fig. 1[6] in which the coercive 
stress, oe, for the induction of mechanical or Dauphin& 
twinning in cc-quartz is indicated. Deformation rever- 
sal is achieved by switching domains to those of op- 
posite orientation when the reverse coercive stress is 
reached or exceeded. Dauphin& twinning is demon- 
strated schematically in Fig. 2. In this figure the upper 
two unit cells represent one twin orientation, the lower 

Fig. 1. The stress-strain curve of a-quartz showing the 
coercive stress, r,, required to induce Dauphin& twinning 

according to Ref. [6]. 

TDedicated to Prof. H. Boersch on his 75th birthday. 

Fig. 2. Two Dauphine twin related sections of cc-quartz. The 
two thick lines enclose the boundary unit cell layer with the 
structure of b-quartz. The two twins are characterized by 
the different orientation of selected oxygen tetrahedra in the 
center of a unit cell. The oxygen positions are marked by 
filled or open circles depending on the twin orientation. 

two unit cells show the twinned configuration in which 
the orientations of the oxygen tetrahedra have 
been switched. The middle unit cell represents a 
domain wall with the structure of /I-quartz[7]. For 
simplicity only the tetrahedron at the center of one 
unit cell in each layer is shown. Since twinning occurs 
at finite stresses a study of the dynamics of twinning 
must be conducted at finite amplitudes of deformation 
and the results interpreted in terms of the theory of 
nonlinear anelasticity previously developed by the 
authors[8]. The results of such a study will be 
presented below. 
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482 A. ANING and M. WUTTIG 

2. NONLINEAR ANELASTICITY 

The formal theory of internal friction at 
infinitesimal deformation amplitude-linear 
anelasticity-is long known [ 1,9]. The theory for finite 
deformation amplitudes-nonlinear anelasticity-has 
been developed more recently[8]. Its features salient 
to this study will therefore be presented first. The 
theory is an extension of the linear theory to finite 
amplitudes of vibration. The linear anelastic solid is 
characterized by 

e + tir = C,E + C,ri, (1) 

where C, and C, denote the relaxed and unrelaxed 
deformation parameters. Equation (1) is extended to 
the nonlinear case by considering C, and C, functions 
of the deformation, i.e. 

cr + f.+z = C,(t)t + C,(E)Zi. (2) 

For twinning, the functions C,(c) and C,(E) are most 
simply presented by fourth order polynomials. 

The equation of motion of a nonlinear anelastic 
solid can be derived by combining eqn (2) with New- 
ton’s law, 

pa=Elat2 = a%la2, (3) 

where z is the spatial coordinate along the solid and p 
represents its density. A tractable equation for the 
traverse oscillation of a thin reed follows if the spatial 
dependence of the displacement is approximated 

WOI 

t(z, t) x x(t)[l - cos (7rz/21)], (4) 

where 1 is the length of the reed. The resulting 
differential equation for the amplitude of vibration 
x(t) is 

zF+ i + Cu(x)iwo27 + ~,,~C,(x).x = E sin (o,t) (5) 

where wo2 = ~~C,~(41~p)-‘, and E. sin (w,t) is the ex- 
citation. 

The solution of eqn (5) is of the form 

x(t) = u(t) cos [w,t + e(t)] (6) 

where the slowly varying functions a(t) and O(t) are 
solutions of the system of differential equations 

and 

fj = F(a, O), (7) 

4 = G(a, 0). (8) 

The functions F and G have been evaluated[8]. The 
essential terms of both will be cited below. The system 
of differential eqns (7) and (8) admits to two kinds of 
solutions: The steady state solution for which 

ci = t.l = 0 yields the resonance characteristics of the 
reed made from a nonlinear anelastic solid. The gen- 
eral case & # 0 and 6 # 0 includes a special dynamical 
steady state in which u(t) and O(t) are periodic func- 
tions. In this case the forced vibration in eqn (6) is 
modulated. Since the modulation is not imposed by 
the external drive but rather a result of unusual prop- 
erties of the nonlinear anelastic solid, it is referred to 
as automodulation. An example of an auto- 
modulation will be shown in the experimental section. 
Figure 3 shows a computed nonlinear resonance curve 
resembling the one obtained experimentally for the 
a-quartz reed at constant excitation which will be 
shown below. 

The condition for the occurance of automodulation 
can be obtained by a series expansion of u(t) and e(t). 
Expanding u(t) and O(t) around their steady state 
values a, and B,,, 

a(t) = a, + &z(t), &z/a, -G 1, (9) 

and 

e(t) = e,+ se(t), se/e, G I, (10) 

it can be seen that 6a is given by the differential 
equation 

hi - (F, + G&h- + (F,G, - G,F,)Gu = 0, (11) 

where subscripts a and 0 in eqn (11) represent the 
respective partial differentials. Hence automodulation 
will set in when the damping term equals zero, i.e. 

Fa = -G,. (12) 

At the onset of automodulation only the terms lin- 
ear in 6 of the functions C,(E) and C,(t) need be 

FREQUENCY bJ,/ti,,l 

I.04 1.02 I.00 0.98 0.96 0.94 
I 1 

TIME CW,/UJJ-’ 

Fig. 3. Computer calculated nonlinear resonance curve after 
Ref. [8], resembling finite amplitude resonance curves 
obtained for the vibrating natural a-quartz reed shown in 
Fig. 4. The dashed lines represent unstable portions and the 

arrows the jumps occuring as the frequency is tuned. 
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considered. This approximation simplifies the pub- 

lished functions F(a, 0) and G(a, 0)[8] for the un- 
relaxed case, or 9 1, as follows: 

F(a, f3) = (1 - w,~/w~~)Lz - 2(C,, - 1)a - 4Cu,a2 

and 

+ 3C,,a2+(2/w,~)(C,, - 1)b sin 0 

+ 3(c,, - 1)b cos e, (13) 

G(a, 0) = 3(1 - w,~/w~~) + 3(C,, - 1) + 6C,3a 

- 3(C,, - l)(b/a) sin e 

+ (2/w,r)(c,2 - I)~)COS e (14) 

where 

b = E/(w,Z - co,‘). 

In eqns (13) and (14) the constants C,, and C,, are the 
second and third order unrelaxed deformation param- 
eters and C,, is the third order relaxed deformation 
parameter, all given in units the second order relaxed 
modulus, C,,. The quantity b is amplitude of vibration. 
Through E, however, it is proportional to the driving 
force (see eqn 5). In the following it will therefore be 
referred to as the driving force. It will be shown below 
that the assumption wz b 1 is justified. Using the 
threshold condition, eqn (12), an expression for the 
period of the automodulation, r,, is derived as 

%r, = (C,, - l)(b,/e,) sin (W{(l - w:,/w,~) (15) 

- cc,2 - 1)[2 + wd ~0s (&)i - G4. 

In eqn (15) the subscripts c denote critical values at 
the onset of the automodulation. Automodulation is 
a nonlinear phenomenon and hence the nonlinear 
term 8C,,a, in eqn (15) is expected to dominate the 
linear contribution (C,, - 1)[2 + 3(b,/a,) cos (@,)I. 
Since near resonance (1 - 0$9~~) Z 0 or wlc x wO, 
eqn (15) may be rewritten as 

%‘5, = - (C,, - 1) @,/a,) sin @,)/(8C,+,) ( 16) 

revealing that the period of the automodulation at its 
onset, normalized by the critical period of the ex- 
citation of the vibration reed, WC’, depends linearly 
on the critical driving force, b,. The negative sign on 
the right hand side renders w,~z, > 1 since C,,, < 0 for 
twinning[8]. 

3. EXPERIMENTAL PROCEDURE AND RESULTS 

The experimental apparatus used in this study has 
been described before[8]. It has been constructed 
such that the driving force is proportional to the 
voltage driving the excitation. The specimen used for 
this study was a reed made out of natural Brazilian 
a-quartz of the same origin as used for previous 
thermal expansion measurements[l 11. Its plane was 
cut in a [210] direction, and the direction of vibration 
was [OOI]. The reed’s dimensions were 2.4cm by 

0.5 cm by 0.06 cm. Measurements were made between 
162” and 224°C. In this temperature range the reso- 
nance frequency of the flexural vibrations varied 

from about 65 Hz at the higher temperature to 
170 Hz at the lower end of the temperature range. 
The experiments were performed in such a way that 
at the onset of automodulation, the critical driving 
frequency, colcr is almost equal to the resonance 
frequency co,,. Hence these two frequencies will be 
used interchangeably in the discussion. 

Figure 4 shows a series of resonance curves taken 
with an x-y recorder at four driving forces at the 
constant temperature of 224°C. At this temperature, 
the critical driving force required to produce the 
automodulation has a voltage equivalence of 
0.0125 V. The aforementioned example of the auto- 
modulation is shown for the amplitude at the top, left 
corner of Fig. 4. It can be seen how the amplitude of 
oscillation of the reed oscillating with a frequency of 
65 Hz varied slowly as function of time, i.e. it was 
automodulated. It should also be seen that the auto- 
modulation frequency was about 3 Hz in this partic- 
ular case. 

4. DISCUSSION 

The results shown in Fig. 4 can be interpreted and 
analyzed in terms of the theory of nonlinear an- 
elasticity. The nonlinear resonance curve on the right 
side of Fig. 4 has the same features as the the- 
oretically calculated one presented in Fig. 3. It is also 
clear from the experiment that until a critical driving 
force or amplitude is reached, no automodulation is 
observed: In the example in Fig. 4, the auto- 
modulation sets in at driving voltage of 
U, = 0.0125 V. The critical driving voltage at which 
the automodulation sets in and its corresponding 
frequency, rr-‘, are both temperature dependent, as 
will be discussed in more detail below. 

FREQUENCY 0-k) 

I-"'"1 n 100 60 

TIME (MSEO 

Fig. 4. A series of experimental resonance curves and an 
example of an automodulation of natural a-quartz reeds at 
224°C. The curves are copies of chart recordings of a voltage 
proportional to the amplitude of vibration as a function of 
the period of oscillation (resonance curves, lower abscissa) 
and time (automodulation, upper left abscissa). The auto- 
modulation was recorded at the critical drive voltage 
Ud = 0.0125 V and the period of oscillation indicated by the 

arrows. 
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The Arrhenius relation for the frequency, tc-‘, is 
given by 

7, = 7& exp (Q/W, (17) 

where R is the gas constant and Q is the activation 
energy characteristic of the relaxation mechanism. 
Since the normalized time is proportional to the 
critical driving force, b,, (see eqn 16) applied to the 
nonlinear anelastic reed, and U,ccb,, eqn (17) may be 
rewritten as 

In U, = In k + Q/RT, (18) 

where various proportionality constants have been 
contracted into k. The quantity UC is the critical 
driving voltage normalized to the critical driving 
voltage at a selected reference temperature. The 
Arrhenius plot for UC is shown in Fig. 5. The least 
square analysis for this plot yields 

In U,, = -25 + 91.2 IdIRT. (19) 

Figure 5 also shows the Arrhenius plot for the 
normalized automodulation frequency (c14,7~)-’ 

whose equation is represented by 

In (0.1~7,) = - 19.7 + 93.7 kJ/RT. (20) 

It is evident that both Arrhenius expressions, eqn (19) 
and (20), have approximately the same activation 
energy. This does suggest that the period of the 
automodulation is the same as the relaxation time of 
the defect mechanism giving rise to it. It also follows 
from eqn (20) that in the temperature range covered 
by this study 10 IO~Z~ I 400. The assumption 
wOr $ 1 made in the course of the derivation of eqn 
(16) is then self consistant with the results. 

The experimental results demonstrate that the au- 
tomodulation is controlled by a thermally activated 
process. This process is triggered only at finite ampli- 
tudes of vibration, and occurs above a critical driving 

force, b,, with a period, z,. On the basis of the theory 
of nonlinear elasticity it was shown that oo~cccb,. 
Hence it must be expected both w,,7, and b, obey the 
same Arrhenius relation. This is indeed so. The 
microscopic process giving rise to the auto- 
modulation must therefore be one which, first, occurs 
only at finite amplitudes of oscillation. It must, 
second, be one characterized by an asymmetrical 
deformation potential since the experimentally ob- 
served relationship w,,s,ccbc (see Fig. 5) confirms eqn 
(16) based on such a potential. Both criteria are 
fulfilled if it is assumed that twinning is responsible 
for the reported observations[8]. Since it is known 
that Dauphin& twinning can be readily induced 
mechanically[6] it is suggested that Dauphin6 twin- 
ning is responsible for the automodulation. The 
observed average activation energy of 92 kJ/mole 
then represents the activation energy of the reor- 
ientation of the oxygen tetrahedra from one 
configuration of the untwinned state to the 
configuration to the twinned state as shown in Fig. 2. 
This reorientation must occur by the motion of 
oxygen atoms. The activation energy of auto- 
modulation thus represents the activation energy of 
oxygen motion from one crystallographic site repre- 
sented by open circles. This motion qualitatively 
resembles interstitial diffusion since the open circle 
oxygen positions become “available” as the twin 
boundary sweeps past the appropriate tetrahedron 
upon deformation by twinning. The observed activa- 
tion energy characterizing the automodulation 
should thus be significantly smaller than the activa- 
tion energy of long range oxygen diffusion in 
a-quartz listed in Table 1. While no diffusion data of 
oxygen diffusion in a-quartz in the temperature range 
of this study could be found, it can be seen that the 
activation energy for twinning measured here is at 
least a factor of two smaller than the listed values in 
qualitative agreement with the interstitial type short 
range oxygen diffusion. It is further noted that the 
activation energy of the present study agrees with 
previously published[5] but not positively identified 
data as can be seen from Fig. 5. 

5. CONCLUSION 

This study has revealed that finite amplitude 
flexural vibrations in natural a-quartz can be de- 
scribed by the theory of nonlinear anelasticity. The 
theoretical prediction of the linear relationship be- 
tween the critical driving force, b,, and the critical 

_2/Fd’ , /, , 16’ 
1.6 1.8 2.0 2.2 

IO3 T-’ (K-l) 

Table 1. Activation energies for oxygen diffusion in a -quartz 

Activation 
Energy 

(kJ/Mole) 
Temperature 

("C) 

Reference 

Fig. 5. Arrhenius plots for the normalized period of the 
automodulation, w,,T~, and the normalized driving voltage, 
ZJ,, at the onset of the automodulation. The value, U,, has 
been normalized to the critical driving voltage at 162°C. The 

301 20-80 12 

197 070-1180 13 

71P, 1(310-1220 14 

open circles represent earier daya[S]. 
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period of the automodulation at its onset, wOr,, was 
substantiated by the experiment. The main result of 
this study is that the automodulation phenomenon 
does represent the mechanism of Dauphin& twinning 
in natural u-quartz governed by an activation energy 
of 92 kJ/mole. 
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