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IEEE Transactions on Power Apparatus and Systems, Vol. PAS-103, No. 6, June 1984

GENERALIZED ROOT-LOCI THEORY FOR THE STATIC SCHERBIUS DRIVE

A. R. Miles, Member, IEEE

University of Missouri
Rolla, Missouri 65401

Abstract - Generalized root-loci techniques, developed
in the mid 70's for squirrel cage motors, have been extended
in the static Scherbius configuration to wound rotor, slip en-
ergy, recovery systems. This arrangement is now applied to
large power drives in the 0. 5 to 50 MW range. In this paper,
general results applicable to all machines are presented for
the open-loop control scheme, but only the subsynchronous
rmode of operation in which a voltage source type inverter is
used is addressed.

INTRODUCTION

The static Scherbius drive is well known for its adjust-
able speed characteristics and performance efficiency. A re-
cent account [1] of these favorable characteristics and the
moderate cost of the drive suggest that it is still very much
favored for vexy large drives on the order of 50 MW.

The drive has received the attention of several research-
ers. Lavi and Polge [2] analyzed both the steady state and
transient state by using a voltage source inverter, but their
closed form model does not take into account the effects of
motor leakage inductance. However, they later used an iter-
ative method to assess the leakage. For the transient state,
they presented only a reduced (second) order model. Miljanic
[31 introduced a through-pass inverter to improve the power
factor, and Shepherd and Stanway [4] recommended the stator
feedback method for the same purpose but at the cost of less
efficiency. Bird and Mehta [51 addressed the matter of regen-

eration, and Smith [6] discussed the use of a cycloconverter
instead of an inverter from the standpoint of steady state analy-
sis only and reported that the experimental dynamic response
was satisfactory. Pavlov et al. [71 developed a hybrid drive
in which the subsynchronous Scherbius was one mode of opera-

tion. They did include the motor leakage reactances in their
steady state analysis but did not make a transient analysis. A
very complete analysis of a closed-loop system was made by
Giannakopoulos and Galanos [81, who did not linearize but
numerically integrated the differential equations. They also
used the fifth order motor model and accounted for the differ-
ent circuit topology introduced by thyristor switching. Becaase
their technique Is numerical, it is disadvantageous because no
general conclusions can be drawn with it immediately. Mittle
and his coworkers [9,10] used the fifth order model for tran-
sient analyses but neglected the effect of leakage inductances.
Tsuchiya [11], as did Smith [6] used a cycloconverter on the
low order model of the system but updated his analysis by in-
troducing a microprocessor. Franz and Meyer [12] made an
analysis that is similar to the one made by Giannakopoulos and

83 SM 480-1 A paper recommended and approved
by the IEEE Rotating Machinery Committee of the
IEEE Power Engineering Society for presentation at
the IEEE/PES 1983 Summer Meeting, Los Angeles,
California, July 17-22, 1983. Manuscript submitted
November 15, 1982; made available for printing May
13, 1983.

Galanos [81, and Smith 1i31 substituted a current source type
inverter for the voltage source type used previously.

In the present paper, the operation of the Scherbius drive
with a voltage source type of inverter is examined in both the
steady state and dynamic state with emphasis being placed on
the latter. Specifically, the so-called generalized root-loci
theory [14-17] is extended to this type of drive. To date, only
the open-loop operation has been considered, but work is now
being conducted on closed-loop feedback situations. The full
fifth order model is used in the analysis, and account is taken
of motor leakage reactances. The switching of the power elec-
tronics is considered to be ideal.

SYSTEM CONFIGURATION

The system that is being studied is presented in Figure 1.

INDUCTION MOTOR

I e
I --@ I -

Fig. 1. System Configuration

The excess energy in the rotor can be brought back into
the stator through the rectifier-inverter loop. The amount of
that energy is controlled by the firing-angle of the thyristors
of the inverter. In the process, the rotor voltage is deter-
mined. The intermediate dc voltage must be filtered in order
to limit the harmonic content in the rotor as much as possible.
This is the role of the inductance, LF. The resistance, RF,
models all the Joule losses in the different elements, particu-
larly the inductance.

The machine model employed in the present study is a
conventional, idealized machine with power invariant, two-
phase variables. The equations are condensed by writing them
in a complex form, and the small signal equations and transfer
functions can be derived in the same complex form. The equa-
tions are expressed in a synchronous reference frame.

In this simplified approach, the influence of the harmon-
ics is neglected. Even though the rectifier-inverter, by its
nature, induces some harmonics into the rotor, it has been
shown that they produce relatively small torques [2]. Also,
the diodes and thyristors are assumed to be ideal and do not
interfere with the dynamics of the system.

0018-9510/84/0600-1304$01.00 1984 IEEE
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STEADY-STATE

The induction machine is represented in its complex form
by the three equations noted below in which by convention the
real part represents the direct axis and the imaginary part the
qaadratic axis. In the equations, a complex entity is denoted
by a line over its symbol, an asterix indicates a complex con-
jugate, and the subscript zero signifies a steady-state value.
The symbols are defined in Appendix A.

v =Z i+Zs 5 a m r (1)
o 0 0 0 0

v = Z i ±s i(2r d s r r (2)
o0 0 0 0

T = nM Im (i i *)=(J/n)pw +T (3)
s r -r L
0 0 0

Because the choice of the axes is arbitrary, the direct
axis can be placed alongside the rotor voltage, i. e., vro is
equal to zero, and vro is equal to a real number.

The rectifier can only pump energy from the three wind-
ings of the rotor, and there is no periodic exchange of energy
between the two sides of the rectifier. Therefore, the recti-
fier is only a passive element, such as a resistance is [21.
This principle is translated by stating that the rotor voltage
(the voltage across the rotor windings) and rotor current must
be in phase (such as they would be across a resistance). This
means, in view of the choice of axes, that iroq is equal to zero,
and iro is a real number.

The rectifier-inverter is represented by the following
equlations across each bridge:

VI = |Iv Icosyit so (4)

Z =R +jL wr r r s
0 0

(9)

it should be noted that RF (with its coefficient ir2/18) is merely
added to the rotor resistance,Rr.

This development must be completed by some reflexions
about the signs. For example, Eq. (2) can be divided into two
equations on the direct (Eq. (10)) and quadratic (Eq. (11)) axes-

(10)v =v =R i -Mw i
r r r r s s
0 0 0 0 0
d q

v =O=Lw i +Mw i
r rs r 5 8
0 0 0 0 0
q d

When energy leaves the rotor, vro is the voltage across it, and
Eq. (10), with the rotor winding resistance Rr, implies that
vroiro is less than zero. The directions of VR and IR shown in
Figure 1 imply that VRIR is greater than zero, thus justifying
the minus sign in Eq. (6). Because energy flows back to the
stator, the firing angle, y, must be greater than 90 degrees,
and VI, VR, and then vro are negative as implied in Eqs. (4),
(5), and (8). In conclusion, vro is negative, and iro is, there-
fore positive. In fact, this sign system corresponds merely
to the choice of a direction for the direct axis, and vro and iro
can be written as

ro vro I e < (12)

and

(11)

(13)i =ji li--+I > 0.
r r ro
0 0

VR= V.
0

(5)

In these equations, Vs is the modulus of the complex number
VS1,a-,d y the firing angle of the thyristors. The energy con-
servation principle yields

V I =-v i . (6)
R.R r r

0 0

Finally, on the dc side

VI VR R (7)

Becauase the harmonics are neglected, only the direct compon-

ent is considered, thus the ripple is supposed to be completely
smoothed by LF, which is not included in Eq. (7) but is used in
the dynamics.

Eqiations (4) through (7) can be summarized as follows:

2

Iso I Cosy = vr + 18 RF ir
o 0

Because vro can be written as

v =Z i 4-Z i
r r r d s
o o 0 0 0

(8)

These equations are all that one needs to solve the
steady-state problem for a given firing-angle, y, and they can
be used in the following manner: I vso can be computed with
Eq. (1) and compared with Eq. (8) in which Vro can be replaced
by Eq. (10). This leads to an equation, which involves only
the currents, that can ultimately be expressed in terms of the
ratio S = isoq/iro (q-component of stator current over rotor
current) as follows:

[(R + L22) S2 w S +( s2 (L M2)W2)]

x cos y= [ S - (R+1 RF)1 (14)

The ratio S, as expressed in Eq. (14), is linked to the oper-

ating point through the rotor frequency, cow, only. It will be
of interest later on.

After Eqs. (3) and (13), the torque can be expressed in a

real form, as follows:

T = nM i i
0 ro soq

(15)

Because the torque is positive, it is clear that S must be posi-
(2) tive, thus one of the two solutions of Eq. (14) can be selected

without question.

and because
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The torque-slip characteristics for different y are shown
in Figure 2.

AV

SLIP

0

(a)

Aw

Fig. 2. Torque-slip
different 'Y.

characteristics for

The value of slip for which the torque is zero can be
found as follows: From Eq. (15), the torque is zero when iro
is zero (isoq = 0 does not yield a solution). The use of this
idea in the steady-state equations yields

i+ L2w2 L
s =_ M ° cosyv - - cosy z-cosy (16)

DYNAMICS

Block Diagram

The transfer function of main interest links a variation
of torque to a variation in the rotor speed, Wr. In the case of
the induction motor, this means a fictitious closed-loop sys -

tem, as represented in Fig. 3a. Both stator voltage and net-
work frequency are kept constant, but the rotor voltage may
vary. Figure 3b shows the specific link created by the recti-
fier-inverter, which associates variations of rotor voltage to
variations of rotor current, which in turn can be linked through
the general equations of the machine to Wr. The study of the
dynamics is completed by first finding the overall open-loop
transfer function, GI = -(AT/AWr) and then associating it
with the inertia transfer function, Gj = 1/[(J/n)pj, in the
closed loop shown in Figure 3b.

The small variations technique applied to the general
equations of the machine, Eqs. (1) and (2), yield for a cori-
stant supply frequency, w,

l I I1A1111
I AA l

Filter Machine
Equat ions Equations

(b)
Fig. 3. Open-loop transfer function, G'.r

in which

(19)c =L i +Mi =L i +Mi + jMir rr s rr a 8
0 0 0 0 0d 0q

and Zs, Zm, Zd, and Zr are operational impedances (see
Appendix A). Because of Eq. (11), 4pro can be simplified to

(20)* = jMi
ro s

0
q

Also,

AT = nM Im (i Ai* + i* Ai )
so r ro s

hence,

AT = nM Im (i Al - i* Al ).ro s so r

(21)

(22)

The stator supplies a constant voltage, implying that
AV = O. if the axes are allowed to swing along wfth vi,
one can assume that the phase of is remains constant. Alto-
gether,

Av = Oa
(23)

Av = Z Ai + Z Ai
S s a m r

(17)
Then

(18)Avr =ZAi +ZAi - j AX
r d r r r r

Equation (23) enables one to express Ai in Eq. (17).5

AV = -Ai + Mi A r (24)r Z r a r (4
8 0

q

ATL

.2

.4

.6

.8

1.0

a-d

_wR
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and

/Z i +Z i*
AT -nMl I m ro

z Ai
r

(25)

in which =ZZ -Z z.sr m d

This equation system can be completed by taking the rectifier-
inverter loop into consideration. During the variations, the
rectifier always remains a passive load. Therefore, vrir* is
real, which means that Vr and ir stay on the same axis and
have the same phase shift, AO, from their respective steady-
state values. Hence, Eqs. (12) and (13) become

Avr = -AI vrl +jv Aro (26)

sad

Air = Alrr +Jroj(27)

To the rectifier-inverter loop, Eqs. (4) through (7), one
can also apply small variations as follows:

AIvI =0=> AV,=0o (28)

An analysis of Eq. (34) shows that the rotor resistance,
Rr, and the filter resistance, RF, (multiplied by the coef-
ficient vr2/18), whenever they appear, are added together,
thus confirming the idea that they play an identical role with
respect to the machine in the steady state as well as the dy-
namic state.

It is interesting to group the steady-state terms as much
as possible. By using Eq. (10) for vro and the ratio, S, as
defined and expressed in Eq. (14), it is possible to extract the
steady-state torque, as expressed in Eq. (15), from Eq. (35)
as follows:

r ~~* * MZ
Im (MZm-LrZs-jMzsS)(Rrz M s so ) (36)

G' = -T 2^
r OX Z 2(R -Mw SO)+(R -M4 S-X)Re(ezFIZSI r so r so F ' a

Because, as demonstrated by Eq. (14), S is an explicit
function of the slip only, the above expression separates To on
the one hand and machine parameters and slip on the other
hand.

Fictitious Closed-Loop Transfer Function

The open loop transfer function, GI, must be associated
with the inertia transfer function, Gj (Fig. 3), to form the fol-
lowing "fictitious" closed-loop transfer function, Gj [ 1+G GI],
in which

R IT r

AVR = + L IAVI o= AVR (F+LFP) R

and

(29)

Gj =J
-p

(37)

The behavior of the machine can be determined by com-
(30) puting the roots of the characteristic equation

1+ G G' = 0
j r

A(vir)=-AS(VR)

They yield

Alvri XF AI rI

(38)

(31) with Gj expressed in Eq. (37) and GI in Eq. (36). This consti-
( tutes a fifth-order polynomial equation in p. It can be fed in

this form to the computer to yield the roots. However, in this
form, only the usual parameters of the machine appear, and it
may seem desirable to reduce their number to simplify the

(32) analysis.

Normalized Coefficients
in which

XF = (RF + LP). (33)

Equations (32), (26), (27), and (24) give

hi Mi (vro -(ro ) *iro) (34)

Awr soq [XF+Re ) [v -i Re(4-)]-i[Im(t)] 2

Gr = -(AT/Aw ) can be readily deduced from Eqs. (25) and
(34). After some rearrangement,

2 F
aM i im (Z i *4.z i )(Z *v .t*i

GI - Soo (s o m ro a ro ro (35)
vroXFF ZsI2+ (vro XFiro)Re(tzs*)ro* !2

Wotk has been conducted by Novotny and his coworkers
[14-16J to achieve this goal, and a set of nondimensional
parameters has been devised for a short-circuited rotor
(Table 1).

This set of parameters will be modified and augmented
in such a way that it will encompass the specific terms intro-
duced by the rectifier-inverter loop, namely the firing-angle,
y, and the filter parameters, RF and LF.

As far as RF is concerned, it is clear that its role is
analogous to that of Rr, and the two are always added to each
other. It seems, therefore, convenient to modify the defini-
tion of ar (and hence of os) to take this new factor into account
as follows:

2
a=(R +-fR )/crLr r 18 F r (39)

(27)
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Table 1

Nondimensional Parameters

a

a =-
a
r

R
with Cr-T1 r=

r r

R transient time co.

s T' aL
s 8

a - 1 - M2/(L L ) Leakage paramet
s r

= I/a
r

= /r

Denominator:

(2L2L2a4 wL(s o5 3 2 2 2 ,2(ar s r)x LDL ) +2acaA +(a e +w)x}

+ aL) (3x2 a+X (1+taci)+X(2aa+aa +w0)
r

and stator
nstants

+ or2of2+ (-aF )a, s0 2)

432L2 2,2
+ L (L A a(1+c)+ (cr +wo )+,\(1-cr)a0C so

)

4 3 A 2 + 22 2
+X (1-I2a)+X(a +a +aa+wL +)

0 s0ter

Normalized frequencies

Normalized eigenvalue

The case of LF is not as simple, because it interve
a different manner in the steady state and the dynamics; I
ever; it is always associated with Lr (rotor inductance),
it is convenient to define the following dimensionless pars
eter:

2 LF
LDL =-C

r

2 -,2 I..2+M(au +@ +2Xwso )

+2(l2 2
lIW ISO ISO 0

(42)

These equations include terms in S, as defined in Eq.
(14), which ahvays appears in the following form:

Mo
U= -o S.

aL
r

(43)

Equation (14) can also be expressed with the dimension-
less parameters. Moreover, if the change of variables, Eq.
(43), is applied to-Eq. (14), one obtains

(40) U2±20U (
In Eq. (44), i-Ayaw in the for cos
L

'ws 10

In Eq. (44), cosy appears in the form of

2
2

-(U-i) =0.

(44)

L
Cy =-g Cosy.

It is possible at this point to express each parameter of
the machine in terms of Lr and Ls, with the help of one or

another of the above parameters. The function GI can be split
into its numerator and denominator as follows:

Numerator:

LrLsarTo so

+2
22X+a[(aLxM+2Saar+a)a2W2))

so

+ +X a(1+U) (caa

"IS2 2
c

-(LI (X+2CA +a + )I
s0 0

(41)

It can also be noted by examining Eqs. (41) and (42)
that cosy comes into the picture, as far as the study of the

dynamics is concerned, always through the bias of S (or U) in
Eq. (44). Therefore, it seems convenient to consider the
firing-angle always in the form of Eq. (45). This enables one

to suppress in Eqs. (41) and (42) any term that is not one of
the nondimensional coefficients as defined so far, including
Cy (except for the factorizing terms).

Actually, CV allows for additional compactness in the
present analysis. Indeed, the operating slip varies greatly
according to which firing-angle is chosen (Fig. 2), which may
hinder easy comparison of the stability of two operating points
or two machines. However, the rotor frequency correspond-
ing to a zero torque has been found to be [16]

2 s 2Lo 2
2 cosy.

T=o M

(46)

1308
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Expressed in.a dimensionless form, this is

24 (n2 2+~2' (L 2 2 22 2= (va +of 2 ( M Cos (=(aa + (47)

I the operating rotor frequency, X , is expressed
with respect to sT.o, Eq. (47) indicates &.at it will be pos-
sible to link -Z 0 to simple parameters and ha.ve relatively
simple analysis and comparisons.

Finally, it is interesting to note that many of the terms
factorizing the numerator and the denominator cancel out, and
their ratio reduces to

T
0

Wsoa r

T
0

w
so

Once associated with the inertia transfer function, this ratio
forms in Eq. (38) the closed-loop gain,K,as follows:

nT
-~ 0

K °--2 (49)
JaOso r

It can be noted that the gain, K, as expressed in Eq. (49) is
the same as the one emerging from the study of the short-
circuited case [14].

In conclusion, Table 2 completes Table 1 in collecting
the para.meters examined so far. They are enough to encom-
pa-ss all the different actual parameters of the machine, and
the study of the root loci will be made with respect to them.

Table 2

General Form of the Root Loci

The basic form of the root loci is shown in Figure 4. It
includes a branch that starts from the real axis. This moves
up and eventually reaches instability before it crosses back to
the end zero, the imaginary part of which actually corresponds
approximately to &0. It should be noted that the portion of the
branch between the real axis and this accumulation area (in-
cluding unstable points) corresponds to a small range of values
of K. Moreover, this range of values depends greatly on the
different parameters. The other branch starts from a nearby
point and finally follows an asymptote, which is vertical when
there is no filter inductance.

These plots must be completed by considering the third
root, necessarily real. This root is negative for smaller
values of slip and becomes positive beyond the peak torque.
Two more roots, with negative imaginary parts, are located
symmetrically with respect to the real axis and are not repre-
sented.

The root loci do not change significantly when a or a
changes. Their influence is not considered here, and all the
plots are computed for a = 1 and a 0O. 05. Novotny and his
coworkers [14,16J studied them in other settings, and many
of their conclusions are still true in this case.

The values of the other parameters are given on each
plot. As far as the slip is concerned, it must be compared
with the no-load slip (noted ST=o), and both are written on
each plot. In fact, s - BTo is the entity which allows the
comparison of different curves.

Influence of the Slip

For a given normalized stator frequency, x, the slip,
s, is associated with the normalized rotor current frequency,
s0 as follows:

(50)
_0 0

New Nondimensional Parameters

2
ar =(R +18 F)/a r

2 L

DL 18 aLr

L
5

C =-Mcos)'

nT
2

Ju a2
so r

New definition

Filter inductance para.meter

Firing-angle parameter

Closed-loop gain

ROOT LOCI

For a given set of dimensionless para.meters, the roots
can be plotted, and the variation of K (closed-loop gain) from
zero to infinity will generate the root loci. The loci for
typical parameters is presented first, after which the influ-
ence of each parameter is studied by comparison. Actually,
these are very similar to the squirrel-cage loci [141.

As the slip (or i80) increases, the values of K that may
lead to instability are larger. While the final and initial
points remain at the same location, the lower branch tends to
move upward and finally meets the upper branch. A new con-
figuration then occurs (Fig. 5a) where the two former bran-
ches form a somewhat vertical locus, while the other roots
form a loop close to the ima.ginary axis (slow mode).

For values.of slip, close to no-load slip, the magnitude
of the third, real root is very large. It can be approximated
by

Mw i
SO soa

,=-U=-~ iaLrr ro
(51)

and, indeed, the steady-state torque and rotor current become
zero together, explaining the large magnitude of X. This root
depends very little on R.

When I is equal to zero, there is always a root at the
origin (inertia pole), and it is provided at low slips by the
lowest part of one of the two branches that includes part of the
real axis (Figs. 4 a.nd 5a).

For higher slips, however, this situation reverses. The
rea.l root starts from zero and moves on the real axis toward
the value of X = -U but does not reach it. At the same time,
none of the two other roots are purely real anymore (Fig. 5b).
As for the values of slip of practical use, this configuration
occurs only in special cases, for example when 'i' is small or
y is large.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on July 17,2023 at 13:33:30 UTC from IEEE Xplore.  Restrictions apply. 



Influence of the Firing-Angle

Figure 6a represents the roots for y = 90 degrees, which
in fact is the short circuited rotor case. Figure 4 corresponds
to y = 120 degrees, and Figure 6b to y = 140 degrees. All
three are for the same "relative" slip, s - ST=o. The lower
branch in the short-circuited case featres a wider loop,
which shrinks as y becomes larger, leading eventually to the
configuration with a vertical branch and a loop close to the
imaginary axis (Fig. 6b). The unstable values of R decrease
as y becomes larger.

Fig. 4 Fig. 5a

1.5 1.

-8 . -6 . -2 .

Fig. 5b

12j

Fig. 6a

Influence of the Norma.lized Frequency, Lo
Figure 7a. represents a. low normalized frequency (Z5=2)

and Figure 7b a large value (Wo=16).
The final point of the lower branch (Ki=-) and the initial

point of the upper one (fR=o) always have nearly the same
imaginary parts. Their values are very close to . There-
fore, changes in o indicate a stretching of the loci along the
imaginary axis.

The sensitivity on the a lip, as it has been explained, is
greater for smaller normalized frequencies. For o=2, the
small loop representing a slow mode for all values of g appears
even at a slip close to no-load, maldng such operations some-
what unstable.

Fig. 6b Fig. 7a

24j

20j

12j

*8j

*4j

Fig. 7b

Fig. 4. Basic configuration:- =8, C -0.5, s = 0.51, s =_ 50
0 yT=

Fig. 5. Inluence of slip s: x = 8, C = -0.5, (a) s = 0. 55, sTo=0.50; (b) s = 0.65, sT=o =0° 50

Fig. 6. Influence of firing-angle y: = 8, (a) C = 0, s = 0.01, s = ; (b) CT=0.o766, s 0.776, s 0.766.
SyT=o T07

Fig. 7. Influence of normalized frequencyw : C =-0. 5, s = 0. 51, sT=0. S0;(a)X 2;(b) X =16.0O TV 0 0

Notes: Different points on the curves correspond to different values of K, some of which are on the plots.
The same scale is always used except for Fig. 5b (real axis), and Fig. 7b (imaginary axis). All
curves are drawn for a =1, a = 0. 05, and L = 0.

F
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Influence ,o the Filter Inductance

An idea of the evolutioz of the locus with respect to
the filter inducctance is given on Figure 8. Two curves are
drawn, one for L = 0, the other one for LF ;0t9L (0.e.,
LDL=10). The asic configurtion is the same, bufthe

presence of the inductance produces a concentration of the
complex roots around the imaginary axis. In other words,
the inductance is slowing down the rate of decay of the
transients.

The following are computed:

a = (2.49)(0.4096)
(3. 09)(0.4096)

a (0. 3960)2cr=(1)- = 0.0655(0. 4096)(0. 4096)

a= 3. 09 -1
r (0. 0655)(0.4096) =15

/

//
/1

/

0.8

o.6_ -

0.6)-

'-41.~~~~~~~~.

/~~~

I
0.11

I
I

-1.

5.

2.

0.2

12j

*lOj

*6j

314 127= y=2.73; jCt ==1.10-o 115 50 115

- ~ 2 10.96K=115(0 0227) 127 0. 0661

The normalized eigenvalues for shaft speed disturbances are

taken from Figure 9. These are:

- 0.8 +j 0.4

- 0.23 + j 2.5

- 11.

These are denormalized by being multiplied by ar, to obtain:

- 92 + j 46

- 26 + j 287

- 1265

ra.d/s

rad/s

rad/s

If a designer wishes to see what effect a doubling of
rotor resistance has, for example, he just recomputes the
new a, ar, Z0, Top and wsO valueo and proceeds-in a simi-
lar manner. Several designs can be evaluated in a matter of
minutes.*2j

-0.15 +0.2

Fig. 8. Influence of the filter inductance. Both curves

drawnfora=1, a=o.o5, ! =8, C =-0.5, s00.51, 5T=0

0. 50. Dotted line: no filter inductynce. Solid line:

LDL 10< LF r9Lr

USE OF THE LOCI

The use of the general loci can be illustrated by means

of an example taken from the work of Mittle et al. [10].

Static Scherbius Drive

5 HP, 400 V, 4 pole, 50 Hz motor

Steady-state torque: 10. 96 N.m

Steady-state slip: 0. 4039

Firing angle: y = 1100

R =2.49 0I; R 3.09 ; RF= o; L =

L = 0.4096 H; L = 0.4096 H; M = 0.3960 HH r

H =0.075 s, (J =0.0227 kg.m

'= 2.73
a = 0.806
a = 0.066

C =-0.354
y = llo0

LF= °
s = 0.4039

ST= = 0.3539

-1 1. -10. -2.

Fig. 9. The general loci for

2.5

1. I

-1.

the cited example.

-4j

3j

0
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A stability analysis can be conducted, and in order to
see the connection between the general loci and the stability
boundaries in Mittle et al. r10o, the torque for crossover
into the right-hand plane is computed from the correspond-
ing K value of 0. 6, in Fig. 8, using the K equation in Table
2. This is done for several firing angles (figures similar
to Fig. 9, but not included here). If the crossover f values
are attainable physically, we can compute the stability
boundaries as given in [ 101 by plotting these torques versus
firing angle.

CONCLUSIONS

The set of existing generalized root loci has been exten-
ded to include the static Scherbius machine in the subsynchron-
ous mode. It was determined that these new loci are similar
to those of the squirrel-cage machine and allow design options
to be quickly evaluated without the computer.

It is fitting to mention, in addition, that these results
do not necessarily imply more precision than previously
used models. The main thrust of the paper is on the gen-
eralized nature of the results obtained.

The open-loop case was evaluated, and work is now
underway to consider closed-loop configurations.
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APPENDIX A: DEFINITIONS AND SYMBOLS

The machine inpedances are defined in a d-q axis frame
under their operational form as follows:

Z =R ±Lp+jLw

Z =,Mp + jMw

Zr=R +Lrp+jLr rrrus
Z =Mp + jMwd ..

The terms in p vanish when steady-state values are con-
sidered.

Notations

a. c. currents

direct current (see Fig. 1)

J inertia

L self-inductances

M mutual inductances

n number of pairs of poles

R resistances

s slip

T electric torque

T mechanical torque
L

v a.c. voltages

VI,VR direct voltages (see Fig. 1)

Z complex impedances (see above)

stator current frequency

Wr electric rotor velocity
r

rotor current frequency
s

Subscripts

d direct axis
q quadratic axis
r rotor
s stator
o steady-state
F filter parameters (see Fig. 1)

Also, on a symbol denotes its normalized value. Re(z),
lm(z), and z* denote respectively the real part, imaginary
part, and conjugate of the complex entity z.
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