
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Mathematics and Statistics Faculty Research &
Creative Works Mathematics and Statistics

01 Jan 1985

ADA: A NEW PROGRAMMING LANGUAGE. ADA: A NEW PROGRAMMING LANGUAGE.

Daniel C. St. Clair
Missouri University of Science and Technology

Follow this and additional works at: https://scholarsmine.mst.edu/math_stat_facwork

 Part of the Mathematics Commons, and the Statistics and Probability Commons

Recommended Citation Recommended Citation
D. C. St. Clair, "ADA: A NEW PROGRAMMING LANGUAGE.," IEEE Potentials, vol. 4, no. 3, pp. 26 - 29,
Institute of Electrical and Electronics Engineers, Jan 1985.
The definitive version is available at https://doi.org/10.1109/mp.1985.6500263

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Mathematics and Statistics Faculty Research & Creative Works by an authorized administrator of
Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for
redistribution requires the permission of the copyright holder. For more information, please contact
scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/math_stat_facwork
https://scholarsmine.mst.edu/math_stat_facwork
https://scholarsmine.mst.edu/math_stat
https://scholarsmine.mst.edu/math_stat_facwork?utm_source=scholarsmine.mst.edu%2Fmath_stat_facwork%2F1374&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=scholarsmine.mst.edu%2Fmath_stat_facwork%2F1374&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/208?utm_source=scholarsmine.mst.edu%2Fmath_stat_facwork%2F1374&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/mp.1985.6500263
mailto:scholarsmine@mst.edu

Ada: a new programming language
Daniel C. St Clair The Department of Defense developed an

incredible new programming language
and named it in honor of Ada Lovelace,

the world's first programmer

F
ortran and Pascal have
long been used by en-
gineers to solve prob-
l e m s . Now a new
programming language
called Ada is expected

to become the language used by many
engineers, especially those employed
by companies who work for the U.S.
Department of Defense (DOD).

The DOD is a major user of com-
puter hardware and software systems.
As you would expect, large air, ground
and sea defense systems require large,
complex computing systems. Many of
these large systems, such as a guid-
ance computer on a missile, are actu-
ally composed of many smaller
subsystems referred to as embedded
systems. Each of these embedded sys-
tems has its own set of computers and
software, and may have subsystems.
For the entire system to function
properly the embedded systems must
communicate with each other. Thus, a
large system can be composed of
many subsystems developed by many
different companies. To further com-
plicate matters, embedded systems
may be written in Fortran, assembly
language, or Pascal, resulting in large
expensive systems which are difficult
to implement and maintain.

In an attempt to control defense
software costs while maintaining sys-
tem reliability, the DOD has sponsored
the development of a new program-
ming language called Ada. While Ada
supports many of the features found
in Fortran and Pascal, it has addi-
tional features making it easier and
more reliable to use in large complex
engineering software systems. Cur-
rently, the DOD is requiring that
many new defense software systems
be written in Ada.

To introduce you to Ada, we shall
review the history of Ada's develop-
ment and examine the primary con-
structs of the language. The philoso-

A portrait of Augusta Ada Byron, Countess of Lovelace. Charles Babbages' proposed
"Analytical Engine" would perform around 60 additions per minute when working. It never
worked, butin 1843 Ada wrote "Observations on Mr. Babbage's Analytical Engine." There
she gave examples of how the machine could be used including what has been consid-
ered the first "program, " a sophisticated method of computing Bernoulli numbers.

26 0278-6648/85/1000-0026$01.00©1985 IEEE IEEE POTENTIALS MAGAZINE
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on July 19,2023 at 18:04:33 UTC from IEEE Xplore. Restrictions apply.

Program Unit

Subprogram
Procedure
Function

Package

Task

Characteristic

Sequential action

Collection of resources

Parallel processes

Uses

Main program unit
Perform operations
and return none, one,
or many values.

Group subprograms
and declarations.

Performing operations
which can occur
concurrently.

TABLE I. ADA PROGRAM UNITS

phy behind Ada program design will
be reviewed by designing and coding
a simple program to add two matrices.
Last, but not least, Ada's future
prospects will be examined as related
to both defense and nondefense
applications.

Ada's history
In the early 1970s the United States

Department of Defense noticed the
trend of rising software costs and poor
reliability for major defense systems.
In 1975, the DOD established the
Higher Order Language Working
Group (HOLWG) to study the re-
quirements for DOD programming
languages, to evaluate existing lan-
guages against these requirements and
to recommend a set of programming
languages acceptable for use in DOD
defense systems. Professionals from
the DOD, industry and universities
participated in this work. HOLWG's
final proposal was to recommend
the development of a new computer
language which would be used for de-
signing, implementing and maintain-
ing all software aspects of defense
systems. For lack of a better name,
their language was called DOD-1.

To design such a new language was
no small task. Recognizing this, the
DOD chose to use an international
design competition in which several
teams would submit designs for
DOD-1. The winning design was
submitted by a French team from
Honeywell/Honeywell Bull headed by
Jean Ichbiah.

It was decided to change the name
from DOD-1 to Ada, in honor of
Augusta Ada Byron, Countess of
Lovelace, and daughter of the poet
Lord Byron. Ada Lovelace (1815—
1851) was a mathematician who
worked with Charles Babbage on his
difference and analytic engines — two
mechanical computers. She suggested
programming Babbage's machines.
For this work, she is considered the
world's first programmer.

Following the design, the testing
and evaluation period began. This
process involved issuing a public invi-
tation to take an existing application
and to implement it in Ada. In addi-
tion, a preliminary language reference
manual was developed and develop-
ment of a compiler validation facility
began.

As individual companies develop
Ada compilers, they will be tested for
their ability to meet the DOD stan-
dards for Ada. Compilers meeting
these standards will be issued a vali-
dation number. DOD can then require
that defense software systems be writ-
ten to run using DOD validated Ada
compilers. In this way, software sys-
tems developed on one type of hard-
ware can be combined with software
systems developed on another. Such
software systems are referred to as
transportable.

The story of Ada is far from com-
plete. While a few companies such as
Data General, Digital Equipment Cor-
poration, and Telesoft have developed
DOD validated Ada compilers, many
others will soon be available. Work is
also continuing on the development of
software tools to be used in writing,
debugging, and maintaining Ada pro-
grams. These tools constitute what is
called the Ada Programming Support
Environment (APSE). In time, these
tools, like Ada, will be standardized
so that the APSE available on all
types of hardware will be the same.

One other very important issue is
that of training Ada programmers.
Since most engineers know Fortran
and/or Pascal but not Ada, they will
have to learn the new language. This
represents a large investment for
many companies. Young engineers
who are seeking jobs and who know
Ada will be particularly attractive to
these companies.

An overview of Ada structure
An Ada program is composed of

one or more program units, each may
be compiled separately. These units

are subprograms, packages, and
tasks. Subprograms, procedural or
functional, have characteristics and
uses similar to their counterparts in
Fortran and Pascal.

Packages provide a convenient way
of grouping subprograms. Subpro-
grams may be grouped according to
their functions or because they share
common data. For example, a group
of subprograms used in circuit design
and analysis might be combined into a
single package. This concept is simi-
lar to that of program libraries in
Fortran and Pascal.

Tasks are important in systems
where processes occur in parallel.
Consider a system which monitors a
group of devices, performs analysis
on the data from each, and prints out
the results. Tasking would at the same
time allow gathering data from one
device, analyzing the data from a sec-
ond device, and printing the results
for a third device! While tasking is
difficult with Fortran and Pascal it is
easy to implement in Ada by simply
developing a program unit for each of
the three tasks. Ada does the rest.

Generally, each Ada program unit
has two parts: the specification and
the body. Unlike Fortran but like
Pascal, all objects (variables and
special constants) must be declared
in Ada. This is done in the specifica-
tion part of the unit. The body con-
tains the Ada code used to perform
the desired operations. Fig. 1 shows
the basic parts of a procedure program
unit. The name of the procedure is
MATRIX_DEMO. Statements begin-
ning with — are comments in Ada.

To declare an object in an Ada pro-
gram, we must give both its name and
its type. Examples of object types are
integer, real (float or fixed), and ar-
ray. The usual approach is to declare
the types and then to declare the ob-
jects. We refer to objects as variables

procedure MATRIX_DEMO is

--The specification part goes

--in this section.

--The body of the procedure

--goes in this section.

end MATRIX DEMO

Fig. 1. Structure of an Ada procedure.

OCTOBER 1985 27
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on July 19,2023 at 18:04:33 UTC from IEEE Xplore. Restrictions apply.

type COUNTER JTYPE is integer;
NUMBER_OF_DAYS: COUNTER_TYPE;

type PLANETARY MEASUREMENT is digits 15;
ORBITJ_tNGTH: ÏÏLANETARYJ1EASUREMENT;

type MATRIX_TYPE is array
(POSITIVE range <> ,
POSITIVE range < >) of INTEGER;

A,B: MATRIX_TYPE (1..2.1..3);

type M0T0R_STATE is (OFF, FORWARD, REVERSE);
HOIST: MOTOR STATE:=OFF;

Fig. 2. Examples of Ada type and object
declarations.

in Fortran and Pascal. Consider the
examples shown in Fig. 2.

Line one defines a type called
COUNTER_TYPE which is integer.
Line two declares an object (variable)
which is to hold a value of type
COUNTER_TYPE (i.e. integer). Line
three defines a real floating point type
which has 15 digits of accuracy. The
object ORBIT_LENGTH is then
declared to be of type PLANETARY_
MEASUREMENT. Line five declares
MATRIX_TYPE to be a two-dimen-
sional array of integers. Note that the
subscripts are to be positive integers
but line five gives no range of values
for these subscr ip ts . When the
matrices A and B are declared in line
six, the subscript ranges are specified.
Hence, A and B are matrices of in-
teger values each having two rows
and three columns. MOTOR STATE
is referred to as an enumeration type.
Objects of type MOTOR_STATE can
have one of three values; OFF, FOR-
WARD or REVERSE. In line eight,
HOIST is declared to be of type
MOTOR_STATE and is initialized
to OFF.

After declaring objects, we can
then move to the body of the Ada pro-
gram where we actually manipulate
these objects.

Ada: a design tool and language
In addition to being a programming

language, Ada also provides a tool for
designing systems. This approach to
design is called object-oriented. It is
an improvement over existing pro-

gram design methodologies in that it
makes it easier to model real-world
systems and provides a way to design
largely self-documenting systems.
That is, the design and development
of a system are performed in such
a way that the need for additional
systems documentation is greatly re-
duced. Current research is being done
on systems which can take object-
oriented designs and turn them into
Ada programs!

The basic components of the ob-
ject-oriented design technique are:

1. Define the problem.
2. Develop an informal strategy

for solving the problem.
3. Formalize the strategy.

The latter component consists of iden-
tifying objects of interest and their
operations, establishing the interfaces
among the various program units
which process the objects and then
implementing the operations.

To illustrate object-oriented design
and to provide an introduction to the
Ada programming language, the de-
sign and implementation of a simple
function to add two matrices will be
considered. The fundamentals of ob-
ject-oriented design are followed.

1. Define the problem.
Develop an Ada function
which computes the sum of
two matrices and returns the
result.

2. Develop an informal strategy for
solving the problem.

The sum of two matrices A and B
is found by adding their correspond-
ing elements. For example, if the re-
sult of A + B is to be returned in a
matrix called RESULT, we calculate
RESULT(/,7) = A(/,7) + B(I,J) for
each element in A and B. All matrices
must have the same number of rows
and all matrices must have the same
number of columns. We will assume
that all matrix elements are integers
and that this function will be called by
a procedure.

3. Formalize the strategy.
a. Identify the objects of in-

terest and their operations.
b. Establish the interfaces

among the program units.
c. Implement the operations.

We shall discuss each of these as it ap-
plies to our matrix addition problem.

The objects of interest are the three
matrices; A, B and RESULT. These
are matrices whose elements are
integers. The operation is matrix
addition.

Establishing the interfaces refers to
creating the actual specification part
of our function. Note that this is done
in the initial stages of object-oriented
design before consideration is given
to the algorithms to be used in solving
the problem. Fig. 3 shows how this
interface might be declared.

Note tha t RESULT to be of
MATRIX_TYPE is declared. It is to
have the same range of rows and
columns as matrix A. Matrices A and
B along with MATRIX_TYPE will
actually be declared in the procedure
w h i c h c a l l s M A T R I X _ S U M .
Lines five and six in Fig. 2 show how
this is done. MATRIX_SUM returns a
value of MATRIX_TYPE.

The last step in designing this Ada
function is to implement the actual

function MATRIX__SUM (A,B: MATRIX_TYPE)
return MATRIXJTYPE is

- -Declare RESULT

RESULT: MATRIXJTYPE
(A'RANGE(1),A'RANGE(2));

--The function body will
be placed here later.

end MATRIX SUM;

Fig. 3. MATRIX_SUM specification.

function; write the statements which
make up the function body. Fig. 4
shows the completed function.

Note the form of the looping struc-
ture. A'RANGE(l) refers to the range
of the first subscript for matrix A,
i.e., the range of rows. A'RANGE(2)
refers to the range of column sub-
scripts for A. Ada subscripts may
range over integers which are nega-
tive, zero and/or positive. Unlike
Fortran, they may also range over
enumeration types. The looping ob-
jects, / and J are not declared. Their

28 IEEE POTENTIALS MAGAZINE
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on July 19,2023 at 18:04:33 UTC from IEEE Xplore. Restrictions apply.

function MATRIX_SUM (A, B : MATRIX_TYPE)
return MATRIX_TYPE is

RESULT : MATRIX_TYPE
(A'RANGE (1), A'RANGE (2));

begin
for I in GRANGE (1) loop

for J in A'RANGE (2) loop
RESULT (I , J)

:= A (I , J) + B (I , J);
end loop;

end loop;
return RESULT;

end MATRIX SUM;

Fig. 4. MATRIX_SUM function.

values are undefined on exit from
their respective loops. After exiting
the outer loop, the value of result is
returned as the value of the function.

The function can now be used by
any Ada unit which needs to add
matrices. Fig. 5 shows a simple pro-
cedure which initializes matrices A
and B, performs A + B, and prints
the result.

TEXT_IO referenced in lines
one, two and nine is an Ada package
of input/output procedures. Put
and new_line are procedures in
TEXTJO.

In line eight, Ada has been told that
the function MATRIX_SUM is in
a separate file. Instead of putting
MATRIX_SUM in a separate file, it
could be included in the MATRIX_
DEMO procedure. All that is needed
is to replace line eight, with the state-
ments shown in Fig. 4.

When the program is executed,
statement 12 passes matrices A and B
to the function MATRIX_SUM. Once
the matrices are added, the results
are returned and placed in matrix
SUM. The program output is the
matrix;

6 8 10
12 14 16
Fig. 5 shows the same program

written in UCSD Apple Pascal. In this
figure, the matrix addition subpro-
gram has been placed inside the main
program. While UCSD Apple Pascal
is somewhat more restrictive than
other Pascal compilers, this program
provides an interesting comparison
betwen Pascal and Ada.

Ada's future
There are many features of Ada

which have not been discussed. These
features are designed to make Ada a
powerful tool in designing, imple-
menting and maintaining large soft-
ware systems. The Department of
Defense is not only requiring that
many new defense systems be de-
signed and programmed using Ada,
but the National Aeronautics and
Space Administration (NASA) is in-
vestigating the use of Ada for the
many systems in the new space sta-
tion to be launched in the early 1990's.

Although Ada is new and the num-
ber of DOD validated compilers are
relatively few, results are beginning to
show that Ada does indeed simplify
the design, implementation and
maintenance of large, complex soft-
ware systems. The transportability of
code coupled with the object-oriented
design approach has been responsible
for improving communication and
understanding between all of the
people involved in the design and
implementation of large systems.

The use of Ada in nondefense
applications is expected to be some-
what slower than it has been in de-
fense applications. One reason for this
is the current short supply of Ada pro-
grammers. Another reason is the
unavailability of auxiliary software
which interfaces to Ada. For exam-
ple, a program requiring special data
handling capabilities will need to be
interfaced to a database management
system. As Ada matures, these prob-
lems will disappear and Ada will
enjoy wide use in nondefense areas.

While Ada is not the programming
language to end all programming lan-
guages, it is one of the best tools we
have for dealing with large, complex
software systems. In this respect, we
can expect it to be around for some
time to come.

Read more about it
• Booch and Grady, Software Engi-
neering with Ada, Ben jamin /
Cummings, 1983.
• Barnes, J .G.P. , Programming in
Ada, 2nd ed., Addison-Wesley, 1982.
• Reference Manual for the Ada Pro-
gramming Languages, ANSI-MIL-

with TEXTJO;
use TEXTJO;
procedure MATRIX_DEM0 is

type MATRIXJYPE is array
(POSITIVE range < > , POSITIVE range < >)

of INTEGER;

A : MATRIXJYPE (1 . . 2, 1 . . 3)
:= ((1 , 2, 3) , (4, 5, 6)) ;

B : MATRIXJYPE (1 . . 2, 1 . . 3)
:= ((5, 6, 7) , (8, 9, 10));

SUM : MATRIXJYPE (1 . . 2, 1 . . 3) ;

function MATRIXJUM (A, B : MATRIXJYPE)
return MATRIXJYPE is separate;

package INTJO is new
TEXTJO. INTEGERJO (INTEGER);

use INT 10;

SUM := MATRIX_SUM (A, B);

for I in SUM'RANGE (1) loop
for J in SUM'RANGE (2) loop

put (SUM (I, J));
end loop;
newjine;

end loop;
newjine (2) ;

end MATRIX DEMO;

Fig. 5. Ada procedure which uses
MATRIX_SUM.

STD-1815A-1983, American National
Standards Institute.

RR Software and Telesoft sell Ada
compilers which run on some of the
more popular microcomputers. These
compilers are not DOD validated
nor do they provide all the features
of Ada.

About the author
Daniel C. St. Clair is Professor of

Computer Science at the University of
Missouri-Rolla Graduate Engineering
Center in St. Louis, Missouri. Dr.
St. Clair has spent two summers with
NASA's Johnson Space Center in
Houston, Texas where he worked
on space station projects involving
Ada, graphics and expert systems.
He has been actively involved with
McDonnell-Douglas Corporation in
evaluating potential commercial appli-
cations of Ada. D

OCTOBER 1985 29
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on July 19,2023 at 18:04:33 UTC from IEEE Xplore. Restrictions apply.

	ADA: A NEW PROGRAMMING LANGUAGE.
	Recommended Citation

	Ada: A new programming language: The Department of Defense developed an incredible new programming language and named it in honor of Ada Lovelace, the world's first programmer

