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Unsteady-State Spherical Flow 
With Storage and Skin 
Jeffrey A. Joseph,* SPE, U. of Missouri-Rolla 
Leonard F. Koederitz, SPE, U. of Missouri-Rolla 

Abstract 

This paper presents short-time interpretation methods for 
radial-spherical (or radial-hemispheri_cal) flow in 
homogeneous and isotropic reservoirs inclusive of 
wellbore storage, wellbore phase redistribution, and 
damage skin effects. New dimensionless groups are in­
troduced to facilitate the classic transformation from 
radial flow in the sphere to linear flow in the rod. 
Analytical expressions, type curves (in log-log and 
semilog format), and tabulated solutions are presented, 
both in terms of pressure and rate, for all flow problems 
considered. A new empirical equation to estimate the 
duration of wellbore and near-wellbore effects under 
spherical flow is also proposed. 

Introduction 
The majority of the reported research on unsteady-state 
flow theory applicable to well testing usually assumes a 
cylindrical (typiCally a radial-cylindrical) flow profile 
because this condition is valid for. many test situations. 
Certain well tests, however, are .better modeled by 
assuming a spherical flo:w symmetry (e.g., wireline for­
mation testing, vertical interference testing, and perhaps 
even some tests conducted in wellbores that do not fully 
penetrate the productive horizon or are selectively com­
pleted). Plugged perforations or blockage of a large part 
of an openhole interval may also promote spherical flow. 
Numerous solutions are available in· the literature for 
almost every conceivable cylindrical flow problem; un­
fortunately, the companion spherical problem has not 
received as much attention, and comparatively few 
papers have been published on this topic. 1- 9 · 

The most common inner boundary condition in well 
test analysis is that of a constant production rate. But 
with the advent of downhole tools capable of the 
simultaneous measurement of pressures and flow rates, 
this. idealized inner boundary condition has been refined 
and more sophisticated models have been proposed. 9-14 

Therefore, similar methods must be developed for 
spherical flow analysis, especially for short-time inter­
pretations. This general problem has recently been ad­
dressed elsewhere. 9 

Theory 

The fundamental linear partial differential equation 
(PDE) 15 describing fluid flow in an infinite medium 

*Now with Flopetroi-Johnston, Melun, France 

Copyright 1985 Society of Petroleum Engineers 

804 

characterized by a radial-spherical symmetry is 

The assumptions incorporated into. this diffusion equa­
tion are similar to those imposed on the radial-cylindrical 
diffusivity equation and are discussed at length in Ref. 9. 
In solving Eq. 1, the classic approach is illustrated by 
Carslaw and Jaeger 16 (later used by Chatas 1 and 
Brigham et al. 5 ). According to Carslaw and Jaeger, 
mapping b=pr will always reduce the problem of radial 
flow in the sphere (Eq. 1) to an equivalent problem of 
linear flow in the rod for which general solutions are 
usually known. (For example, see Ref. 17 for particular 
solutions in petroleum applications.) 

Note that in this study, we assumed that the medium is 
spherically isotropic; hence k in Eq. 1 is the constant 
spherical permeability. This assumption, however, does 
not preclude analysis in systems possessing simple 
anisotropy (i.e., uniform but unequal horizontal and ver­
tical permeability components). In this case, k as used in 
this paper should be replaced by k, an equivalent or 
average (but constant) spherical permeability. ·Chatas 1 

presented a suitable expression (his Eq. 10) obtained 
from a volume integral. 

It is desirable to transform Eq. 1 to a nondimensional 
form, thereby rendering its applicability universal. The 
following new, dimensionless groups accomplish this 
and have the added feature that solutions are obtained 
directly in terms of the dimensionless pressure drop, p D, 

not the usual b (or b D) groups. 1 ,5 

47rkr sw (Pi - P r t) 
Pn= . ' ..................... (2) 

. qJL . 

kr~wt 
t D = ¢ JLCr4 ; r ~ r sw . . . . . . . . . . . . . . . . . . . . . . . . (3) 

rsw 
r D = 1 - --; r ~ r sw. . ..................... ( 4) 

r 

The quantity r sw is an equivalent or pseudospherical 
wellbore radius used to represent the aCtual cylindrical 
sink (or source) of radius rw. (See Refs. 2, 4 through 6, 
and 18 for a complete discussion of the fictitious 
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Fig. 1-Radial flow toward spherical sink wellbore. 

spherical sink r sw .) The physical system of interest is il­
lustrated in Figs. 1 and 2. Fig. 1 depicts perfect radial 
flow in the . sphere" and shows . that the region of ac.;. 
cumulation (singularity) is itself a sphere of finite radius, 
r sw. This singularity in the spherical model corresponds 
to a wellbore in the prototype, as shown in Fig. 2. (Note 
that the spherical wellbore in Fig. 2 is not to scale. A 
cylindrical wellbore radius of 5 in. [12. 7 em] may be 
represented by a pseudospherical wellbore radius of 3 ft 
[0.9 m]). We have obtained entirely satisfactory results 
using an equation for r sw originally suggested by Moran 
and Finklea 2 and later used by Culham, 4 namely 
r sw =0.5b/ln(blr w), where b is the length of the open or 
perforated interval. Note that the identities in Eqs. 2 
through 4 are not defined in conventional fashion. For 
example, the transformation in Eq. 3 consolidates both 
independent variables t and r into a single expression for 
the dimensionless time, t D. Variables of this type have 
been called similarity variables by several authors. 9 

Substitution of Eqs. 2 through 4 into Eq. 1 yields 9•19 

a2pv _ apD 

arv 2 atv 
............................ (5) 

Eq. 5 immediately is recognized. as the diffusion equa­
tion in a medium characterized by a linear flow sym­
metry; we shall use Eq. 5 and the one-to-one 19 Transfor­
mations 2 through 4 to analyze the flow problem posed 
by Eq. 1. Hence, radial flow in the infinite sphere will be 
modeled by an equivalent problem of linear flow in the 
:finite rod. . 

To produce particular solutions to Eq. 5, an initial 
boundary value problem (IBVP) must be posed arid the 
initial and the general inner and outer boundary condi­
tions must be specified. We now examine the values that 
the space variable rv may assume. The inner boundary 
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ACTUAL CYLINDRICAL 
WELLBORE 

SPHERICAL WELLBORE 
(NOT TO SCALE) 

Fig. 2-Cylindrical and spherical wellbores. 

in r is obtained when r=r sw (i.e.·, the wellbore).· From 
Eq. 4 we see that r = r sw corresponds to r D = 0. The 
original spherical system is unbounded in r; as f grows, 
rv also grows, but in the limit as r-+QO, rv approaches 
unity. Particular solutions of Eq. 5 are developed in the 
following sections. 

Constant ·Surface R~te With Skin and Storage 
A very popular inner boundary condition in pressure­
transient analysis is the stipulation of production at a 
constant surface rate from a wellbore of finite volume. 
Her~ we also will assume that a damage skin effect, s 
(s ~ 0), exists at the sand face. The formation pressure 
drop is denoted by p D, and the well bore pressure drop is 
p wD. The skin factor s represents a steady-state flow 
resistance at the saridface (i.e., zero storage· capacity); 
this flow impediment establishes the relationship be;_ 
tween p wD and p D . Let s be defined as 

s . 4nkr swfl.P s ' ........................... (6j 
qsfP. 

where fl.p; is the pressure drop across the infinitesimal 
skin zone (attn). Wellbore storage phenomena (i.e., the 
afterflow or unloading problem) will be. described by 
CD, the dimensionless coefficient of welt bore storage, 
defined as 

c 
Cv . 3 ' 

47rc/>Crsw 
........................... (7) 

where c represents the volume of wdlbore fluid unload­
ed or stored. in the present fomiulation, C and hence Cv 
are considered constant. 
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The initial condition is taken as a constant pressure, 
Pi• for all values of r?;_r~w· Using Eqs. 2 and 4; we 
obtain 

Pn(ro, tn=O)=O; O~rn~l. ............... (8) 

We have considered the original spherical system infinite 
in radial extent because interest is focused on times short 
enough when pressure or rate disturbances at the inner 
boundary are not sensed at the outer boundary (or vice 

. versa). This causes transience within the solution. 
Hence, the pressure at the outer boundary will be main­
tained at its initial value pi for all time; thus 

lim[p n(r D, t n)] =0; t D > 0. . ................ (9) 
r0 ~1 

The inner boundary condition was stated earlier. To ob­
tain a solution in terms of the well bore pr~ssure, p wD, 
one could either rewrite the original PDE (Eq. 1) in 
terms of p wD or incorporate some known relationship 
between p wD and p D as an auxiliary condition. The lat­
ter approach is adopted here. 

PwoCtn)=po(ro=O, tn)-s(aPD) ..... (10) 
. arD ro=O 

Eq. 10 results from the definition of the skin effect (Eq. 
6) and from a pressure drop at the sandface proportional 
to the dimensionless sandface flow rate. From Eq. 10 we 
note that the dimensionless sandface flow rate' can be 
written in terms of the space derivative of p D evaluated 
at the inner boundary: 

qsf=(apo) ......... · .............. (11) 
q arD ro=O 

A mass balance of the fluid in the well bore reveals that 
the dimensionless sandface flow rate plus the dimen­
sionless rate of wellbore unloading equals the constant 
surface rate (unity). Therefore, we conclude that 

qa dpwD 
-· =C0 -- ............. ; ............ (12) 
q dtn 

and that the combination of Eqs. 11 and 12 and the 
wellbore balance yields the inner boundary condition 

CodPwD_(aPD) _ =1. .............. (13) 
dtn ar0 ro-O 

Thus far, we have established an initial"'"boundary­
value problem in PDE's consisting of the PDE (Eq. 5), 
an initial condition (Eq. 8), an outer boundary condition 
(Eq. 9), and finally the inner boundary condition (Eq. 
13). This boundary condition frequently is called a 
boundary condition of the second kind 20 or a Neumann 
condition. 21 The auxiliary condition (Eq. 1 0) will be 
used to obtain a solution in terms of the well pressure . 
p wD. This solution will describe the flow of a single-

806 

phase, slightly compressible fluid in a medium 
characterized by radial-spherical geometry, inclusive of 
wellbore storage and skin effects. To our knowledge, no 
such solutions have appeared in the literature. 

The IBVP described earlier is amenable to solution by 
an operational technique, namely the Laplace transfor­
mation. Let 

00 

L[pFJ(rn, tn)]= ~ e-zto pJ)(rD, to)dtn 

0 

=J5n(ro,z), ................. (14) 

where z is the Laplace variabie of time, z > 0. For our 
study, denoting the inverse Laplace transformation in 
functional form will suffice. 

L -I [:p 0 (rn, z)] =p n(rn, t n). . ............ ·, (15) 

Solutions to the IBVP in the Laplace domain are derived . 
in Appendix A and are presented below: 

A+s.JiB 
Pwo(z) = ....... (16) 

z 31~ [./Zen (:i.+s.fi.B) +B] 
and 

e -ro..fi. -eCro -2)-Ji. 
j5 n(r D?;. 0 +, z) == , 

z312 [./Zen (!.+s.fi.B) +B J 
............................. (17) 

where e denotes the exponential functiOn, A= 1-e - 2-Ji., 
and B = 1 + e - 2-Ji. . Eq. 16 is the fundamental solution of 
interest in this paper, namely the well-pressure response 
in spherical systems influenced by storage and skin. Eq. 
17 is the solution for the formation pressure drop. Both 
Eqs. 16 and 17 are valid for all time, for s?;. 0, and for 
Cn ?;.0. 
Real~time (i.e., physical-space) solutions to Eq. 16 or 

17 must be obtained by application of the inverse 
Laplace transformation (Eq. 15) because a closed-form 
inversion (perhaps with tables) does not appear possible: 
This may be achieved analytically with the Mellin inver­
sion theorem. 16 For illustrative purposes, suppose V(z) 
is the Laplace transformation of v(t); then 

1 e+io 
v(t)=- lim J ez'v(z)dz; t>O, ......... (18) 

27ri ~__.00 ·~ 
u -y-lu 

where 'Y is so large that all the singularities of V(z) lie to 
the left of the line ( 'Y- i oo, 'Y + i oo). Here, vis considered 
to be a function of a complex variable, z, and i = r-1. . 

Eq. 18 is no longer very common in the petroleum 
literature, largely because of the numerical inversion 
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Fig. 3-Dimensionless weJib~re pressure drop for a single well in an infinite spherical medium 
(spherical sirik solution). 

scheme of Stehfest. 22 •23 This method is treated in detail 
elsewhere 9 and is not ~onsiCI.ered here. Here we only 
will report the vaiue used for the inversion parameter N. 
All numeucal calculations. were performed on an Am­
dahl470-V-7 machine with the IBM FORTRAN G1 com­
piler operating in Double Precision arithmetic. 

Short- and Long-Time Approximations 
It frequently is possible to approximate particular solu., 
tions by investigating the asymptotic behavior of the 
transform as the transformation variable (z) becomes 
large or small (short or ldng times). Details of this 
analysis are available in .Appendix B; the results are 
presented here. For early time, 

tD 
PwoCtJ3)=-; s~O; Cn >0, .............. (19) 

Co 

and for long time, 

Pwv(tv)=~(l-e- 11'v)+erfc (-
1
-) +s. 

. Jt; 
............................. (20) 

Eq. 16 is considered the gen.eral solution valid for all 
time, and the above. approximation forms were produced 
from this expression. In Eqs. 19 and zo, tr) should be in­
terpreted as t Dw, where t Dw is available from Eq. 3 as 

kt 
t bw = 2 . . . . . . . . . ; . . ; . . . . . . . . . . . . . . . (21) 

¢JJ-Cr SW 

Eq. 19 is the well-knowri foimulation for depletion of the 
wellbore, whicp results in tqe familiar unit-slope portion 
on the log-log plot at early times (a log-log type curve is 
presented later). This equation is independent of flow 
symmetry. Short-time data exhibiting this behavior may 
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be analyzed (as with the Ramey method 24 ) todetermine 
the coefficient of wellbore storage, C-i.e., the unit 
storage factor-for a sphericalsink (source) .wellbore. 

It is sho~p in Appendix B that Eq. 20 redti~es to the 
Classic spherical source solutions. For shoit time, 

Pwv(lv)=2fo-+s, ..................... (22) 
7(' 

and for long time, 

1 
PwoCto)= 1---+s . ................... (23) 

J;t; 
So far, we have presented early- ~nd ·long~ time ap­

proximation forms of the general. transformed _solution 
(Eq. 16) for the problem of radial-spherical flow with 
weUbore storage and skin. One of these approximat~dn~ 
(Eq. 20) was shown to reduce to the classic solutions 
(Eqs. 22 and 23) as special cases. For completeness, we 
also present below a rigbrous equation applicab.le when 

. CD =0, which is usually a long-time phenc.Hnenon. 25 ;26 

Pwo(tb)=4Jf;[

1 

-

1 
+ ~ (-l)n 

2J'; n+l 

xierfc (-n-)] +s . ..................... (24) 

Jt; 

E.q. 2d is pre~erable to Eq. 24 because it is ~ore tr~ctable 
in applied and practical work. 

Storag~ and Skin Type Curves 
When short-time pressure-transient data are analyzed, 
'one usually must resort to the popular techpique of type­
curve. matching for problem resolution .. Such methods 
are adequately described elsewhere. 24 Brigham et at. 5 
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TABLE 1-Pwo (s, C 0 , t 0 ) vs. tow FOR SINGLE WELL IN INFINITE SPHERICAL 
MEDIUM (SPHERICAL SINK SOLUTION), p wo vs. tow FOR s = 0 AT VARIOUS Co 

tow 10 2 10 3 10 4 

10- 3 0.000010 0.000001 0.000000 
10-2 0.000100 0.000010 0.000001 
10-1 0.000998 0.000100 0.000010 
10° 0.009921 0.000999 0.000100 
10 1 0.094857 0.009948 0.001000 
10 2 0.631618 0.095126 0.009951 
10 3 1 0.632719 0.095153 
10 4 1 1 0.632830 
10 5 1 1 1 
10 6 1 1 1 
10 7 1 1 1 
10 8 1 1 1 
1-09 1 1 1 

presented log-log type curves for spherical flow with 
well bore storage effects but for the case s = 0. To the best 
of our knowledge, type curves have not been developed 
yet for the general problem of spherical flow with 
storage and skin effects. We have selected tt'Ie simplest 
plotting parameters, p wD and t Dw, and present log-log 
plots of these dimensionless groups as functions of s and 
Cv in Fig. 3. These type curves are for fully developed 
radial flow toward a finite, spherical sink wellbore 
within an infinite, homogeneous, isotropic medium. Fig. 
3 was generated by numerical inversion of Eq. 16 witp 
the Stehfest scheme 22 •23 ; the accuracy parameter N Was 
set to 8 for all t Dw . 

It is. well known 1 •5 that the upper limit of the well­
pressure response in an undamaged spherical medium is 
unity at infinite time; this is indeed verified upon inspec­
tion of Fig. 3. This figure also illustrates that the upper 
limit of the well-pressure response in a spherical medium 
with a damage skin effect, s, is equal to the steady-state 
(i.e., long-time) value. at s=O plus the magnitudes of the 
skin factor, for all values of CD. In fact, this formal 
observation is also available directly from Eq. 20 or 23 
and in Appendix B. This fascinating steady-state 
behavior at the wellbore-i.e., p wD = 1 +s-while the 
formation is still being subjected to transient change is a 
feature unique to spherical flow. Portions • of the data 
used to g'enerate Fig. 3 are also presented in tabular form 
as Tables 1 and 2. (Additional tables are available in 
Ref. 9 .) With appropriately selected values in a linear 

10 5 106 10 7 10 8 

0.000000 0.000000 0.000000 0.000000 
0.000000 0.000000 0.000000 0.000000 
0.000001 0.000000 0.000000 0.000000 
0.000010 0.000001 0.000000 0.000000 
0.000100 0.000010 0.000001 0.000000 
0.001000 0.000100 0.000010 0.000001 
0.009951 0.001000 0.000100 0.000010 
0.095156 0.009951 0.001000 0.000100 
0.632841 0.095156 0.009951 0.001000 

1 0.632842 0.095156 0.009951 
1 1 0.632842 0.095156 
1 1 1 0.632842 
1 1 1 1 

least-squares regression, the following approximate rela­
tionship when the wellbore pressure trace is no longer 
distorted by storage and skin effects was obtained. 

or 

tv~Cv(9.0Q5+7.538s) .................. (25a) 

1 ,695C(9 .005 + 7 .538s) 
t~ 

T 
............... (25b) 

where Tis the spherical transmissivity group (kr swl J.L) in 
field units. Regression results indicated that Eq. 25 
should be accurate to within about 6% overall, and the 
computer program LSQ of Carlile and Gillett 27 helped 
model tv!Cv as a first-degree polynomial ins. Eq. 25 
provides a useful rule of th~mb for test designing 
because the duration of wellbore and near-wellbore ef­
fects may be estimated. However, whether a test is con­
ducted according to Eq, 25, the data should be curve 
matched with Fig. 3 in the conventional tnanper24 to 
determine quantitatively the end of the wellbore­
dominated period and to provjqe preliminary estimates 
of the spherical transmissivity group (kr swl J.L) and the 
spherical porosity-compressibility product ( <Pc r). If suf­
ficient test data are available, then Eq. 20 should be in-

TABLE 2-Pwo (s, C 0 , t 0 ) vs. t 0 .;v FOR SINGLE ~ELL IN INFINITE SPHERICAL 
MEDIUM (SPHERICAL SINK SOLUTION), Pwo vs. tow FOR s::10 AT VARIOUS C 0 

~ 10 2 10 3 10 4 10 5 10 6 10 7 10 8 

1o - 3 0.000010 0.000001 0.000000 0.000000 0.000000 0.000000 0.000000 
10-2 0.000100 0.000010 0.000001 0.000000 0.000000 0.000000 0.000000 
10-1 0.001000 0.000100 0.000010 0.000001 0.000000 0.000000 0.000000 
10° 0.009997 0.001000 0.000100 0.000010 0.000001 0.000000 0.000000 
10 1 0.099558 0.009997 0.001000 0.000100 0.000010 o.poooo1 0.000000 
10 2 0.955819 0.099560 0.009997 0.001000 0.000100 0.000010 0.000001 
10 3 6.575987 0.955842 0.099560 0.009997 0.001000 0.000100 0.000010 
10 4 11 6.576087 0.955844 0.099560 0.009997 0.001000 0.000100 
1.05 11 11 6.576097 0.955844 0.099560 0.009997 0.001000 
10 6 11 11 11 6.576098 0.955844 0.099560 0.009997 
10 7 11 11 11 11 6.576098 0.955844 0.099560 
10 8 11 11 11 11 11 6 .. 576098 0.955844 
10 9 11 11 11 11 11 11 6.576098 
1010 11 11 11 11 11 11 11 
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Fig. 4-Dimensionless wellbore pressure drop (long-thne 
solution, Eq. 20) (spherical sink solution). 

corporated into the analysis; Because this is a long-time 
approximation, it should not be applied to storage­
influenced data. For example, Eq. 20 (presented 
graphically as Fig. 4) could be ·applied in. accordance 
with the time criterion established by Eq. 25 or with the 
outcome of the preliminary type-curve analysis. Because 
the long-time approximation presented in this paper 
~educes ~o classic lon~-time solu~ions, all plots describ~d 
m the literature 3.4,6, 8 for static or flow tests . remam 
applicable. 

Dimensionless Sandface Flow Rate 
The problem of well test interpretation using 
simultaneously measured pressures and sandface flow 
rates has been addressed recently in the literature. 9- 14 

The use of sand face flow rates, however, is not new. 
Van Everdingen 29 and Hurst 30 approximated q sf by 

qsf = 1-e -{3tD. . ......................... (26) 
q 

Ramey and Agarwal 31 later presented tabular data and 
semilog plots of q D vs, t D and t D I CD for radial flow 
toward a cylindrical sink wellbore inclusive of a skin ef-

1.0 

Co•l03 

0.8 
,§' 

QJ 

c 

"' 0.6 
0 

QJ 

~ 0.4 

~ 
0.2 

0.0 
10° 101 102 103 104 105 106 

Dimensionless time, t0 

Fig. 6-Computed dimensionless sandface flow rate, q 0 , 

vs. t 0 for various skin effects, C 0 = 10 3 • 
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10-2 10-1 10 105 

D !mens 1 on I ess t !me, t0 

Fig. 5-Computed dimensionless sandface flow rate, q 0 , 

vs. t 0 for various skin effects, C 0 = 10 2 • 

feet by-numerical evaluation of a real invers1on integral. 
Chatas 1 also identified a dimensionless rate function, 
e D, and associated this with the dimensionless function 

His results were presenteci in tabular format. However, 
plots similar to those of Ref. 31 have not appeared for 
the problem of spherical flow with storage. This gap is 
filled and extended to include spherical flow with storage 
and skin below. 

Because the main effect of a storage coefficient is to 
cause the sandface flow rate, q sj(t), to change as the an­
nulus unloads to supply a constant reference rate, q, we 
define a dimensionless sandface rate, q D, as 

........................ (27) 

assuming i annulus unloads to supply a constant 
reference rate, q, and iiC D remains constant. By virtue 
of Eq. 11 through 13, two equivalent expressions for Eq. 
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Fig. 7-Computed dimensionless sandface flow rate, q 0 , 

vs. t 0 for various skin effects, C 0 = 1 0 4 • 
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Fig. s~computed dimensionless sandface flow rate, q 0' 

vs. t 0 /C 0 for various well bore storage coefficients 
S=O; . 

27 are d~rived (in the Laplace domain) explicitly in Ap­
pendix C; Eq. C-6 is pr~sented here as Eq 0 28. 

q D (z) = B , 0 . o 0 .. 0 .. (28) 

{rzcv (A+s~B) +B J · 
with .A 0 and B as. defined for Eqo i6. Eq. 28. is the 
transformed solution for the sandface flow rate in a 
spherical system and is valid for Cv ;;;0 and s;;;O. Note 
that Cv =0 implies that qv(tv)= i. Plots of qv vs. log 
tv and also log(t0 /Cn) were generated from Eq. 28 
again _with the Stehfest ·scheme, 22 ,23 with N~8. These 
plots are presented as Figs. 5 through 9 and in tabular 
formal (q D vs. tv) in Tables 3 and 4. (Additional figures 
and tables are available from Ref. 9). As a check on the 
numerical inversion, Eqs. C-6 and C-7 were used, with 
less than 1% deviation in results. Inspection of these 
plots reveals that all the curves possess the same 
characteristic S-shaped nature as reported by. Ramey and 
Agarwal 31 for perfect radial-cylindrical flow. Figs. 5 
through 9 clearly illustrate the nature of the sandface 
floW rate ass and/or Cv are varied. The effect of an in­
crease in s and/or CD is to delay the tiine at which the. 
downhole and surface rates become equal. As Ramey 
and Agarwal pointed out, these plots may also be used 
for type-curve matching. 
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Fig. 9-Computed. dimensioniess sandface flow rate, q 0 , 

vs. t0/C 0 for various wellbore storage coefficients, 
S=iO. 

Spherical Fiow With W ~II bote Phase Redistrib~tion 
The problems of pressure-buildup interpretation in the 
presence of wellbore.,phase-redistribution ·effects has 
been studied. previously. 32- 35 Fair32 recently presented 
type curves for the redistribution problem under cylin­
drical symmetry; however' he did not address the prob­
lem of sandface flow rates with phase redistributions 
within the wellbore. We now will extend Fair's cor­
rected solutions for cylindrical and linear flow 9 and for 
spherical flow. 

According, to Fair, if phase-redistribution effects occ~r 
within a wellbore, wellbore storage must also occur. As 
envisioned, weilbore phase redistribUtion is also a fori:n 
of well bore storage. Hence, the. additional storage effect 
can be incorporated into the trartsfomied spherical IBVP 
presented earlier by means of the wellbore storage (inner 
boundary) condition. Because physical interpretations of 
the phase redistribution problem are available 
elsewhere, 9,32 ,35 we proceed directly with mathematical 
statements of the problem. 

We begin by modifying the inner boundary condition 
(Eq. 13) as follows: 

!!_::__ + q sf _ !}_j_ == 1 , 0 0 0 0 0 ..... · .... 0. 0 ..... 0 (29) 
q q q 

TABLE 3-q 0 (s, C 0 , t0 ) vs. fow DIMENSIONLESS SANDFACE FLOW RATES FOR VARIOUS 
WELLBORE STORAGE COEFFICIENTS AT s = 0 (SPHERICAL SINK WELL) 

tow 10 1 10 2 1o 3 10 4 105 10 6 10 7 10 8 

10- 3 00003558 00000357 00000036 00000004 OoOOOOOO OoOOOOOO 0.000000 0.000000 
10-2 0.011185 0.001127 0.000113 0.000011 0.000001 o.oboboo 0.000000 0.000000 
10-1 0.034717 0.003559 0.000357 0.000036 0.000004 0.000000 0.000000 0.000000 
10° 0.121885 0.013214 0.001332 0.000133 0.000013 0.000001 0.000000 b.OOOOOO. 
10 1 0.633098 0.097867 0.010278 0.001033 0.000103 ' 0.000010 0~000001 o.oodboo 
1·0 2 1 0.632843 0.095428 0.009984 0.001003 0.000100 0.000010 0;000001 
10 3 1 1 0.632842 0.095183 0.009955 0.001000 o.doo1oo 0.000010 
10 4 1 1 1 0.632842 0.095159 0.009952 0.001000 0.000100 
105 1 1 1 1 0.632842 0.095157 0.009952 0.001000 
10 6 1 1 1 1 1 0.632842 0.095156 0.009951 
10 7 1 1 1 1 1 1 0.632842 Oo095156 
10 8 1 1 1 1 1 1 1 0.632842 
10 9 1 1 1 1 1 1 1 1 
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TABLE 4-q 0 (s, C 0 , t0 ) vs. tow DIMENSION~ESS SANDFACE FLOW RATES FOR VARIOUS 
WELLBORE STORAGE COEFFICIENTS AT s = 10 (SPHE,RICAL SINK WELL) 

tow 10 1 10 2 10 3 10 4 

1o - 3 0.000010 0.000001 0.000000 0.000000 
10-2 0.000099 0.000010 0.000001 0.000000 
10-1 0.000976 0.000098 ,0.000010 0.000001 
100 0.009304 0.000934 0.000093 0.000009 
10 1 0.087125 0.009078 0.000912 0.000091 
10 2 0.597837 0.086918 0.009054 0.000909 
10 3 1 0.597828 0.086897 0.009051 
10 4 1 1 0.597827 0.086895 
10 5 1 1 1 0.597827 
10 6 1 1 1 1 
10 7 1 1 1 1 
108 1 1 1 1 
10 9 1 1 1 1 
10 10 1 1 1 1 

where q rf> is art additional flow rate associated with the 
phase redistribution pressure, p rf>. When q rf> =0, Eqs. 13 
and 29 become identical when Eqs. 11 and 12 are used as 
required. On the basis of a number of physical deduc­
tions, Fair concluded that this phase redistribution 
pressure ( p rf>) must satisfy the following conditions: 

lim [p rf> (t)] =0, ........................... (30) 
t->0 

lim [prf>(t)]=Cr/>, ......................... (31) 
t->oo 

and 

10 5 

0.000000 
0.000000 
0.000000 
0.000001 
0.000009 
0.000091 
0.000909 
0.009051 
0.086895 
0.597827 

1 
1 
1 

~ 1 

j .. .. 
~ 

10 6 

0.000000 
0.000000 
0.000000 
0.000000 
0.000001 
0.000009 
0.000091 
0.000909 
0.009051 
0.086895 
0.597827 

1 
1 
1 

10 7 108 

0.000000 0.000000 
0.000000 0.000000 
0.000000 0;000000 
0.000000 0.000000 
0.000000 0.000000 
0.000001 0.000000 
0.000009 0.000001 
0.000091 0.000009 
0.000909 0.000091 
0.009051 0.000909 
0.086895 0.009051 
0.597827 0.086895 

1 0.597827 
1 1 

g .1~--~~~~~--~----~----~----~ 
.. 
" ~ 

10 102 103 

Dimensionless time, t 0 

CD ~ lOO 

c.,o ~ 20 

104 105 

lim [ dp rf> (t) J =0. . ....................... (32) 
f-> 00 dt 

Fig. 10-p wD vs. t 0 with phase redistribution (C 0 = 100, 
CaD = 20) (sphericai source solution). 

Here, C ck is a constant. 
As in .Fair's study, our major assumption is that the 

following functional representation can be used to 
describe p rf> accurately: 

PrJ>(t)=Cr/>(1-e--rt) . ................. , .... (33) 

It is readily seen that Eq. 33 satisfies Eqs. 30 through 32. 
C rf> and "' are phase redistribution pressure and time 
parameters; respectively. Eq. 33 can be written in the 
dimensionless form of 

PrJ>D(tD)=Cr/>D(I-e --roto ) ................. (34) 

Here, p rf>D and C rf>D are obtained by the substitution of 
p rf> and C rfn respective! y, for b.p in Eq. 2, and "'D is 
derived from Eq. 21. 

............... · ........... (35) 

With Eqs. 3, 11, 12, and 34, the modified wellbore 
storage-phase. redistribution inner boundary condition 
(Eq. 29) becomes 

DECEMBER 1985 

Eq. 36 suggests that the redistribution flow rate q ¢ = 
"fCCrf>e --yt = CCrf>f'(t) with f(t)= 1-e --yt. The new 
IBVP inclusive of wellbore phase redistribution effects, 
therefore, is presented by Eqs. 5, 8 through 10, ·and 36. 
This problem is solved by Laplace transformation 
techniques in Appendix D, and Ref. 9 and is summarized 
below. 

PwD(z)= 

("/DC aD +zCD)(A +s.JzB) 
-------'-----------;CaD :;t:O, 

(zCav)(z+-y v) [zc v(A +s.,'z"B) + .Fz"B J 
................... -.......... (37) 

('Y vCaD +zC v) [e _,D.,'z -e(rv -2)-,'z J . 
-----------'------'~--,--------; CaD :;t: 0, 

(zCav)(z+-y v) [zc v(A +s.,'z"B) +.,'z"B J 
............................. (38) 
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Fig. 12-Pwo vs. t0 with phase redistribution (C 0 = 10,000, 
CaD = 1 00) (spherical source solution). 
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Fig. 13-q 0 vs. t 0 with· phase redistribution (C 0 = 10,000, 
CaD = 1 00) (spherical source solution). 

812 

and 

liD(z)= 

('Y DC aD +zCD)B 
-------------,------; CaD =t=O. 

(zCav)(z+-y v) [ ,!z"c v(A +s,!z"B) +B J 
................... · .......... (39) 

A and Bin Eqs. 37 through 39 are as defined earlier for 
Eq. 17. Eqs. 37 and 39 are the transformed solutions for 
the well pressure drop and sandface flow rate, respec­
tively, in a spherical system inclusive of well bore 
storage-phase redistribution and damage skin effects. 
Eq. 38 is the formation pressure drop in Laplace space. 
Further details of the derivations and additional forms of 
these solutions are contained in Ref. 9. CaD is an ap­
parent storage coefficient given by 

CD 
CaD= · . . ................... (40) 

1 +'YDCDC¢D 

We see from Eq. 40 that if C¢D =0, the well exhibits a 
true well bore storage effect controlled by CD. Also, 
when CaD < CD, the storage effect usually is controlled 
by phase redistribution within the wellbore. (Refer to 
Ref. 9 or 32 for further details.) Eqs. 37 through 39 
reduce to Eqs. 16, 17, and 28, respectively, by setting 
CaD=CD and 'YD=O; 

Eqs. 37 and 39 are the solutions imf.ortant to this study 
and were inverted by the Stehfest2 •23 algorithm with 
N=8. Inversion results for Eq. 37 are presented 
graphically for selected values of s, CD, CaD, and C ¢D 
as a series of log-log type curves (Figs. 10, 11, and 12) 
and in tabular format in Tables 5 and 6. Inversion results 
for Eq. 39 also are presented as log-log type curves 
(Figs. 13 and i4) and in tabular format (Tables 7 and 8). 
Note that the abscissa of Fig. 14 is tD!CaD• which cor­
responds to a translation of the abscissa in Fig. 13. Addi­
tional inversion results and tables for several values of 
each parameter are available in Ref. 9. 
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TABLE 5-DIMENSIONLESS WELLBORE PRESSURES WITH PHASE 
REDISTRIBUTION EFFECTS (SPHERICAL SOURCE SOLUTION) 

Gao =20, C0 = 100 Gao= 20, C0 = 1,000 Gao= 20, C0 = 10,000 

S=O S= 10 S=O S= 10 S=O S= 10 

to Cp_o = 10 Cp_o = 10 Cp_o = 10 

0.1 0.004988 0.005000 0.004998 0.005000 0.004999. 0.005000 
0.2 0.009965 0.009997 0.009993 0.009997 0.009996 0.009997 
0.5 0.024849 0.024978 0.024960 0.024973 0.024971 0.024973 
1 0.049524 0.049904 0.049847 0.049885 0.049879 0.049883 
2 0.098385 0.099602 0.099403 0.099525 0.099504 0.099516 
5 0.241125 0.247470 0.246345 0.246991 0.246867 0.246932 

10 0.466642 0.489880 0.485585 0.487984 0.487510 0.487751 
20 0.874391 0.959931 0.943479 0.952569 0.950751 0.951665 
50 1.805476 2.259221 2.165192 2.217526 2.207099 2.212410 

100 2.648381 4.098905 3.768170 3.956526 3.919613 3.939019 
200 2.942951 6.811913 5.760100 6.386957 6.267837 6.334378 
500 1.858361 10.465895 6.902719 9.327313 8.894482 9.177608 

1,000 1.137152 11.527682 5.149665 10.181858 9.258115 9.958182 
2,000 0.993844 11.327239 2.589199 10.332801 8.544737 10.044537 
5,000 1.000124 11.020742 1.077270 10.484124 6.579279 10.060643 

10,000 1.000478 10.997159 0.989468 10.673321 4.378993 10.103069 
20,000 1.000090 10.999878 1.000790 10.867725 2.255846 10.181386 
50,000 0.999998 11.000126 1.000572 10.990937 1.062651 10.377019 

100,000 0.999997 11.000022 1.000068 11.000771 0.992130 10.605170 
200,000 0.999999 11.000001 0.999993 10.999984 1.000690 10.839948 
500,000 1.000000 11.000000 0.999996 10.999951 1.000447 10.989019 

TABLE 6-DIMENSIONLESS WELLBORE PRESSURES WITH PHASE 
REDISTRIBUTION EFFECTS (SPHERICAL SOURCE SOLUTION) 

Ca0 =100, C0 =1,000 Gao= 100, C0 = 10,000 Gao= 100, C0 = 100,000 

S=O S= 10 S=O S=10 s=O S= 10 

to Cp_o = 100 Cp_o = 100 Cp_o = 100 

10 0.099442 0.099929 0.099913 0.099962 0.099960 0.099965 
20 0.197808 0.199685 0.199627 0.199816 0.199810 0 .. 199829 
50 0.486567 0.497922 0.497581 0.498735 0.49869~ 0.498815 

100 0.947339 0.991556 0.990226 0.994793 0.994655 0.995113 
200 1.796806 1.966067 1.960849 1.978932 1.978389 1.980209 
500 3.851276 4.789563 4.757990 4.868463 4.865138 4.876365 

1 ,QOO 6.039374 9.175610 9.055070 9.481064 9.468119 9.512166 
2,000 7.774535 1q.848027 16.407650 17.990863 17.941671 18.111225 
5,000 7.230581 32.710934 30.566826 38.611168 38.344819 39.293392. 

10,000 5.023407 43.031396 37.216274 60.663830 59.803596 63.014407 
20,000 2.640650 38.277485 27.519798 78.316290 75.972339 85.501779 
50,000 1.115512 16.294378 4.926827 73.099884 67.006831 96.231818 

100,000 0.990562 10.980655 0.865937 50.955538 41.527908 93.191 ~76 
200,000 1.000152 10.929697' 0.955340 27.150192 16.017079 85.964135 
500,000 1.000613 11.012290 1.011427 12.103135 1.743956 68.054495 

1,000,000 1.000083 11.003013 1.002347 10.905690 0.905197 47.162181 
2,000,000 0.999995 11.000232 1.000123 11.002221 1.009322 25.659311 
5,000,000 0.999995 10.999942 0.999942 11.006012 1.005392 12.005823 

10,000,000 0.999998 10.999975 0.999977 11.000802 1.000607 10.915012 
20,000,000 1.000000 10.999992 0.999993 10.999949 0.999925 11.001948 
50,000,000 1.000000 10.~99999 0.999999 10.999955 0.999956 11.005414 

The pressure type curves (Figs. 10 through 12) 
qualitatively resemble Fair's 32 type curves for cy lin­
drical flow; i.e., the "hump" sometimes associated with· 
well bore phase segregations· is also obtained under 
sphe.rical formation flow. One would intuitively expect a 
profound impact of the segregation upon the wellbore 
pr~sspre drop because pressure gradients are localized 
near the small-radius boundary (l.e., the wellbore) in a 
spherical system with a much greater concentration than 
in a radial-cylindrical system. 15 The infinite spherical 
reservoir, however, possesses a characteristic the 
unlimited cylindrical reservoirs do not possess: the well­
pressure response is bounded at large times and is equal 

to the value of (1 +s) for all CD and CaD· The effect of 
the phase redistribution upon sandface flow rates is seen 
best by the comparison of Tables 3 and 4 with Tables 7 
and 8 because the rate type curves with and without 
redistribution (Figs. 5 through 9, 13, and 14) contain dif­
ferent ordinates; the former are full logarithmic while the 
latter are semilogarithmic plots. Values of the dimen­
sionless sandface rate q D in excess of unity can be at­
tributed to the phase redistribution phenomenon~ These, 
however, all approach unity at long times. Although not 
as useful as the pressure type curves (Figs. 10 through 
12), the rate type curves (Figs. 13 and 14) could be use~ 
in normal fashion for the interpretation of well test data 
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source solution). 

distorted by wellbore storage (inclusive of phase 
redistributions) and skin effect. However, sandface flow 
rates must be recorded for such an analysis to be 
feasible. 

early test data are dominated by wellbore storage. A 
match was obtained with the type curve for s=5 and 
CD= 1 ,000. The intersection of the type curve for s=5 
and CD =0 with the test data occurs at about t=35.5 
hours '(Fig. 15). The match points chosen are 
(PHD)M=0.67, (tD)M=8,128, (Llp)M=100 psi [6.89 
MPa], and (t)M= 10 hours. 

Example 

Table 9 presents the pressure-time data for a drawdown 
test simulated by a finite difference model. 19 Perfect 
radial-spherical flow has been assumed within the forma­
tion, which has a true spherical permeability of 8.8 md 
and spherical skin factor of 4.8. The value of r.1•11 • shown 
in Table 9 was computed by the Moran and .Finklea 2 ap­
proximation and later used by Culham. 4 Fig. 15 is the 
type-curve match for tre test, which was performed with 
a gridded version of Fig. 3. As seen from Fig. 15, t_he 

The following equations may be used to estimate the 
spherical permeability-radius product and the porosity­
compressibility product from the pressure and time 
matches, respectively. 

(pD)M 
(kr.\'l\.)=70.627qBJl ................. (41) 

(Llp)M 

TABLE ?-DIMENSIONLESS SANDFACE FLOW RATES WITH WELLBORE PHASE 
REDISTRIB~TION (SPHERICAL SOURCE SOLUTION) 

CaD = 20, Co = 1 00 CaD= 20, Co= 1,000 Ca0 =20, C 0 =10,000 

S=O S= 10 S=O s= 10 S=O S= 10 

to Cq,o = 10 Cq,o = 10 Cq,o = 10 

0.1 0.017794 0.000488 0.017837 0.000488 0.017841 0.000488 
0.2 0.025141 0.000967 0.025226 0.000967 0.025234 0.000967 
0.5 0.041293 0.002373 0.041505 0.002372 0.041526 0.002372 
1 0.065941 0.004664 O.Oq6427 0.004663 0.066475 0.004662 
2 0.114577 0.009191 0.115877 0.009184 Q.116006 0.009183 
5 0.256685 0.022632 0.262535 0.022588 0.263120 0.022583 

10 0:481195 0.044667 0.501310 0.044494 0.503356 0.044472 
20 0.887087 0.087394 0.958307 0.086722 0.965811 0.086640 
50 1.813689 0.205496 2,177589 0.201701 2.220024 0.201236 

100 2.651816 0.372719 3.777251 0.359769 3.929614 0.358176 
200 2.942460 0.619325 5.764632 0.580684 6.273782 0.575903 
500 1.857322 0.951461 6.902191 0.847950 8.895622 0'.834340 

1,000 1.136956 1.047972 5.148406 0.925625 9.257954 0.905290 
2,000 0.993853 1.029748 2.588655 0.939346 8.544472 0.913140 
5,000 ' 1.000125 1.001886 1.077246 0.953102 6.579095 0.914604 

10,000 1.000477 0.999742 0.989472 0.970302 4.3788_81 ' 0.918461 
20,000 1.000090 0.999989 1.000790 0.987975 2.255804 0.~25581 
50,000 0.999998 1.000011 1.000572 0.999176 1.062q49 0.943365 

100,000 0.999997 1.000002 1.000067 1.000070 0.992130 0.964106 
200,000 0.999999 1.000000 0.999993 0.999999 1.000690 0.985450 
500,000 1.000000 1.000000 0.99~996 0.99~996 1.000447 0.999002 
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TABLE a-DIMENSIONLESS SANDFACE FLOW RATES WITH WELLBORE PHASE 
REDISTRIBUTION (SPHERICAL SOURCE SOLUTION) 

Gao= 100, C0 = 1,000 Gao= 100, C0 = 10,000 

S=O 'S= 10 S=O S= 10 

to Cq,0 = 100 Cq,o = 100 

10 0.102738 0.009112 0.103239 0.009115 
20 0.201070 0.018181 0.202947 0.018193 
50 0.489724 0.045293 0.500881 0.045367 

100 0.950329 0.090169 0.993493 0.090463 
200 1.799486 0.178760 1.964052 0.179930 
500 3.853193 0.435440 4.761006 0.442614 

1,000 6.040436 0.834169 9.057790 0.861940 
2,000 7.774783 1.531658 16.409843 1.635555 
5,000 7.230417 2.973732 30.567852 3.510122 

10,000 5.023283 3.911947 37.216291 5.514902 
20,000 2.640601 3.479769 27.519373 7.119665 
50,000 1.115509 1.481306 4.926720 6.645443 

100,000 . 0.990562 0.998241 0.865939 4.632321 
200,000 1.000152 0.993609 0.955342 2.468199 
500,000 1.000613 1.001117 1.011427 1.100285 

1,000,000 1.000083 1.000274 1.002347 0.991426 
2,000,000 0.999995 1.000021 1.000123 1.000202 
5,000,000 0.999995 0.999995 0.999942 1.000547 

10,000,000 0.999998 0.999998 0.999977 1.000073 
20,000,000 1.000000 0.999999 0.999993 0.999995 
50,000,000 1.000000 1.000000 0.999999 0.999996 

and 

(¢c,) 
0.0002637 k (t) M 

JJ-T 'f~~, (t D) M. 
................ (42) 

An estimate of the pseudospherical wellbore-radius, rsw, 
is also available if C and CD are known. 

., 
c. 

c. 

<I 2 

Gao= 100, C0 = 100,000 

S=O 8=10 

Cq,o = 100 

0.103290 0.009115 
0.203136 0.018194 
0.502014 0.045374 
0.997952 0.090492 
1.981650 0.180046 
4.868293 0.443332 
9.471104 0.864767 

17.944342 1.646498 
38.346714 3.572143 
59.804624 5.728592 
75.972544 7.772893 
67.006634 8.748347 
41.527770 8.471943 
16.017030 7.814921 

1.743954 6.186772 
0.905197 4.287471 
1.008322 2.332665 
1.005392 1.091438 
1.000607 0.992274 
0.999925 1.000177 
0.999956 1.000492 

10 ~--------~~--~------~----------~ 

r sw = ( 0.44683C) 113 • . ..•.••.•.•....••.. (43) 
cpc,CD 

C may be estimated from the type-curve match with the 
well-known unit-slope equation. 

C= qB (-t-) . . . ................ _ ..... (44)-
24 f:1p · umt 

Note that standard field units have been used in Eqs. 41 
through 44 and that B is the formation volume factor. 
With data from Table 9 and the match points indicated, a 
permeability of91.5 md is computed from Eq. 41, which 
compares favorably with the true value of 88 md. From 
the time match (Eq. 42), the porosity/compressibility 
product is found, for the time match (in psi -I), 

¢c,=l.23X10-6 . 

With data from Table 9, for supplied data (in psi -I), 

With the fourth data point on Fig.· 15 in Eq. 44, 
C=0.106 RB/psi is computed. As a check on the 
original value (in feet) of r.1w, Eq. 43 yields 

r ''\\' = [ (0.44683)(0.106) J 1/3 
J =3.67.-

(9.6 X 10 - 7 )(1 ,000) 
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E> 

10 

10 

t, hours 

<pwo>M = 0.67 

<t 0 >M= 8128 

<Ap>M = I 00 pal 

= I 0 hour• 

2 
10 

Fig. 15-Type curve match for pressure drawdown test 
(spherical flow). 

This estimate of r sw is in general agreement with the 
value shown in Table 9. Finally, the skin factor from the 
type-curve match (s = 5) also agrees well with the. true 
spherical skin factor of 4.8. 

Because sufficient data are available for this test, the 
classic spherical flow analysis method 3•4•6•28 may be 
used. Therefore, the applicable drawdown equation in 
field units is 

70.627 qB~-t 2,454.26 qB~-t 
P11f(t)=pi- (l+s)+ . ·_ : 

· krs 11 , k 

X~-1- ................... : . ...... (45) 

k ~ . 
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TABLE g.......:PRESSURE DRAWDOWN 
TEST (SPHERICAL FLOW) 

t 
(hours) 

0.0 
0.1 
0.2 
0.4 
1.0 
4.0 
6.0 

12.0 
24.0 
48.0 
54.0 
58.0 
60.0 
64.0 
66.0 
72.0 

Pwt 
(psi a) 

4,264.00 
4,251.65 . 
4,239.46 
4,215.60 
4,147.85 
3,881.51 
3;756.13 
3,535.63 
3,.398.22 
3,364.12 
3,363.10 
3,363.07 
3,363.03 
3,363.02 
3,362.99 
3,363.07 

Well, fluid, and rock data 

q, STB/D 
B, RB/STB 
J.t, cp 
¢, fraction bulk volume 
c

1
, psi - 1 · 

r sw, ft 
r w, ft 
P;. psia 
h, ft 
b, ft 

A.p 

~ 
0.00 

12.35 
24.54 
48.40 

116.15 
382.49 
507.87 
728.37 
865.78 
889.88 
900.90 
900.93 
900.97 
900.98 
901.01 
900.93 

248 
1.19 
2.18 
0.08 

12x10~ 6 

3.327' 
0.417 
4,264 

350 
28 

Hence, a plot ofpH1 vs. 1/.Jf on Cartesian paper should 
be linear, with slope m and intercept I given by 

qBJ-t 
m=2,454.26 -

1 
~ •...••.•••.•.•••••• (46) 

k3 2 

and 

70.627 qBJ-t 
l=p i- (1 +s). . ................ (47) 

krsw 

Formation spherical permeability and damage skin 
factor can be computed from the slope and intercept, 
respectively. 

'k= (2,454.26qBJ-t~) 2/3 ............. (48) 
m 

and 

[
(pi-l)krsw J 

s= -1. 
70.627 qBJ-t 

................... (49) 

The plot described. above is shown in Fig. 16, from 
which m=2.933 psi(hr)Y2 [20.2 kPa(hr)Y2

] and 
/=3,362.67 psi [23.2 MPa] were computed. With Eqs. 
48 and 49, k=84.65 md and s=4.59 are calculated. 

816 

3365 

3364 

c. 

3363 X -"- -

~ 
Q) S I ope = 2. 933 psI h r 112 

:::J 
Intercept = 3362.67 ps! 

Q) 3362 
0. 

"' c: 

~ 3361 

Q) 
3: 

3360 
0.05 0.10 0.15 

Rec!proca!-root t!me, t-112, hr-112 

Fig. 16-Long-time spherical flow plot for pressure 
· drawdown test. 

These values are in excellent agreement with the true 
permeability and skin factor. 

Observation 
Our observation finds no parallel under cylindrical flow. 
Examination of a large number of data sets (for example, 
our Tables 1, 3, and 5 through 8 or Tables 16; 21, and 27 
through 37 of Ref. 9) suggested the empirical 
relationship 

Pwv(tvw) ~ qv(tvw); s=O and tv 1:b 1 ,000. . .... (50) 

Eq. 50 states that the dimensionless well bore pressure 
drop is approximately equal to the dimensionless sand­
face flow rate in undamaged spherical reservoirs in­
clusive of wellbore storage or phase redistribution ef­
fects. This relationship ·is sometimes valid for dimen­
sionless time, tv, as small as 500 but becomes more ex­
act as tv increases. Eq. 50 is empiric~!, and field 
verification is required. 

Conclusions 
Analytical expressions and type curves have been 
presented for the pressure and/or rate analysis of 
unsteady flow behavior in homogeneous and isotropic 
spherical reservoir systems. Skin effe.ct, wellbore 
storage, and wellbore phase redistributions have been ac­
counted for in the solutions. The most important equa­
tions are summarized here. 

Eqs. 16, 20, and 37 can be used for well-pressure solu­
tions with storage and skin, with long-time approxima­
tions, and with storage, skin, and phase redistribution, 
respectively. Eqs. 28 and 39 can be used for sandface 
flow rates with storage and skin and with storage, skin, 
and phase redistribution, respectively. 

A new equation also was developed to estimate the 
duration of wellbore and near-wellbore effects under 
spherical flow exclusive of phase segregation. This in­
vestigation should be useful in the establishment of pari­
ty between spherical flow problems and its radial­
cylindrical analog. 

Although we have focused mainly on spherical flow, it 
should be noted that these methods extend to 
hemispherical flow with only minor modifications. 
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Hemispherical flow is identiCal to spherical flow with the 
obvious exception that the flow is contained within a 
hemisphere. Because the analysis is the same, the term 
"spherical flow" as used herein should be understood to 
encompass hemispherical flow as a special case. Finally, 
in undamaged spherical systems inclusive of wellbore 
storage and phase redistribution effects, dimensionless 
sandface flow rates and well pressures beconie identical 
after at D of about 1 ,000. This behavior appears unique 
to spherical flow. 
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Nomenclature 

A = group defined by 1 - e - 2-fi 
b = group defined by the product pr; per­

forated interval, ft [m] 
B = group defined by 1 + e - 2-fi; formation 

volume factor 
c, c t = total system compressibility, atm - 1 

[Pa __.: 1] 

C = coefficient of wellbore. storage, em 3 /atm 
[res m 3 /kPa] 

CaD = apparent dimensionless coefficient of 
wellbore storage 

CD == dimensionless coefficient of well bore 
storage 

C tfi = phase redistribution pressure parameter, 
atm [kPa] 

C cJ>D = dimensionless phase redistribution 
pressure parameter 

C 1 ,C2 = arbitrary constants, §9.:: A-2 
i = imaginary unit; i = .J- 1 
I = intercept 
k = undisturbed formation permeability; darcy 
L = operator of the Laplace transformation 

L - 1 = operator of the inverse Laplace 
transformation 

m = slope 
n = index of summation 
N = Stehfest algorithm parameter 

.p,p rt = pressure, atm [kPa] 
p D = dimensionless formation pressure drop 
if D = Laplace transfotm of p D 

f::.p s = pressure drop across infinitesimal skin 
zone, atm [kPa] 

p wD = dimensionless well bore pressure drop 
p wD = Laplace transform of p wD 

p cJ> = phase redistribution pressure, atm [kf~a] 
p ct>D = dimensionless phase redistribution 

pressure . 
q = flow rate, cm 3 /sec [stock-tank m 3 /d] 

q a = annular rate of unloading, em 3 I sec [res 
m 3 /d] 

qv = dimensionless sandface flow rate, Eq. 27 
q D = Laplace transform of q D 

DECEMBER 1985 

q sf = sand face flow rate, em 3 /sec [res m 3 /d] 
q cJ> = phase redistribution flowrate, ctn 3 /sec 

[res m 3 /d] 
r =·spherical spatial coordinate, in. [em] 

r D = dimensionless Spatial cpordinate 
r sw = pseudospherical wellbore radius, in. [em] 

s = damage skin factor, dimensionless 
t = titne, sec 

t D == dimensionless time group 
t Dw = dimensionless time group, (t D) r= r Sll' 

T = spherical transmissivity group 
v (t) = arbitrary function, Eq·. 18 
V (z) = arbitrary transform, Eq. 18 

z = variable of the Laplace transformation 
a = constant, Eq. B-13 
(3 = constant, Eq. 23 
'Y = phase redistribution time parameter, 

sec - 1 

'Y D = dimensionless phase redistribution time 
parameter 

r = gamma function 
o, 'Y = used in Eq. 18 

t::. = difference 
1-t = viscosity, cp 
¢ = porosity, fraction bulk volume 

Subscripts 
a = annular 

D = dimensionless 
i = initial 

M = match 
sf == sandface 

sw == pseudowellbore 
wb = wellbore 

¢ == phase redistribution 
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APPENDIX A 

Laplace Transform Solution, Constant Surface 
Rate Case, Including Storage and Skin 
Transform Eq. 5 over t 0 and use the initial condition 
(Eq. 8). 

d2JiD -- -zpo =0 .......................... (A-1) 
dro2 

Eq. A-1 illustrates the fundamental operational property 
of the Laplace transformation, i.e., its reduction of a 
PDE to an ordinary one. Eq. A-1 is called a subsidiary 
equation; its general solution may be obtained by writing 
the indica! equation form. That is, because Eq. A-1 is 
linear and homogeneous with constant coefficients, 
assume a solution of the form p 0 = e mr 0 or m = ± .Ji.. 
Therefore, the general solution to Eq. A -1 is 

- ( ) - C -.firo C .firo· (A 2) P D r D ,Z - I e + 2 e , · · · · · · · · · · -

where C 1 and C 2 are arbitrary constants to be deter­
mined from the prescribed conditions, thereby providing 
the particular solution of interest. Transform the outer 
boundary condition Eq. 9. 

lim [p 0 (r 0 ,z)] =0. . ..................... (A-3) 
r0 --->l 

Substitute Eq. A-3 into Eq. A-2. 

C2 =-C 1 e - 2.Ji. . ....................... (A-4) 

Substitute Eq. A-4 into the general solution (Eq. A-2). 

Transform the auxiliary condition (Eq. 10). 

_ _ [apo] · Pl\'o(z)=po(ro=O,z)-s -- . . aro ro=O 
. ... (A-6) 

Differentiate Eq. A-5 with respect to r 0 , and evaluate at 
r0 =0. 

[ dJio J = -.Jic1 (1 +e-2.Ji) . ...... (A-7) 
dr0 ro =O · 
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Substitute Eqs. A-5 and A-7 into Eq. A-6, and solve for. 
th~ arbitrary constant, C 1 • 

Transform the inner boundary condition (Eq. 13). 

C _ _ PD 1 . . [
a~ .] . 

Z DPwD a· _
0
=-............. (A-9) 

rD ro- z 

Substitute Eq. A -8 into Eq. A-7 and the resulting expres­
sion into Eq. A-9 to obtain the solution for the well 
flowing-pressure transform f5 wD. 

Pwv(z)= 

........................... (A-10) 

, We may simplify Eq. A-10 by setting A~ 1-e - 2--./Z and 

B= 1 +e - 2-JZ so that 

A+s.fi.B 
PwD(z)= ..... (A-il) 

z312 [../ZeD (A +s,/ziJ) +B J 
This result is pr~sented in the text as Eq. 16. Eq. A-ll _is 
valid for CD ~ 0 and s ~ 0. We may also deteimine the 
transform o'f the formation. pressure drop~ i.e., 
f5 D (r D ~ 0 + , z)-by eliminating f5 wD instead of 
f5 D(rD =0, z) above. When this is done, the arbitrary 
constant C 1 becomes 

Substitute Eq. A-12 into the general solution (Eq; A-5). 

e -r 0 -Ji. -e(r0 ~2)--./Z 
fiv(rD, z)= . 

z312 [,/zeD (A+s,/zB) +B J 

rv ~o+ . . ; ........................... (A-13) 

This result is presented in the text as Eq. 17. Eq. A-13 is 
valid for,Cv ~0, -s~O, and o+ ;i:rD ;i: 1. The notation 
0 + should be interpreted as those values of r D that fall 
on the formation side of the infinitesimal skin zone. Eq. 
A-13 reduces to Eq: A-ll when s=O and rD =0, for 
cD~o~ 
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APPENDIX B 
Asymptotic Behavior of Eq. 16 
Otir purpose here is to derive short- and long-tiine ap­
proximation equations for spherical flow with storage and 
skin (Eq. 16). For convenience, Eq. 16 is rewritten to 
the foilowing form. 

Pwv(z)=Term I+Term II, ................ (B-1) 

where 

Term 1=----- .................... (B-2) 
DEN OM 

and 

s.fi.(l +e - 2../z) 
Term II=------, .............. (B-3) 

DEN OM 

with 

DENOM=z2Cv(l-e_2.rz) +sCDz 512 

X (1 +e -2../z) + z312 (1 +e -2../z ). . ........... (B-4) 

Particular approximation forms are produced by inves­
tigating Eq. R-1 as z~oo (short tifue) and as z~o (long 
time), and constructing the real~time solution from the 
linearity property of the inverse Laplace transformation. 

P~vD(t D)=L -I (Term I)+L -I (Terin II). . .... (B-5) 

Short-Time Approximation (~~oo). As z~oo, the 
denominator (Eq. BA) can be approximated by the term 
involving the largest power of z. Hence, 

DEl'-.J'C)M~z 2 CD; s=O ................... (B-6) 

and 

DENOM~sCvz512 ; s>O, ............... ;(B-7) 

because ~he negativ~ exponential deca~ rapidly as its ar­
gument mcreases-1.e., terms O(e- 2 z) safely can be 
neglected. Term I (Eq. B-2), therefore, can be written as 

1 
Term I=-·

2
-·-· -; s=O .................... (B-8) 

z CD 

arid 

. 1 
Term I= . 

512
; s>O .................. (B-9) 

sCvz 

The inverse Laplace transform of Eq. B-8 can be written 
directly as 

L -I (Term I)= tv ; s=b . ........... ; ... (B-10) 
Cv 
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The inverse transform for the second form of Term I when 
s > 0 (Eq. B-9) is available from tables in Ref. 36. 

L -I ( 
1 

) =-
1
-(4tn) 312 i 3 erfc(O), ... (B-11) 

sCnz 512 sCn 

where i 3 erfc is an iterated coerror function; 25 •26•36 

However, 

1 
i 3 erfc(O) = . · , ................... (B-12) 

2 3r(5/2) 

where r denotes the gamma function. 36 Because 
r(512)=3.f;/4, Eq. B-12 becomes · 

1 
i 3 erfc(O)= -- ........................ (B-13) 

6.;; 
Substitute Eq. B-13 into Eq. B-11 to obtain 

4 
L -!(Term I)=--~ tn 312 ; s>O . ..... (B-14) 

3.f;sCn 

To obtain the complete solution, Term II must be con­
structed next'. If s = 0, 

Term 11=0; s=O, ...................... (B-15) 

whose inverse is also identically zero. For s > 0, Term 
II can be written from Eqs. B-3 and B-7. 

s.fi.(l +e - 2.,/z) 
Term II=-~----

sCnz512 

which can be simplified further to yield 

1 
Term II=--· s>O . ........ · ........ ·.(B-16) 

z2Cn' 

The inverse transform of Eq. B-16 is 

tn 
L ...,.J (Term II)=-; s>O . ........ , ..... (B-17) 

Cn 

The complete short-time approximation is constructed in 
accordance with Eq. B-5. 

tn 
Pwn(tn)= C 

0 

; s=O .................... (B-18) 

and 

4 
Pwn(tn)=-tn_ + ----tn 312; s>O . .... (B-19) 

Cn 3.f;scn 
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Although Eq. B-19 can be a useful approximating forin, 
it is evident that Eqs. B-18 and B-19 can be combined 
to provide a ~eneral, early-time eqqation, provided that 
terms O(tn 31 ) can be neglected. Hence, 

tn . .· 
Pwo(to)=-·-; s~O and Cn =t=O . ......... (B-20) 

Cn -

This result is presented as Eq. 19 in the main text.* 

Long-Time Approximation (z---+0). As z-40, the denomi­
nator (Eq. B-4)can be approximated by the term involv­
ing the s~allest power of z. Hence, 

. . 3/2 . DENOM---+2z ........................ (B-21) 

'term I (Eq. B-2), therefore, can be written as 

1 e - 2.,/z 
Term 1=-----................ (B-22) 

2z312 2z312 

The inverse Laplace transform of Eq. B-22 is 36 

-1 ( 1 ) - It; . 
L 2z312 -'\J ~ ................... (B-23) 

(
e-2.,/z ). It; ( 1 ) 

L-1 -· -- ='\J~-e-lltv-erfc -- . 
. 2z312 7r ~ 

Ytn 

........................... (B-24) 

Erfc is given by 

2 roo 2 

erfc(y)= -- J e-f3 d{3. .. .. : .......... (B-25) 
.J;y 

The inverse Laplace transform ofEq. B-22 is, therefore, 

...... , .................... (B-26) 

Term II is written directly from Eqs. B-3 and B-21. 

s.Ji(l +e - 2.,/z) 
Term II=------

2z312 

\vhich can be simplified to produce 

s 
Term II=-. . .......................... (B-27) 

z 
*An identical result was obtained in the earlier version of this paper (SPE 12950) 
by allowing s-+oo. 
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The inverse transform of Eq. B-27 is 

L -I (Term II) =s. . ..................... (B-2S) 

the complete long-time approximation is constructed from 
Eq. B-5. 

r;;: -1/t (·· 
1 

) PwvUv)='\)~-(1-e D)+erfc --.- +s. 
7r .Jt;; 

................ : .......... (B-29) 

This result is presented in the main text as Eq. 20. * 
The customary forms, s=O, of the classic spherical 

source solution 2•8•16•37 are all available from Eq. B-29 
as special cases. For example, at large t D (small lit v), 
the exponential in the first term ofEq~ B-29 can be writ­
ten as [ 1 - ( 1 It D)], and the first term in Eq. B-29 becomes 

1 ' 
-1/t . --(1-e D)--.- . .............. (B-30) 

7r .;;;-; 

Similarly, at large t D, the complementary error func­
tion can be written as 16 

erfc (-
1
-) =I- -

2
-.-.............. (B-31) 

.Jt;; .;;;-; 
Using Eqs. B-30 and B-31 in Eq~ R-29, with s=O, we 

obtain 

1 
PwD(tv)=l- -.-, ...... , ........... (B-32) 

.;;;-; 
which is the classic long-time approximation for spheri­
cal or point sources. 37 Using Eq. B-29, which was de­
rived for long time, as a starting point,. we can also derive 
the classic (s = 0) short -time spherical source solution 8 . 

~(1-e-ll'v)=~ ................ (B-33) 
7r 7r 

and 

erfc (-
1
-. ) =f-i. ................... (B-34) 

.Jt;; 

Using Eqs. B-33 and R-34 in Eq. B-29 with s=O, we have 

r;;: 
PwD(tv)=2'\) ~-, ...................... (B-35) 

7r 

*A rigorous approximation equation involving an infinite sum of iterated coerror 
functions was presented in the earlier version of this paper (SPE 12950) by 
allowing C 0 = 0, Eq, B-29 derived in this Appendix is more tractable and, hence, is 
preferable, 

DECEMBER 1985 

which is the desired result. Finally, at infinite time, Eq. 
B-29 becomes 

lim [Pwv(tb)]=l+s . .................. (B-36) 

This result is discl.lssed further in the main text. 

APPENDIX C 

The Dimensionless Sandface Flow Rate 
We discussed earlier the wellbore mass conservation 
yielding the equation 

!!.!!._ + q sf= 1, ........................... (C-1) 
q q 

where unity represents the constant dimensionless surface 
flow rate (i.e., qlq). Eq. C-1 is the inner boundary (Neu­
mann) condition, and when expressed in terms of the 
dimensionless variables defined before, Eq. 13 results in 

CD dp ~.vD _ ( rJp D ) = 1. 
dtD arD rD =O 

Therefore, we may write the dimensionless sandface 
flow rate explicitly in two .equivalent forms: 

and 

dpwD 
qv(tv)=l-Cv--· , ................... (C-2) 

dtv 

where 

....................... (C-3) 

Transform Eqs. 11 and C-2 over t D, and let q D (z) be 
the Laplace transformation of q D (t D). 

iJv(z)=- ( ap D) .................. (C-4) 
arD rD=O 

1 
iJv(z)=--zCvfJwv(z) . .................. (C-5) 

z 

In Appendix A, 1 expressions were derived both for 
p D ( r D , z) and for p wD (z). The explicit forms for q D , 
therefore, are available when Eq. A-13 is differentiated 
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once with respect to r D, evaluated at r D = 0, and in­
troduced into Eq. C-4 and when Eq. A-1 i is substituted 
directly into Eq. C-:5. · · · · 

B 
if D (z) = . . ......... (C-6) 

z[ Ji. C v(A +sJi.B) + B] 

1 Cv(A+sJ'iB) 
ifv(z)=_:__--------, ....... (C-7) 

. z [zCv(A+s~B)+Ji.B] 

with A=1-e-2~ and ~=1+e-2~ as before. Ob­
serve from Eqs. C-6 and C-7 that for CD = 0, if; (z) 
= 11~, so qvCtv)= 1, implying that the sandface and sur­
face rates·are identical (qs1=q). Eqs. C-'6 and C-7 are 
v~lid for s~O and Cv ~0, at rv =,0. 

APPENDIX D 

Laplace Transform Solution, P~ase Redistributi(m 

The procedure of Appendix A is followed until Eq.· A-8. 
Now differentiate Eq. 34 with respect to tv and substi-
tute the result into Eq. 36. , 

............................. (D-1) 

Transfor~ the new redistribution inner boundary condi7" 
tion (Eq: D-1). 

z>-'YD· .............................. (D-2) 

822 

Next, substitute Eq. A-8 into Eq. A-7 and then the result­
ing expression into Eq. D-2 to obtain the sol\,ltion for the 
transform of the well flowing-pressure drop. 

Pwv(z)= 
('Y vCan +zC v)(A +sJi.B) 

- (zCav)(z+'Y v)[zC v(A +sJi.B) + Ji.Bl 

CaD ::f=. 0, ........ · ......................... (D-3) 

where A and ~ are as defined in Appe11dix A and in the 
main text, find CaD is as defined in Eq. 40. The solu­
tion for the formation P.r·essure drop is d~rived i11 Ref. 
9 and is pres nted in tl1e text'as'Eq. 38. Eq. 36 can.be 
solved ~or" the ditne~sionless· sandface flow rate as · 

(apv) qsf 
-. -- _ =-. =qv(tv) 

()rv rv-0 q 

= 1_Cn (dPwD _ c;1P¢b). . ........... ·.· (D-4) 
dtn _ dtn 

The transform of q D (t D) is obtained by differentiating the 
negativ~ of Eq. 3 8 with respect to r D, and evaluating the 
result at rv =0. · ·. 

('Y vCan +zCv)B 
ifv(z) = ---------'-------

(zCav)(z+'Y v)[ Ji.Cv(A +sJi.B) +B] 

Can ::f=.O. ~ ••••......••••..•••..•• (D-5) 

Eqs. 0-3 and D-5 are presented as Eqs. 37 and 39, 
respectively, in the te~t. Further details of these deriva-
tions are available in Ref. 9. . · 

SI Metric Conversion Factors 

ft X 3.048* 
psi ?< 6.894 757 

psi -I x 1.450 377 
. ~TB X 1.589 873 

*Conversion factor is exact. 

E-01 
E+OO 
E-04 
E-01 

SPEJ 
Original manuscript (SPE 12950) received in the Society pf Petroleum Engineers office 
Feb. 28, 1984:- paper accepted tor' publication Jan.· 9, 1985. Revised manuscript 
received Nov. 20, 1984. · ·. • 

' SOCIETY OF PETROLEUM ENGINEERS JOURNAL 

D
ow

nloaded from
 http://onepetro.org/spejournal/article-pdf/25/06/804/2647196/spe-12950-pa.pdf/1 by M

issouri U
niversity of Science & Tech user on 14 July 2023


	UNSTEADY-STATE SPHERICAL FLOW WITH STORAGE AND SKIN.
	Recommended Citation

	12950_Page_01
	12950_Page_03
	12950_Page_04
	12950_Page_05
	12950_Page_06
	12950_Page_07
	12950_Page_08
	12950_Page_09
	12950_Page_10
	12950_Page_11
	12950_Page_12
	12950_Page_13
	12950_Page_14
	12950_Page_15
	12950_Page_16
	12950_Page_17
	12950_Page_18
	12950_Page_19
	12950_Page_20

