
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Civil, Architectural and Environmental 
Engineering Faculty Research & Creative Works 

Civil, Architectural and Environmental 
Engineering 

01 Jan 1984 

A Stochastic Model For A Small-time-interval-intermittent A Stochastic Model For A Small-time-interval-intermittent 

Hydrologic Process Hydrologic Process 

Charles Darwin Morris 
Missouri University of Science and Technology, morris@mst.edu 

Follow this and additional works at: https://scholarsmine.mst.edu/civarc_enveng_facwork 

 Part of the Architectural Engineering Commons, and the Civil and Environmental Engineering 

Commons 

Recommended Citation Recommended Citation 
C. D. Morris, "A Stochastic Model For A Small-time-interval-intermittent Hydrologic Process," Journal of 
Hydrology, vol. 68, no. 1 thru 4, pp. 247 - 272, Elsevier, Jan 1984. 
The definitive version is available at https://doi.org/10.1016/0022-1694(84)90214-2 

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for 
inclusion in Civil, Architectural and Environmental Engineering Faculty Research & Creative Works by an authorized 
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including 
reproduction for redistribution requires the permission of the copyright holder. For more information, please 
contact scholarsmine@mst.edu. 

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/civarc_enveng_facwork
https://scholarsmine.mst.edu/civarc_enveng_facwork
https://scholarsmine.mst.edu/civarc_enveng
https://scholarsmine.mst.edu/civarc_enveng
https://scholarsmine.mst.edu/civarc_enveng_facwork?utm_source=scholarsmine.mst.edu%2Fcivarc_enveng_facwork%2F2558&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/774?utm_source=scholarsmine.mst.edu%2Fcivarc_enveng_facwork%2F2558&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/251?utm_source=scholarsmine.mst.edu%2Fcivarc_enveng_facwork%2F2558&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/251?utm_source=scholarsmine.mst.edu%2Fcivarc_enveng_facwork%2F2558&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1016/0022-1694(84)90214-2
mailto:scholarsmine@mst.edu


Journal of Hydrology, 68 (1984) 247--272 247 
Elsevier Science Publishers B.V., Amsterdam --  Printed in The Netherlands 

A STOCHASTIC MODEL FOR A SMALL-TIME-INTERVAL- 
INTERMITTENT HYDROLOGIC PROCESS 

CHARLES D. MORRIS 

Department of  Civil Engineering, University of  Missouri, Rolla, MO 65401 (U.S.A.) 

(Accepted for publication December 17, 1982) 

ABSTRACT 

Morris, C.D., 1984. A stochastic model for a small-time-interval-intermittent hydrologic 
process. In: G.E. Stout and G.H. Davis (Editors), Global Water: Science and Engineer- 
ing --  The Ven Te Chow Memorial Volume. J. Hydrol., 68: 247--272. 

A methodology is developed for the generation of intermittent  small-time-interval 
(15-min.) precipitation. This methodology consists of three components:  a probabilistic 
wet-and-dry sequence component;  a Markovian precipitation distribution component;  
and a regressive spatial-distribution component.  The theory of stochastic hydrologic 
modeling is described and procedures by which this theory can be applied to a hydrologic 
time series are presented. In particular, the application of the procedures to small-time- 
interval-intermittent hydrologic processes is given. 

The methodology is demonstrated by application to an actual precipitation network, 
the Boneyard Creek raingage network in Champaign-Urbana, Illinois, U.S.A. The trend 
in frequency of precipitation amounts from the 89-yr. Morrow plots data are produced 
by the model using 13-yr. of historical data. 

INTRODUCTION 

One of the major problems facing hydrologists is the lack of  long-term 
records of  precipitation and streamflow. Simulation of  hydrologic records 
by  means of stochastic modeling is a commonly  accepted statistical pro- 
cedure to extend the record. In general, there axe longer records for precipi- 
tat ion then for streamflow. Hence, it seems logical from a hydrologic point  
of  view to use the longer precipitation data for conversion to longer stream- 
flow data. The stochastically generated data axe a statistical projection of  the 
original record, thus making maximum utilization of  available information. 
Secondly, considering the stochastic character of  hydrologic processes, a 
stochastic model  is a more statistically complete  use of  the available record 
than traditional techniques based only on observed historical data sequences. 

A stochastic model is developed to simulate the precipitation of  short- 
t ime 15-min. increments with temporal and spatial variation. A practical 
application of  this model  is to generate precipitation data as the input to a 
storm-water runoff  model.  Hence, long-term runoff  records can be simulated 
by  using a stochastic model  to generate precipitation data as the input to 
a storm-water runoff  model. Classical approaches of  frequency analysis 
can be used to determine the recurrence interval of  generated runoff.  

0022-1694/84/$03.00 ©1984 Elsevier Science Publishers B.V. 
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The quanti ty,  rate and quality of  urban storm-water runoff  as well are 
affected by spatial and temporal  distribution of  storm precipitation. Some 
discrepancies which occur between observed and predicted runoff  using 
existing storm-water runoff  models may be due to the input precipitation 
increments being too  long (such as hourly or daily increments) and the lack 
of  consideration of  spatial variation. Further,  with different degrees of  
urbanization to be incorporated into the runoff  model,  various runoff  
frequencies with respect to changes in the degree and type  of  urbanization, 
one may induce conclusions for predicting future and present effects of  
urbanization on runoff.  Urbanization may also effect precipitation. Such 
effects can be studied by  applying a stochastic precipitation model to both  
urban and rural areas' precipitation and comparing the resulting generated 
data. 

It is the aim of this paper to present methodologies for developing syn- 
thetic hydrologic information,  specifically precipitation, as apphed to the 
Boneyard Creek network.  The methodologies presented can be used at 
other  locations, with minor modification if so warranted by  the analyses 
of  historical data. The results obtained with historical and stochastically 
generated hydrologic information are compared. 

MODEL 

In order to model  the basic underlying components  of  small-time-interval 
data, the w e t - d r y  sequences are modeled separately f rom the precipitation 
distribution within a storm. Since the precipitation data consist mostly of  
groups of zero pulses, in most cases of  extended length, difficulties arise 
when one stochastic model is used to model bo th  the wet- and dry-period 
precipitation processes. Also, a Markov chain is used to model  the rainfall 
distribution with the wet  period. A one-step Markov chain is used because 
the future amount  of  precipitation for a 15-rain. interval is mainly depen- 
dent on the present amount  of  precipitation for a 15-min. interval. An 
extension and improvement  of  the classic Markov transition probabil i ty 
matrix is accomplished by  fitting an analytical funct ion to the rows of the 
matrix. The benefi t  is two-fold: the scheme generates values that have not  
been observed; and it smoothes the observed data so that  distinguishable 
trends in shape of  the probabili ty distribution can be extrapolated to com- 
plete extreme values of  each of  the transition probabilities (rows) of  the 
matrix. Additionally, a mathematical method is developed to fit the extreme 
values of  Weibull distributions by  the method  of  maximum likelihood 
independently of  the xemainder of  the data, but  satisfying the condition 
that  the integration of  the probabil i ty density function (p.d.f.) for both  
extreme-value and remainder distributions equals unity. 

The intent of  this stochastic modeling effort  is to reflect the time and 
spatial distribution in a rain storm as a small-time-interval-intermittent 
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hydrologic process. Such a stochastic model was developed consisting of 
three components :  

(1) A wet-and<lry sequence component  which is based on the unique 
relationship between the probabil i ty density function,  f (x) ,  and its cumu- 
lative distribution function,  F (x): 

x t  

F(xt)  = f f ( x )dx  (1) 
- - o o  

where F(x t )  is defined over the interval (0,1). The random numbers 
R* (0 ~<R* ~< 1) distributed uniformly over some interval may be used 
to represent P(x).  For a particular value of  R*,  say R~,  the corresponding 
value of  F (x )  is F(xt) .  Then: 

x t 

R* = F ( x t ) =  1- f ( x )dx  (2) 

Thus: 

xt = F - I ( R ~ )  

Hence" 

(3) 

P[x<~xt] -- F(x t )  = P[x<~F - I (R~)]  (4) 

where F -1 (R~) is a variable that  has f (x)  as its p.d.f. The wet~nd-dry  
sequence component  of  the model  generates internally independent ,  purely 
random stochastic series of  wet-and<try sequences. 

(2) The precipitation distribution component  which uses the Markov 
chain principle allows sequential dependence in the data. This dependence 
is taken into account  by  the transition probabilities, x0 + 2 , . . .  ; or x0 -- 1, 
x 0 -  2 , . . . ;  which are the units of  precipitation following x0 units of  
precipitation per given interval of  time. This model assumes that the event 
[(x0 + 1) units of  precipitation] depends only on the previous event (x0 
units of  precipitation); hence it is a first-order model. Markov chains repro- 
duce only transitions which have been observed, thus limiting their capa- 
bilities to predict  more extreme events than have occurred in the historical 
data used to produce the transition probabil i ty matrix. This inherent limi- 
tat ion can be overcome by  fitting a p.d.f, to each row, i.e. each state of 
conditional probabilities, of  the matrix or following eq. 4: 

P [ x ~ x t + l  Ixt] = F(xt+l ) = P [ x ~ F  -1 (R~+I)] (5) 

which will adequately represent the probabil i ty of  extreme events. 
(3) The spatial distribution componen t  which uses a linear regression 

equation to measure the association be tween the observed data of  the 
primary and other stations. The linear association be tween the data at 
station x and station y may be predicted by:  
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y = a x + f i + e  (6) 

The interstation linear regression coefficient (~) will be used to predict 
the association between the x (primary station) and y (one of  the secondary 
stations) and ~ is an intercept value corresponding to an c~-value. The e is 
a normally-distributed random variable (0,a) with a standard deviation (a) 
o f  the residual (e-) values corresponding to the a- and ~-values. A primary 
station is the station which will have precipitation sequences generated by  
the wet~and~lry sequence component  and the precipitation distribution 
component  of  the model.  

The wet-and-dry sequence o f  the model 

The precipitation data may be considered to consist of  groups of  nonzero 
pulses separated by  zero-amplitude pulses (periods when no precipitation 
occurs) of  varying lengths. A storm may give rise to two or more groups of 
precipitation pulses separated by  periods with no precipitation. In such 
cases, it is difficult  to say whether the groups of  precipitation pulses belong 
to a single storm or several storms. It is apparent that  two groups of  precipi- 
tat ion separated by a larger number  of  zero-amplitude pulses may not  belong 
to the same storm. Therefore, an objective measure is necessary to decide 
whether  two sequences of  nonzero pulses separated by  a series of  zero- 
ampli tude pulses belong to the same storm. Grace and Eagleson (1966) 
pointed out  the existence of significant correlations be tween successive 
interval values of  precipitation depths. Also, the correlation between succes- 
sive interval values of  precipitation depth appears to increase as the time 
interval decreases. Thus, one can conceive of a critical t ime interval separ- 
ating two sequences of  precipitation beyond  which the correlation between 
the two nonzero pulses would be almost zero. This t ime interval was defined 
by  Grace and Eagleson (1966) as the critical lag, and was taken to be the 
criterion for separating the precipitation sequences into individual storms. 
A storm is thus defined as a group of  precipitation pulses preceded and 
followed by  zero~amplitude pulses of  duration equal to or greater than the 
critical lag. 

Statistics and probability distributions o f  wet-and-dry periods 

Separate probabil i ty distributions can be fi t ted to the wet-and-dry 
sequences if the cross-correlation between successive wet-and<iry sequences 
is not  significantly different from zero. 

All of  the wet-and-dry sequence data should be used to determine which 
of  the three distributions most frequently used hydrologically (Weibull, 
exponential,  and gamma) should be utilized for modeling the wetoand~lry 
sequences. The reason for using all of  the data is that  the more data used, 
the bet ter  one can determine the actual distribution of  the data. However,  
the more data are used the more difficult it is for the f i t ted distribution 
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to pass the chi-square test. Only the Weibull distribution passed the chi- 
square test for the data tested, thus, it seems to be the best distribution to 
use. As the wet-and~lry sequences were uncorrelated, separate univariate 
probabil i ty distributions were f i t ted to the wet-and-dry sequences. Further- 
more, it was also determined that a two-parameter  Weibull f i t ted the test 
data as well as a three-parameter one. The third parameter is a scale pa- 
rameter and does no t  improve the fit of  the distribution to the data. There- 
fore, a two-parameter  Weibull distribution was chosen for the wet-and-dry 
sequences. The histogram and the f i t ted Weibull distribution for all the wet  
sequence data used in performing the chi-square test are presented in Table I. 
The method of  maximum likelihood was used in fitting the Weibull distri- 
but ion to the historical data. 

Maximum likelihood estimation of  the Weibull distribution parameters with 
emphasis on extreme values 

A major deterrent to wider use of  the Weibull distribution has been 
the difficulty in estimating its parameters, because the calculations involved 
are not  always simple. The Weibull distribution density function:  

f (x )  = A B x  B-1 e x p ( - - A x  B) (7) 

is defined for A, B ~ 0  and 0 ( x ~ o o ;  when B = I ,  this distribution 
becomes the p.d.f, of  the well-known one-parameter exponential  distri- 
bution.  The particular form in which eq. 7 is writ ten was chosen for  the 
purpose of simplifying derivation of  the maximum likelihood estimating 
equation. Considering a random sample consisting of  n observations f i t ted 
by  eq. 7, the likelihood funct ion of  this sample is: 

t l  

L ( X l , . . .  , x n ; A , B )  = I-] A B x ~  -1 e x p ( - - A x ~ )  (8) 
i=l 

By taking logarithms of  bo th  sides of  eq. 8, differentiating it with respect 
to A and B in turn, and equating the resulting form to zero, we obtain 
the following estimating equations: 

/2 

~lnL/~A = - - A n + A  2 ~ x~ = 0 (9) 
i=l 

rt n 

01nL/0B = n/B + ~ l n x i - - A  ~ x~ l n x  i = 0 (10) 
i=l i=1 

Upon eliminating A between these two equations and simplifying, we have: 

n/B + l n x i - -  x ~ x B lnx i  = 0 (11) 
i=1 i=1 
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A large number  of authors have considered estimation of parameters of 
gamma, exponential and Weibull distribution by the method of  moments.  It 
has been shown (Hatter and Moore, 1965) that  except when the distribution 
closely approximates normali ty,  the method of moments  is inefficient 
because it takes more iterations to determine the values for the parameters. 
Therefore,  it is suggested that  the method of maximum likelihood is the 
more efficient method to fit the distributions. It may be suggested that  
the Weibull distribution is a more realistic and flexible global model for 
this data of small interval precipitation. In the following discussion, the 
maximum likelihood estimates (MLE) of  the Weibull parameters will be 
developed for the extreme values of  the data. It is assumed that  the cumu- 
lative probability density funct ion is: 

F ( x )  = 1 - - C  e x p ( - - A E x  BE) (12) 

where C is an unknown scalar parameter which maintains the basic property  
that  the total probability of  all the data is equal to unity. The two sets of  
parameters in this derivation are AR ,BR for the main port ion of the distri- 
b_u_tion and AE ,BE for the tail (extreme values) of  the distribution. The 
advantage of the above procedure is to assure that  the extreme values are 
used to predict extreme values and not  biased by the bulk of the data. 

The theoretical procedure for fitt ing the Weibull distribution development 
to extreme values is as follows. Consider a random sample of extreme 
values consisting of n observations when eq. 12 is the applicable density 
function of  the sample. By eq. 8, the likelihood function of said sample is: 

LE (Xk +l ,Xk +2 . . . . .  Xr, Xr+l ; A E , B E  ) 

r 
r + l  

-_ ( A E B E ) r + I - k  I-I x BE-1 exp (-AE) ~ i(xi sE --XiS+E1) (13) 
i=k+l i=k+ l  

where xr +1 is the smallest and x~ +1 the largest extreme values. By taking 
logarithms of eq. 13, differentiating it with respect to A and B in turn,  
and equating the resulting form to zero, we obtain the following estimating 
equations: 

r 

~ln LE/~AE = (r + 1 --  k ) /AE  ~ i.(xBE BE - -  - - x ~ +  1)  = 0 ( 1 4 )  
i=k+ l  

OlnLE/OBE = ( r +  l - - k ) / B E  + 
r 

ln xi 
i f k + l  

r 

- -  A ~., i[x~E ln(xi - -x i+  1BE )ln xi+ 1 ] = 0 (15) 
i=k+ l  

Let the extreme values be (xk +a Pck +2 . . . .  ,Xr,Xr+l ) w i t h  ( O < ~ k < r ~ n - - 1 ;  
xk + l > X k + 2 > .  . > X r > X r + l ) .  Then, since practically A E , B E , C > 0 ,  the 
maximum likelihood estimates of (AE_ ,BE_~C) are obtained as follows: 
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From eq. 12, 

BE (16) C = [(r + 1)/n] e x p ( - - A E )  Xr+ 1 

From eq. 14, 

[r 11 AE = ( r + l - - k )  ~, i(xBE--xBE1) (17) 
i = k + l  

where (r + 1 -- k) is the number  of  extreme values. Then eliminating AE by  
substituting eq. 16 into eq. 18 and simplifying: B E is the nonnegative root  of: 

r 

q(BE) = 0 = I /B  E + ~ inxi / (r  + 1 - -k )  
i=k+l 

BE In ) r i(xfE In Xi -- x~+ 1 xi+ 1 
_ i = ~ + 1  r (18) 

x ;  - 
i=k+l 

The above equations for A s ,  BE and C can be solved for any set of extreme 
values. 

Table I gives the results fitting the Weibull distribution to all the data with 
one set of  parameters and Table II gives the results of  fitting the Weibull 
distribution with two sets of  parameters by  separating extreme values from 
the data. The difference between the two procedures can be readily seen 
from the tables. In Table I, 2~X 2 = 43.38 for the one set parameter pro- 
cedure. In Table II, Z×2 = 39.22 for  the two set parameter procedure.  

The Markov chain transition matrix for the precipitation distribution 
component o f  the model 

It is assumed, that the f i rs t~rder  Markov model will be adequate to 
generate the distribution of  precipitation amounts  within a given storm. 
In this case, the state i in the transition probabil i ty matrix represents 
[ ( i - - 1 )  0.001] in.* of  precipitation. The transition probabilities should 
be estimated from the historical records by  counting the frequency of  each 
particular transition. Table III shows the frequency count  in a row (a set of) 
transition probabil i ty matrix. Assuming that the probabil i ty distribution 
of  precipitation is different  be tween the first and second halves of  the 
storm, the storm is divided into two parts. In other words, two matrices 
are developed. One matrix contains the transition probabilities for the 
first half of  the storm and the other contains the transition probabilities 
for the second half of  the storm. 

Matrix size needs to be determined for  computer  analysis. Since actual 
precipitation rates are limited by  meteorological conditions, the number  

* I in .  = 2 5 . 4  m m .  



TABLE I 

Values for the observed and expected histograms of wet sequences and the chi-square test values (X 2) using one set of Weibull 
parameters 

b~ 
C9~ 

Hours Observed ~: Occurrences Expected ~: Occurrences X 2 ~X 2 

1.00 183.00 183.00 188.30 
2.00 150.00 333.00 146.72 
3.00 135.00 468.00 120.52 
4.00 89.00 557.00 100.28 
5.00 84.00 641.00 84.01 
6.00 60.00 701.00 70.68 
7.00 61.00 762.00 59.66 
8.00 47.00 809.00 50.49 
9.00 55.00 864.00 42.80 

10.00 29.00 893.00 36.35 
11.00 30.00 923.00 30.91 
12.00 29.00 952.00 26.32 
13.00 22.00 974.00 22.43 
14.00 16.00 990.00 19.14 
15.00 21.00 1,011.00 16.34 
16.00 10.00 1,021.00 13.96 
17.00 13.00 1,034.00 11.94 
18.00 9.00 1,043.00 10.22 
19.00 7.00 1,050.00 8.75 
20.00 9.00 1,059.00 7.49 
21.00 6.00 1,065.00 6.42 
22.00 11.00 1,076.00 5.51 
23.00 3.00 1,079.00 4.72 
24.00 4.00 1,083.00 4.05 
25.00 3.00 1,086.00 3.48 
26.00 7.00 1,093.00 2.99 
27.00 1.00 1,094.00 2.57 
28.00 1.00 1,095.00 2.21 
29.00 2.00 1,097.00 1.90 

188.30 
335.03 
455.55 
555 83 
629 83 
710 52 
770 18 
820 67 
863 47 
899 82 
930 74 
957 05 
979 49 
998 62 

1,014.96 
1,028.93 
1,040.87 
1,051.08 
1,059.83 
1,067.32 
1,073.75 
1,079.25 
1,083.98 
1,088.03 
1,091.51 
1,094.51 
1,097.07 
1,099.28 
1,101.18 

0.15 0.15 
0.07 0.22 
1.74 1.96 
1.27 3.23 
0.00 3.23 
1.61 4.85 
0.03 4.88 
0.24 5.12 
3.47 8.59 
1.49 10.08 
0.03 10.10 
0.27 10.38 
0.01 10.39 
0.51 10.90 
1.33 12.23 
1.12 13.35 
0.09 13.45 
0.14 13.59 
0.35 13.94 
0.30 14.24 
0.03 14.27 
5.48 19.75 
0.63 20.38 
0.00 20.38 
O.07 2O .45 
5.37 25.82 
0.96 26.78 
0.66 27.44 
0.01 27.45 



30.00 5.00 1.102.00 1.62 
31.00 2.00 1,104.00 1.41 
32.00 2.00 1,106.00 1.21 
33.00 1.00 1,107.00 1.04 
34.00 0.00 1,107.00 0.90 
35.00 0.00 1,107.00 0.77 
36.00 1.00 1,108.00 0.67 
37.00 2.00 1,110.00 0.57 
38.00 0.00 1,110.00 0.49 
39.00 1.00 1,111.00 0.43 
40.00 0.00 1,111.00 0.37 
41.00 0.00 1,111.00 0.32 
42.00 0.00 1,111.00 0.27 
43.00 0.00 1,111.00 0.24 
44.00 0.00 1,111.00 0.20 
45.00 0.00 1,111.00 0.18 

1 102.82 
1 104.22 
1 105.43 
1 106.47 
1 107.37 
1 108.14 
1 108.81 
1 109.38 
1 109.88 
1 110.30 
1 110.67 
1 110.99 
1 111.26 
1 111.50 
1 111.70 
1 111.88 

6.94 34.38 
0.25 34.64 
0.52 35.15 
0.00 35.15 
0.90 36.05 
0.77 36.82 
0.17 36.99 
3.55 40.54 
0.49 41.03 
0.77 41.80 
0.37 42.17 
0.32 42.49 
0.27 42.76 
0.24 43.00 
0.20 43.20 
0.18 43.38 

Notes :  
(1) Weibull parameters: A = 0 .18535;B = 0.95020. 
(2) Total number of  observed wet periods: 1113. 
(3) The X 2 -values doe not sum to the ~X 2 -values because the values were summed and then rounded to the nearest one-hundredth by 
the computer program. 

tO 



TABLE II 
Values for the observed and expected histograms of wet sequences and the chi-square test values (X 2) using two sets of Weibull 
parameters 

on 

Hours Observed Z Occurrences Expected Y. Occurrences X 2 ~X 2 

(A) For remaining values: 

1.00 183.00 183.00 188.30 188.30 0.15 0.15 
2.00 150.00 333.00 146.72 335.03 0.07 0.22 
3.00 135.00 468.00 120.52 455.55 1.74 1.96 
4.00 89.00 557.00 100.28 555.83 1.27 3.23 
5.00 84.00 641.00 84.01 639.83 0.00 3.23 
6.00 60.00 701.00 70.68 710.52 1.61 4.85 
7.00 61.00 762.00 59.66 770.18 0.03 4.88 
8.00 47.00 809.00 50.49 820.67 0.24 5.12 
9.00 55.00 864.00 42.80 863.47 3.47 8.59 

(B) For extreme values: 

10.00 
11.00 
12.00 
13.00 
14.00 
15.00 
16.00 
17.00 
18.00 
19.00 
20.00 
21.00 
22.00 
23.00 
24.00 
25.00 

29.00 893.00 32.71 896.18 0.42 9.01 
30.00 923.00 29.59 925.76 0.01 9.02 
29.00 952.00 25.59 951.35 0.45 9.47 
22.00 974.00 22.12 973.48 0.00 9.47 
16.00 990.00 19.12 992.60 0.51 9.98 
21.00 1,011.00 16.52 1,009.12 1.21 11.20 
10.00 1,021.00 14.27 1,023.39 1.28 12.47 
13.00 1,034.00 12.32 1,035.72 0.04 12.51 

9.00 1,043.00 10.64 1,046.36 0.25 12.76 
7.00 1,050.00 9.18 1,055.54 0.52 13.28 
9.00 1,059.00 7.93 1,063.46 0.15 13.43 
6.00 1,065.00 6.84 1,070.30 0.10 13.53 

11.00 1,076.00 5.90 1,076.20 4.41 17.94 
3.00 1,079.00 5.09 1,081.29 0.86 18.80 
4.00 1,083.00 4.39 1,085.68 0.03 18.83 
3.00 1,086.00 3.78 1,089.46 0.16 19.00 



26.00 7.00 
27.00 1.00 
28.00 1.00 
29.00 2.00 
30.00 5.00 
31.00 2.00 
32.00 2.00 
33.00 1.00 
34.00 0.00 
35.00 0.00 
36.00 1.00 
37.00 2.00 
38.00 0.00 
39.00 1.00 
40.00 0.00 
41,00 0.00 
42.00 0.00 
43.00 0.00 
44.00 0.00 
45.00 0.00 

1 093.00 
1 094.00 
1 095.00 
1 097.00 
1 102.00 
1104 .00  
1 106.00 
1 107.00 
1 107.00 
1,107.00 
1,108.00 
1,110.00 
1,110.00 
1,111.00 
1,111.00 
1,111.00 
1,111.00 
1,111.00 
1,111.00 
1,111.00 

3.26 
2.81 
2.42 
2.09 
1.80 
1.55 
1.34 
1.15 
0.99 
0.85 
0.73 
0.63 
0.54 
0.47 
O.40 
0.35 
0.30 
0.26 
0.22 
0.19 

1 092.72 
1 095.54 
1 097.96 
1 100.05 
1 101.85 
1 103,40 
1 104.73 
1 105.88 
1 106.87 
1 107.73 
1 108.46 
1 109.10 
1 109.64 
1 110.11 
1 110.51 
1 110.86 
1 111.16 
1 111.42 
1 111.64 
1 111.83 

4.28 
1.17 
0.84 
0.00 
5.69 
0.13 
0.33 
0.02 
0.99 
0.85 
0.10 
2.95 
0.54 
0.60 
0.40 
0.35 
0.30 
0.26 
0.22 
0.19 

23.28 
24.45 
25 28 
25 29 
30 98 
31 11 
31 44 
31 46 
32 45 
33 30 
33 40 
36 35 
36 90 
37 50 
37.90 
38.25 
38.55 
38.81 
39.03 
39.22 

Notes: 
(A1) Weibull parameters for remaining values: A = 0.18535; B = 0.95020. 
(A2) Total number o f  wet periods for remaining values: 871. 
(B1) Weibull parameters for extreme values: A ---- 0 ,13777;B = 1.01880; C = 0.82111. 
(B2) Total number of  wet periods for extreme values: 242. 
(B3) The X 2-values do not sum to the Y,X 2 -values because the values were summed and then rounded to the nearest one-hundredth by 
the computer program. 

bO 
¢j1 
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TABLE III 
Frequency counts of transition from the state i = 1 or zero precipitation 

Amount Counts Amount Counts Amount Counts 

0.000 11 0.022 7 0.043 0 
0.001 170 0.023 3 0.044 8 
0.002 187 0.024 6 0.045 0 
0.003 109 0.025 4 0.046 6 
0.004 72 0.026 4 0.047 0 
0.005 61 0.027 5 0.048 1 
0.006 48 0.028 5 0.049 0 
0.007 28 0.029 5 0.050 2 
0.008 33 0.030 5 0.051 0 
0.009 21 0.031 2 0.052 4 
0.010 18 0.032 3 0.053 0 
0.011 28 0.033 0 0.054 4 
0.012 12 0.034 7 0.055 0 
0.013 16 0.035 0 0.056 1 
0.014 17 0.036 8 0.057 0 
0.015 10 0.037 0 0.058 0 
0.016 17 0.038 6 0.059 0 
0.017 12 0.039 0 0.060 1 
0.018 13 0.040 5 0.061 0 
0.019 8 0.041 0 0.062 5 
0.020 10 0.042 6 0.063 0 
0.021 7 

Note: 15-min. precipitation amounts. 

o f  co lumns  in the mat r ix  is l imited by  the  rare occur rence  o f  very high 
values o f  precipi ta t ion .  A value o f  3 in. o f  prec ip i ta t ion  in 15 min. was 
selected as the  highest limit.  The n u m b e r  of  rows also has to  be l imited 
more  severely because there  are very  few observat ions  at  the  highest limit. 
As a result ,  a nonsqua re  mat r ix  o f  3000  co lumns  X 14 rows was adop ted .  As 
m e n t i o n e d  before ,  one  state  represents  a range o f  0 .001  in. of  precipi ta t ion.  
Then  each of  the  first nine rows con ta in  one  state; each o f  the  nex t  four  
rows conta ins  a c o m b i n e d  range o f  nine states; and the  f o u r t e e n t h  row 
conta ins  a c o m b i n e d  range of  all remaining  states. This process was uti l ized 
in order  to  insure tha t  there  is enough  da ta  to  fit  a Weibull d is t r ibut ion.  

Linear regression analysis o f  the spatial-distribution component o f  the model 

An examina t ion  o f  observed prec ip i ta t ion  da ta  indicates t ha t  the calcu- 
lated critical lag closely represents  the  t ime o f  separa t ion o f  two  s to rm cells 
moving  over  a gage. In  o ther  words ,  an average s to rm appears  to  move  across 
the  watershed  in a t ime interval a p p r o x i m a t e l y  equal to  the  calculated 
critical lag. Thus,  the  critical lag m a y  be used to define the  du ra t ion  o f  a 
storm. Therefore ,  if p rec ip i ta t ion  occurs  at  one  gage, zero precipi ta t ions  
should be  filled at  the  o ther  gage within  the  critical lag. Once the  
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precipitations at the two gages have been matched,  a linear regression analy- 
sis involving the least-squares method  was performed. Also the residuals of  
the least squares was used to determine the standard deviation of  e (eq. 6). 

Model generation of  precipitation data 

The classical approach in generating synthetic sequences of  independent 
random variables for a given probabil i ty distribution (derived from a set of  
given data) is to use a graphical method  to transform independent  random 
numbers of  uniform probabil i ty distribution (interval 0 to 1), to those of 
the given probabil i ty distribution. However,  with the advent of  computer  
technology the graphical method can now be replaced by  the use of  com- 
puters to generate synthetic sequences. The computerized method employs 
a conversion table to convert  the random numbers of  a uniform probabil i ty 
distribution to those of  the given probabil i ty distribution. Let t be the 
random number  of  the given probabil i ty distribution with subscript i denot- 
ing a particular random number  then, the conversion table relates ti to xi for 
the same cumulative probabilities P ( t ~ t i ) = P ( x ~ x i ) .  Thus, a series of  
N-values of  ti can be transformed to a series of  N-values of  xi by  means of  
this conversion table. A better  way to generate random variables is to use 
mathematical probabilities funct ion instead of  conversion tables. The cumu- 
lative probabil i ty funct ion of  a cont inuous random variable y with prob- 
ability density f( y ) is: 

Y 

F(y)  = j f (y )  dy (19) 

Assume that  F(y)  is a random variable uniformly distributed over the 
interval (0,1), its probabil i ty density funct ion is f{F(y)}  so that  its cumu- 
lative distribution funct ion is: 

F(y) 

g[F(y)]  = | f [F(y)]  d [ F ( y ) ]  (20) 
0 

or f [F(y)]  = I with 0 ~ F(y)  ~ 1. Thus, a random value y from a (Weibull) 
p.d.f, f (y )  can be obtained as follows: 

(1) Generate a random value F(h) from a uniform distribution over (0,1). 
(2) Solve the following equation for a Weibull distribution with given A 

and B: 

F(y)  = 1 ~- exp(- -AyB) ,  f o r y  (21) 

then one obtains: 

y = [ - -  l n{1 - -F (y )} /A]  B-1 (22) 

which is the random variable of  a Weibull distribution. 
By the above procedure,  the wet-period length in hours taken as a random 

variable is generated. 
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By the same procedure,  the 15-min. precipitation amounts  in the gener- 
ated wet period are to be generated as follows. Generate F(y) for eq. 22 
with values A and B, obtained for the first half of  a storm at a given present 
state. The corresponding 15-min. precipitation amount  y is then solved by  
eq. 22. This procedure begins with state one and proceeds until the 15-min. 
precipitation amounts  of  the first half of  the storm are all so generated. 
Similarly, the 15-min. precipitation amounts  of  the second half of the 
storm are generated except  the last time interval of  the storm is taken as 
the first state and then the generation procedure steps backward in time. 
By the procedure described above a dry-period length in days is generated 
following the preceding wet period. The above process is repeated until 
the desired number  of years of  data has been generated. 

After a 15-min. precipitation amount  at the primary gage is generated, 
a corresponding 15-min. precipitation amount  can be  generated at the 
secondary gage by  eq. 6. The values of  a, ~ and o for e in eq. 6 are used 
to calculate simultaneous precipitation amounts  for all secondary gages. 
In eq. 6 the random component  e is normally distributed with zero mean 
and standard deviation o. 

MODEL APPLICATION 

Boneyard Creek network 

The Boneyard Creek network shown in Fig. l and described in Table IV 
consists of six recording gages in 13-km 2 area in Champaign-Urbana, Illinois, 
U.S.A. 

This network was originally installed in 1949 by  the Civil Engineering 
Depar tment  of  the University of  Illinois in cooperat ion with the Illinois 
State Water Survey and the U.S. Geological Survey for the primary purpose 
of  investigating the urban precipi tat ion--runoff  relationship (Chow, 1952). 

The six raingages of  interest in this s tudy are Nos. 1--5 and 7 as shown in 
Fig. 2. Gage 2 was selected as the primary gage for a reason to be given later 
and gage 3 as an example of  a secondary gage in this study. Thirteen years, 
1949--1961,  of  continuous precipitation data were used in this investigation. 

15-rain. Precipitation data 

The recorded rain chart taken from a raingage was converted to 15-rain. 
amounts  of  precipitation in thousandths of  an inch with the use of  a digitizer 
and a PL-1 computer  program. Also, a FORTRAN computer  program was 
written to compute  some basic statistics of  the data.  This program's ou tpu t  
is used to check for  missing and/or  faulty data. Approximately 200,000 
individual n o n z e r o  15-rain. precipitation pulses were analyzed by  this 
program. 

From this analysis, gage 2 was found to have the least amount  of  missing 
and/or  faulty data. Also, by  using the Thiessen method to compute  areal 
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Fig. 1. Boneyard basin and raingage network (1 ft. = 0.3048 m). 

precipitation, the Thiessen polygon for gage 2 covers the largest port ion of  
the watershed. Therefore, gage 2 was selected as the primary gage for the 
development  of  the proposed stochastic model.  The data from gage 2 consist 
of  ~ 27,000 individual nonzero 15-min. precipitation pulses. The missing 
and/or  faulty data at gage 2 were filled and/or  replaced with the data from 
gage 1 for the corresponding storms. Since only a small percentage of  data 
( <  1%) is possibly in error and because of  the structure of  the model, 
smoothing the observed data by  determining distinguishable trends in the 
shape of  the p.d.f., these data error will not  have a significant effect  upon 
the generated synthetic data. The complete  data set for gage 2 was edited 
and sorted on the computer  to obtain a composi te  temporal  record of  the 
precipitation and was then recorded on magnetic tape. 

Autocorrelation analysis of data and determination of critical lag 

A computer  program was written to generate the two-dimensional matrix 
of  two nonzero pulses of  15-min. precipitation given a specified lag time in 
the autocorrelat ion analysis. This output  is then executed on the IBM ® 
360/75 SOUPAC statistical program to generate the autocorrelat ion coef- 
ficient for various lags. The plot  of  the  autocorrelation coefficient as a 
function of  lag time is shown in Fig. 2. It shows that  the precipitation 
values have high positive correlation at smaller lags. In particular, the lag- 
one (successive precipitation values separated by  one 15-min. interval) 
correlation is 0 .67799 for a sample size of  12,439 (15-min. nonzero 



TABLE IV 
Boneyard Creek r~]ngage network 

Gage Location 
No. 

legal description 

corner sec- town- 
tion ship 

1 NW 1/4 18 19N 
NW 1/4 

2 NW 1/4 7 19N 
NW 1/4 

3 NW 1/4 1 19N 8E 
SW 1/4 

4 SW 1/4 11 19N 8E 
NE 1/4 

5 SE 1/4 14 19N 8E 
NE 1/4 

Moved SE 1/4 22 19N 8E 
NE 1/4 

Moved SE 1/4 11 19N 8E 
SE 1/4 

7 cent. 13 19N 8E 
NE 1/4 

Moved NE 1/4 13 19N 8E 
SE 1/4 

range 

9E 

9E 

general description 

24.5 m north of  EE bldg. 

68.5 m south of  Cap 
& Gown bldg. (several 
minor moves in 
immediate area) 

southwest of  Pioneer 
plant 

southwest of Nelsen 
concrete plant, 
formerly State Garage 

yard of J.J. Doland home 
near Country Club 

south of  Dean's dairy on 
S. Mattis 

Shell Station prospect 
and sprg. ayes. 

west of Prairie Farms 
creamery 

12 m west of Warm Air 
Research bldg. 
(now gone) 

Gage type 

Stevens recorder 

Stevens recorder 

Stevens recorder 

Stevens recorder 

Stevens recorder 

Stevensrecorder  

Stevens recorder 

Stevens recorder 

Stevens recorder 

Period of record at each location 

March 1949 to present 

Nov. 1948 to present 

Nov. 1948 to present 

Nov. 1948 to present 

Nov. 3, 1948 to Oct. 20, 1951 

Oct. 20, 1951 to May 7, 1953 

May 7, 1953 to present 

Nov. 2, 1948 to Oct. 21, 1950 

March 24, 1951 to Oct. 5, 1957 

b~ 

t ~  
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Fig. 2. Correlogram (cor x(t), x(t + r)) for 13 years, 1949--1961, 
Boneyard data. 

of recorded historical 

precipitation amounts)  which indicates definite dependence between pairs 
of  adjoining precipitation values in the series. The values of  autocorrelation 
coefficients decrease with increasing lags indicating weaker correlation 
be tween precipitation pulses separated by  larger lags. Using the t-statistic 
to test the hypothesis that the correlation in the populations of  two variables 
is zero, all autocorrelat ion coefficients (Fig. 2) calculated including the 
critical lag autocorrelat ion were found to be significantly different from 
zero at the 1% level. The critical lag (minimum correlation amounts)  for the 
15-min. data was 270 min., or minimum dependence between precipitation. 

Parameter estimation 

The computer  program which consti tutes the stochastic model can be 
divided into four parts as follows: 

(1) Evaluation of  the wet-and-dry sequence Weibull parameters (A and B). 
(2) Evaluation of  Weibull parameters for precipitation amounts  distributed 

in a wet period. 
(3) Evaluation of  spatial parameters (a, fi, u). 
(4) Generation of  a wet-period and its following dry-period length, and 

also the precipitation amount  in the wet period. 
The parameter for the Boneyard Creek network data to be described later, 

are given in Table V. All four  parts of  the computer  programs can be com- 
bined into a monitoring program with each part becoming a subprogram of 
the monitoring program. For  the sake of  understanding and clarity, Table VI 
shows how these computer  programs are utilized for computat ion of  the 
proposed stochastic model.  In addition, an operational flow-chart given 
in Fig. 3 illustrates the use of  this model for generation of  precipitation 
amounts  in the intermittent  precipitation process. 

Fig. 4 gives a sample ou tpu t  of  the proposed stochastic precipitation 
model. Fig. 5 shows the frequency of  the simulated data at gage 2 produced 
by  the proposed model and the historical f requency data for 13yr .  of  
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T A B L E  V 

Weibul l  p a r a m e t e r s  f o r  t h e  t h r e e  m o d e l  c o m p o n e n t s  

(1) Wet-and-dry sequence co mponent :  

A = 0 . 1 0 2 6 1  B -- 1 . 0 4 9 9 5  w i n t e r  w e t  p e r i o d s  N -- 251 
A -- 0 . 2 1 4 2 6  B ---- 0 . 9 6 2 2 3  spr ing  w e t  p e r i o d s  N = 333 
A ---- 0 . 2 5 3 2 1  B ---- 1 . 0 2 5 2 6  s u m m e r  w e t  p e r i o d s  N -- 247 
A -- 0 . 1 2 6 1 6  B -- 1 . 0 2 2 9 0  fall we t  p e r i o d s  N -- 243  
A -- 0 . 2 5 8 7 1  B ---- 0 . 9 5 0 4 1  w i n t e r  d r y  p e r i o d s  N = 251 
A = 0 . 4 1 7 6 1  B -- 0 . 8 0 2 1 5  sp r ing  d r y  p e r i o d s  N = 332 
A = 0 . 2 5 4 5 5  B -- 0 . 9 0 8 6 8  s u m m e r  d r y  p e r i o d s  N -- 247 
A -- 0 . 2 7 2 2 0  B -- 0 . 9 0 6 0 1  fall d r y  p e r i o d s  N -- 243 

(2)  Precipitation-distribution componen t :  

A -- 0 . 3 6 3 1 1  B -- 0 . 6 9 9 1 0  1s t  ha l f  o f  s t o r m  
A -~ 0 . 3 5 4 2 2  B --- 0 . 7 0 4 4 1  2 n d  ha l f  o f  s t o r m  
A -- 0 . 2 1 0 2 4  B = 1 . 6 2 1 0 9  1st  ha l f  o f  s t o r m  
A --- 0 . 2 1 9 2 3  B = 1 . 5 0 9 4 0  2 n d  ha l f  o f  s t o r m  
A -- 0 . 1 4 4 6 8  B ---- 1 . 3 7 0 1 2  1st  ha l f  o f  s t o r m  
A --- 0 . 1 1 3 5 6  B -- 1 . 5 8 2 5 2  2 n d  ha l f  o f  s t o r m  
A --- 0 . 0 2 3 7 4  B -- 2 . 3 8 3 3 0  1s t  ha l f  o f  s t o r m  
A -- 0 . 0 4 8 3 0  B = 1 . 9 3 1 1 5  2nd  ha l f  o f  s t o r m  
A -~ 0 . 9 8 6 9 8  B -- 1 . 3 2 1 2 9  1st  ha l f  o f  s t o r m  
A ~- 0 . 0 2 5 7 7  B ---- 2 . 0 2 0 5 1  2 n d  ha l f  o f  s t o r m  
A -~ 0 . 0 1 4 7 9  B -- 2 . 0 9 3 7 5  1st  ha l f  o f  s t o r m  
A = 0 . 0 1 4 1 4  B = 2 . 1 4 6 4 8  2 n d  ha l f  o f  s t o r m  
A -- 0 . 0 0 5 0 2  B = 2 . 5 5 0 7 8  1st  ha l f  o f  s t o r m  
A = 0 . 0 2 7 8 2  B -- 1 . 6 6 7 9 7  2nd  ha l f  o f  s t o r m  
A -- 0 . 0 0 7 9 9  B -- 2 . 1 7 1 8 8  1st  ha l f  o f  s t o r m  
A ---- 0 . 0 1 0 4 5  B ---- 2 . 0 1 5 6 3  2nd  ha l f  o f  s t o r m  
A -: 0 . 0 0 7 3 6  B --- 2 . 1 2 1 0 9  1st  ha l f  o f  s t o r m  
A ---- 0 . 0 0 6 0 9  B ---- 2 . 2 0 1 1 7  2nd  ha l f  o f  s t o r m  
A -= 0 . 0 0 3 7 6  B -- 2 . 2 7 7 3 4  1st  ha l f  o f  s t o r m  
A --~ 0 . 0 1 5 6 2  B = 1 . 6 6 0 1 6  2 n d  ha l f  o f  s t o r m  
A = 0 . 0 0 2 3 6  B -- 2 . 1 6 8 9 5  1st  ha l f  o f  s t o r m  
A ---- 0 . 0 0 8 7 2  B ---- 1 . 7 1 0 4 5  2nd  ha l f  o f  s t o r m  
A -- 0 . 0 0 0 6 8  B = 2 . 1 7 2 8 5  1st ha l f  o f  s t o r m  
A == 0 . 0 0 2 3 3  B ---- 1 . 8 2 4 2 2  2 n d  ha l f  o f  s t o r m  
A = 0 . 0 0 0 5 5  B -- 2 . 0 4 4 9 2  1st ha l f  o f  s t o r m  
A -- 0 . 0 0 0 0 2  B ---- 3 . 0 3 1 2 5  2 n d  ha l f  o f  s t o r m  
A = 0 . 0 0 0 2 5  B --- 1 . 9 2 5 7 8  1s t  ha l f  o f  s t o r m  
A ---- 0 . 0 0 7 8 4  B --- 1 . 1 9 9 2 2  2 n d  ha l f  o f  s t o r m  
A ---- 0 . 2 8 6 8 0  B = 0 . 6 1 3 0 4  1st  ha l f  o f  s t o r m  
A -- 0 . 3 1 0 3 8  B ---- 0 . 6 1 2 7 9  2 n d  ha l f  o f  s t o r m  
A -- 0 . 3 5 5 0 0  B = 0 . 7 9 5 9 0  1s t  ha l f  o f  s t o r m  
A = 0 . 2 3 4 2 0  B -- 1 . 2 4 2 1 9  2nd  ha l f  o f  s t o r m  
A -- 0 . 2 5 5 8 6  B = 0 . 8 4 6 8 0  1st  ha l f  o f  s t o r m  
A = 0 . 1 7 2 0 2  B = 1 . 1 2 2 9 2  2 n d  ha l f  o f  s t o r m  
A = 0 . 1 0 7 4 9  B ---- 1 . 2 8 9 5 5  1st  ha l f  o f  s t o r m  
A = 0 . 0 5 4 4 5  B ---- 1 . 7 3 4 8 6  2nd  ha l f  o f  s t o r m  
A ---- 0 . 1 1 9 0 4  B ---- 1 . 0 4 5 9 0  1st  ha l f  o f  s t o r m  
A ~- 0 . 0 4 6 3 9  B = 1 . 5 8 7 8 9  2rid ha l f  o f  s t o r m  
A -- 0 . 0 4 6 0 5  B ---- 1 . 4 4 1 4 1  1st  ha l f  o f  s t o r m  

p r ev ious  s t a t e  
p r e v i o u s  s t a t e  
p r e w o u s  s t a t e  
p r e w o u s  s t a t e  
p r e w o u s  s t a t e  
p r e v i o u s  s t a t e  
p r e w o u s  s t a t e  
p r e w o u s  s t a t e  
p r ev ious  s t a t e  
p r e w o u s  s t a t e  
p r e w o u s  s t a t e  
p r e w o u s  s t a t e  
p r e w o u s  s t a t e  
p r e v i o u s  s t a t e  
p r e v i o u s  s t a t e  
p r e v i o u s  s t a t e  
p r e w o u s  s t a t e  
p r e v m u s  s t a t e  
p r e v ious  s t a t e  
p r e w o u s  s t a t e  
p r e w o u s  s t a t e  
p r e v i o u s  s t a t e  
p r e v ious  s t a t e  
p r e v i o u s  s t a t e  
p r e v i o u s  s t a t e  
p r e v ious  s t a t e  

1 N = 595 
1 N -- 553  
2 N = 407 
2 N = 643  
3 N  -- 548  
3 N - -  728 
4 N = 449  
4 N -- 533  
5 N -- 271 
5 N -- 360 
6 N = 261 
6 N -- 263  
7 N = 218 
7 N = 179 
8 N = 168 
8 N -- 180  
9 N = 1 0 3  
9 N = 107 

10 N = 167 
10 N = 163  
20 N = 743  
20 N -- 478  
30 N -- 247 
30 N = 171 
40 N -- 130 
40  N = 76 

p r e v i o u s  s t a t e . G E . 5 0  N = 104  
p r e v i o u s  s t a t e . G E . 5 0  N --- 87 
p r e v i o u s  s t a t e  
p r ev ious  s t a t e  
p r e v ious  s t a t e  
p r e v i o u s  s t a t e  
p r ev ious  s t a t e  
p r e v i o u s  s t a t e  
p r e v i o u s  s t a t e  
p r e v i o u s  s t a t e  
p r e v i o u s  s t a t e  
p r e v i o u s  s t a t e  
p r e v i o u s  s t a t e  

1 N ---- 597 
1 N = 619  
2 N -- 254  
2 N -- 432  
3 N --- 405  
3 N = 469  
4 N ---- 325 
4 N ---- 362 
5 N -- 165 
5 N -- 295 
6 N  ~- 107 
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T A B L E  V ( c o n t i n u e d )  

A = 0 . 0 2 1 1 6  
A = 0 . 0 1 2 2 3  
A = 0 . 0 1 8 7 2  
A = 0 . 0 6 6 5 4  
A = 0 . 0 1 5 5 7  
A = 0 . 0 0 8 3 0  
A = 0 . 0 3 9 8 8  
A = 0 . 0 2 5 0 9  
A = 0 . 0 4 6 9 6  
A = 0 . 0 1 5 9 0  
A = 0 . 0 2 3 5 2  
A = 0 . 0 1 1 6 7  
A = 0 . 0 1 4 0 8  
A = 0 . 0 1 2 6 7  
A = 0 . 0 2 9 9 1  
A = 0 . 0 0 3 7 8  
A = 0 . 0 4 0 6 2  
A = 0 . 3 3 0 1 8  
A = 0 . 3 4 5 1 6  
A = 0 . 2 8 9 2 1  
A = 0 . 2 5 8 0 1  
A = 0 . 1 1 4 1 1  
A = 0 . 1 3 6 0 0  
A = 0 . 0 2 2 9 3  
A = 0 . 0 3 0 3 3  
A = 0 . 1 8 0 6 2  
A = 0 . 0 9 7 2 9  
A = 0 . 0 6 3 3 6  
A = 0 . 0 3 2 0 8  
A = 0 . 1 0 5 3 7  
A = 0 . 0 2 6 6 8  
A = 0 . 0 7 2 8 9  
A = 0 . 0 1 4 1 2  
A = 0 . 0 1 2 0 8  
A = 0 . 0 1 2 6 2  
A = 0 . 0 1 0 4 0  
A = 0 . 0 1 6 7 2  
A = 0 . 0 1 5 7 6  

A = 0 . 0 4 0 9 8  
A = 0 . 0 0 8 8 0  
A = 0 . 0 2 1 0 2  
A = 0 . 0 1 3 1 7  
A = 0 . 0 2 1 0 6  
A = 0 . 0 1 0 7 1  
A = 0 . 0 7 5 8 4  
A = 0 . 2 6 9 0 8  
A = 0 . 3 6 2 8 7  
A = 0 . 2 7 1 8 5  
A = 0 . 1 9 2 4 0  
A = 0 . 1 2 9 6 1  
A = 0 . 1 3 3 4 7  
A = 0 . 1 2 8 8 5  

B = 1 . 9 2 9 6 9  
B = 2 . 0 4 2 9 7  
B = 1 . 8 4 7 6 6  
B = 1 . 0 8 8 8 7  
B = 1 . 7 6 9 5 3  
B = 1 . 8 9 2 5 8  
B = 1 . 3 0 4 6 9  
B = 1 . 3 7 8 9 1  
B = 1 . 1 7 3 8 3  
B = 1 . 3 9 5 5 1  
B = 1 . 3 1 5 9 2  
B = 1 . 2 8 7 6 0  
B = 1 . 2 7 1 4 8  
B = 1 . 1 7 7 7 3  
B = 0 . 9 5 3 1 3  
B = 1 . 2 3 1 4 5  
B = 0 . 7 6 3 6 7  
B = 0 . 4 7 3 4 2  
B = 0 . 4 7 7 3 0  
B = 0 . 9 0 1 8 6  
B = 1 . 0 2 1 9 7  
B = 1 .46387  
B = 1 . 2 8 4 1 8  

B = 2 . 3 8 6 7 2  
B = 2 . 0 8 2 0 3  
B = 0 . 7 4 1 2 1  
B = 1 . 1 0 5 4 7  
B = 1 . 2 3 2 4 2  
B = 1 . 6 2 3 0 5  
B = 0 . 9 2 0 9 0  
B = 1 . 5 6 2 5 0  
B = 0 . 9 9 6 0 9  
B = 1 . 8 3 5 9 4  
B = 1 . 7 9 6 8 8  
B = 1 . 7 3 4 3 8  
B = 1 . 7 3 4 3 8  
B = 1 . 5 8 5 9 4  
B = 1 . 4 0 1 8 6  
B = 1 . 0 5 2 2 5  
B = 1 . 4 1 5 0 4  
B = 1 . 1 1 9 1 4  
B = 1 .12891  
B = 1 . 0 7 8 1 3  
B = 0 . 9 7 0 7 0  
B = 0 . 6 5 5 7 6  
B = 0 . 6 1 1 4 5  
B = 0 . 6 2 6 2 2  
B = 1 . 1 9 6 2 9  
B = 1 . 5 4 3 2 1  
B = 1 . 4 7 5 1 0  
B = 1 . 4 3 1 4 0  
B = 1 . 2 0 3 3 7  

2 n d  ha l f  o f  s t o r m  
1st  ha l f  o f  s t o r m  
2 n d  ha l f  o f  s t o r m  
1s t  ha l f  o f  s t o r m  
2 n d  ha l f  o f  s t o r m  
1st  ha l f  o f  s t o r m  
2nd  ha l f  o f  s t o r m  
1st ha l f  o f  s t o r m  
2 n d  ha l f  o f  s t o r m  
1st ha l f  o f  s t o r m  
2 n d  ha l f  o f  s t o r m  
1st ha l f  o f  s t o r m  
2 n d  ha l f  o f  s t o r m  
1st  ha l f  o f  s t o r m  
2nd  ha l f  o f  s t o r m  
1s t  ha l f  o f  s t o r m  
2nd  ha l f  o f  s t o r m  
1st  ha l f  o f  s t o r m  
2 n d  ha l f  o f  s t o r m  
1st ha l f  o f  s t o r m  
2 n d  ha l f  o f  s t o r m  
1st  ha l f  o f  s t o r m  
2 n d  ha l f  o f  s t o r m  
1st ha l f  o f  s t o r m  
2nd  ha l f  o f  s t o r m  
1st  ha l f  o f  s t o r m  
2 n d  ha l f  o f  s t o r m  
1st  ha l f  o f  s t o r m  
2 n d  ha l f  o f  s t o r m  
1st  ha l f  o f  s t o r m  
2 n d  ha l f  o f  s t o r m  
1st  ha l f  o f  s t o r m  
2 n d  ha l f  o f  s t o r m  
1st ha l f  o f  s t o r m  
2 n d  ha l f  o f  s t o r m  
1st  ha l f  o f  s t o r m  
2nd  ha l f  o f  s t o r m  
1st  ha l f  o f  s t o r m  
2nd  ha l f  o f  s t o r m  
1s t  ha l f  o f  s t o r m  
2 n d  ha l f  o f  s t o r m  
1st  ha l f  o f  s t o r m  
2 n d  ha l f  o f  s t o r m  
1st  ha l f  o f  s t o r m  
2 n d  ha l f  o f  s t o r m  
1st  ha l f  o f  s t o r m  
2rid ha l f  o f  s t o r m  
1st  ha l f  o f  s t o r m  
2 n d  ha l f  o f  s t o r m  
1st  ha l f  o f  s t o r m  
2rid ha l f  o f  s t o r m  
1st  ha l f  o f  s t o r m  

p r ev ious  s t a t e  
p r e v m u s  s t a t e  
p r e w o u s  s t a t e  
p r e w o u s  s t a t e  
p r e w o u s  s t a t e  
p r e w o u s  s t a t e  
p r ev ious  s t a t e  
p r e w o u s  s t a t e  
p r e w o u s  s t a t e  
p r e v m u s  s t a t e  
p r e w o u s  s t a t e  
p r e w o u s  s t a t e  
p r e w o u s  s t a t e  
p r e w o u s  s t a t e  
p r e w o u s  s t a t e  

6 N -- 148  
7 N -- 123 
7 N -- 125 
8 N --- 129 
8 N - 132  
9 N  = 95 
9 N = 105 

10 N = 108 
10 N = 95 
20 N ---- 507 
20 N = 443  
30 N = 254  
30 N ---- 188 
40 N = 152 
40 N = 72 

253  
127 
486  
476  

112  
226  
193  
250  
120  
169 
106  
128 

77 
92 
65 
86 
74  
73 
68 
65 
32 
43 

244  
179 
115 
101 

59 
54 

249  
127 
4 9 3  
4 5 6  
345 
661 
640  
657 
315 

p r e w o u s  s t a t e . G E . 5 0  N = 
p r e w o u s  s t a t e . G E . 5 0  N -- 
p r e v i o u s  s t a t e  1 N -- 
p r ev ious  s t a t e  
p r e w o u s  s t a t e  
p r e w o u s  s t a t e  
p r e w o u s  s t a t e  
p r e w o u s  s t a t e  
p r e w o u s  s t a t e  
p r ev ious  s t a t e  
p r e v i o u s  s t a t e  
p r e v ious  s t a t e  
p r e v i o u s  s t a t e  
p r e v i o u s  s t a t e  
p r e v i o u s  s t a t e  
p r e v ious  s t a t e  
p r e v ious  s t a t e  
pre~aous  s t a t e  
p r e v ious  s t a t e  
p r e v i o u s  s t a t e  
p r e v i o u s  s t a t e  
p r e w o u s  s t a t e  
p r e w o u s  s t a t e  
p r e v m u s  s t a t e  
p r e w o u s  s t a t e  
p r e w o u s  s t a t e  
p r e w o u s  s t a t e  
p r e w o u s  s t a t e  

1 N  = 

2 N  = - 

2 N  = 

3 N  = 

3 N  = 

4 N  = 

4 N - - -  

5 N - -  

5 N - =  

6 N  = 

6 N  = 

7 N  = 

7 N - - - -  

8 N  = 

8 N - - - -  

9 N  = 

9 N  = 

1 0 N  = 
1 O N  = 

2 0 N  = 
20 N = 

30 N - -  

3 O N =  

40 N -- 
40 N = 

p r e w o u s  s t a t e . G E . 5 0  N --- 
p r e w o u s  s t a t e . G E . 5 0  N = 
p r e w o u s  s t a t e  1 N = 
p rev ious  s t a t e  
p r e w o u s  s t a t e  
p r e w o u s  s t a t e  
p r e w o u s  s t a t e  
p r e w o u s  s t a t e  
p r e w o u s  s t a t e  

1 N  = 

2 N - - - -  

2 N - -  

3 N  = 

3 N  = - 

4 N - -  
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T A B L E  V (continued) 

A -- 0 . 0 4 5 2 2  B -- 1 . 9 1 2 6 0  2nd  ha l f  o f  s t o r m  
A = 0 . 0 2 7 5 8  B = 1 . 9 8 4 3 8  1s t  ha l f  o f  s t o r m  
A -- 0 . 0 6 3 9 3  B ---- 1 . 4 4 8 2 4  2 n d  ha l f  o f  s t o r m  
A -- 0 . 0 5 7 9 8  B = 1 . 3 6 1 3 3  1st  ha l f  o f  s t o r m  
A ---- 0 . 0 0 8 0 1  B = 2 . 4 1 2 1 1  2rid ha l f  o f  s t o r m  
A = 0 . 0 1 1 2 3  B ---- 2 . 0 3 3 2 0  1st ha l f  o f  s t o r m  
A :- 0 . 0 1 7 3 3  B = 1 . 8 6 2 3 0  2 n d  ha l f  o f  s t o r m  
A -- 0 . 0 2 3 6 1  B ---- 1 . 6 4 4 5 3  1st ha l f  o f  s t o r m  
A -- 0 . 0 0 5 0 0  B = 2 . 3 5 9 3 8  2nd  ha l f  o f  s t o r m  
A -- 0 . 0 0 5 9 1  B --- 2 . 1 4 8 4 4  1s t  ha l f  o f  s t o r m  
A ---- 0 . 0 1 2 5 7  B --- 1 . 7 8 9 0 6  2nd  ha l f  o f  s t o r m  
A --- 0 . 0 1 3 1 6  B -- 1 . 73828  1st ha l f  o f  s t o r m  
A -- 0 . 0 0 3 3 7  B = 2 . 2 8 9 0 6  2nd  ha l f  o f  s t o r m  
A = 0 . 0 0 7 6 5  B = 1 . 6 9 4 8 2  1st  ha f t  o f  s t o r m  
A = 0 . 0 1 3 8 6  B = 1 . 4 7 2 6 6  2nd  ha l f  o f  s t o r m  
A -- 0 . 0 0 1 4 1  B = 1 . 9 4 9 2 2  1s t  ha l f  o f  s t o r m  
A -- 0 . 0 1 3 0 7  B = 1 . 3 3 7 8 9  2 n d  ha l f  o f  s t o r m  
A -- 0 . 0 0 0 2 4  B = 2 .29297  1st  ha l f  o f  s t o r m  
A ---- 0 . 0 0 0 1 4  B --- 2 . 4 9 2 1 9  2nd  ha l f  o f  s t o r m  
A --- 0 . 0 0 5 7 0  B = 1 .11621  1st ha l f  o f  s t o r m  
A ---- 0 . 0 0 2 1 1  B --- 1 . 4 8 0 4 7  2 n d  ha l f  o f  s t o r m  

(3)Spatial-d~ibution component: 

0 . 5 6 8 8 9  0 . 0 0 3 3 8  0 . 0 1 5 5 3  
0 . 4 0 8 7 3  0 . 0 0 8 6 2  0 . 0 3 2 5 5  
0 . 3 1 6 2 3  0 . 0 1 3 4 4  0 . 0 4 9 6 0  
0 . 3 3 8 8 0  0 . 0 0 6 5 3  0 . 0 2 2 8 7  

p r e v i o u s  s t a t e  

p r ev ious  s t a t e  
p r e v i o u s  s t a t e  
p r e v i o u s  s t a t e  
p r ev ious  s t a t e  
p r ev ious  s t a t e  
p r ev ious  s t a t e  
p r ev ious  s t a t e  
p r ev ious  s t a t e  
p r e v i o u s  s t a t e  
p r e v i o u s  s t a t e  
p r ev ious  s t a t e  
p r e v i o u s  s t a t e  
p r ev ious  s t a t e  
p r e v i o u s  s t a t e  
p r e v i o u s  s t a t e  
p r ev ious  s t a t e  
p r ev ious  s t a t e  
p r e w o u s  s t a t e  

4 N -- 392 
5 N -- 264  
5 N --- 292 
6 N -- 170 
6 N --- 215 
7 N = 147 
7 N -- 164 
8 N -- 110  
8 N -- 141 
9 N = 115 
9 N - -  81 

10 N -- 81 
10 N -- 64 
20 N -- 530  
20 N -- 397 
30 N -~ 185 
30 N : 128 
40 N -- 115 
40 N - -  93  

p r ev ious  s t a t e . G E . 5 0  N : 200  
p r ev ious  s t a t e . G E . 5 0  N -- 94 

* R e f e r s  to  p r e v i o u s  s t a t e  p lus  one .  

record at gage 2 and for  the regional historical data derived by  Illinois State 
Water Survey. These data were derived from the partial<luration series of  
15-min. precipitation amounts.  

Fig. 6 shows the simulated frequency data at gages 2 and 3 produced by  
the proposed model  and the historical f requency data for 89 yr. of record at 
Morrow plots and for the Illinois State Water Survey regional data. These 
data were derived from the partial<luration series of  daffy precipitation 
amounts.  

Fig. 7 shows the correlogram for the simulated 100 yr. of  15-min. precipi- 
tation. As shown in Figs. 4--7, the proposed model appears to perform as 
intended. 

M A J O R  A C C O M P L I S H M E N T S  O F  T H E  P R O P O S E D  M O D E L  

(1) The proposed model  can produce as many extreme values wi thout  
an upper bound as one wishes. Therefore, it can produce such values greater 
than the historical values. This is clearly shown in Fig. 5. 



TABLE VI 
Utilization of computer programs for the proposed stochastic model 
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Inputs Program Outputs 

Primary gage data 
(precipitation amounts 
and time of occurrence) 

Critical lag time 

Lengths of wet-and-dry 
sequences 

Primary gage data 
(precipitation amounts 
and time of occurrence) 

Critical lag time 

Primary and secondary 
gage(s) "data" 
(precipitation amounts 
and time of occurrence) 

Parameters for each 
season of the three 
model components; 
table 5-1 

program "SEQ": (calculates 
length of wet period in hours 
and length of dry period in 
days); appendix A* 

program "WEIB": (calculates by 
method of maximum likelihood 
the parameters for the Weibull 
distribution for wet-and-dry 
sequences); appendix B* or 
appendix C* 

program "DIS": (calculates by 
method of maximum likelihood 
the parameters for the Weibull 
distribution for the transition 
probability matrix for 
precipitation distribution); 
appendix D* 

program "STORM": (time match 
of precipitation amounts 
between primary gage and 
and secondary gage, then use 
standard package program for 
regression analysis with 
residuals normally 
distributed ) ; appendix E* 

program "RAIN": (generates 
precipitation amounts and time 
of occurrence for any number 
of years specified); appendix F* 

lengths of wet-and-dry 
sequences 

parameters for WeibuU 
distribution for each 
season of wet-and-dry 
sequences; table 5-5 

parameters for Weibull 
distribution for each 
season of the 
transition probability 
matrix of precipitation 
distribution; table 5-6 

parameters for each 
season of the spatial 
regression component; 
table 5-7 

"N" years synthesized 
precipitation 

* Morris (1978). 

(2) The p roposed  mode l  seems to  p roduce  f r e q u e n c y  data  of  similar 
t rend.  This is shown  in Fig. 6 tha t  curves for  the s imulated da ta  o f  gages 
2 and 3 and fo r  the  89-yr .  Mor row plots  da ta  appear  to  be parallel. The 
re la t ionship  b y  the  Illinois State  Water Survey does no t  fo l low the t rend of  
the  da ta  p r o b a b l y  due  to spatial var ia t ion o f  the  precipi ta t ion .  This spatial 
variat ion m a y  also a c c o u n t  for  the  differences  a m o n g  the o the r  curves. 

(3) The p roposed  s tochast ic  mode l  can generate  15-min.  prec ip i ta t ion  
data  for  a n e t w o r k  o f  s ta t ions for  use as inpu t  to  urban watershed  model ing.  
In such appl ica t ion ,  the  fo l lowing characterist ics o f  the  prec ip i ta t ion  data  
can be r e p r o d u c e d  adequa te ly :  
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Program "SEQ" 
length of wet- 
-and-dry 
sequences; 
appendix A 

Program "WEIB": 
seasonal 
Weibull distri- 
bution param- 
eters for wet- 
-and dry 
sequences: 
appendix B or C 

I 

I Input "data": 
precipitation amounts 
and time of occurrence 
for network 

{Package program) 
"autocorrelation": 

] determine critical lag" 

t 
Program "DIS": 
seasonal Weibull distri- 
bution parameters for the 
probability transition 
matrix for precipitation 
distribution; 
appendix D 

1 
I Stochastic model's ] 

parameter matrix; 
table 5-1 

Program "RAIN" 
"N" years of synthesized 
precipitation; 
appendix F 

I 
rogram "STORM" 
easonal 
egressional 
arameters with 
andom compon- 
nt for spatial 
istribution; 
ppendix E 

I 

Fig. 3. Operational flow-chart for the stochastic model. 

I x i 0  -2 

i~ 1×1o - '  

lx10 -1 

lx10-~ 

I x i 0  JANUARY 

lxlO - I  

l x i0  -3 

I I i I I 

GAGE #2 

i i i i | 

GAGE #3 

20 40 go 

Time in 15-minute intervals 

Fig. 4. Simulated precipitation by the proposed model. 
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Fig. 5. Frequency data of historical and simulated 15-rain. precipitations. 
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Fig. 6. Frequency data of historical and simulated dally precipitations. 

(a) the mean and variance of the storm precipitation (Tables VII and VIII); 
(b) the distribution of the storm lengths, storm precipitation, and lengths 

of dry periods (Table I); 
(c) the autocorrelation structure of the precipitation (Figs. 2 and 7). 

CONCLUSIONS 

The wet~nd~lry sequences of data need to be modeled separately from 
the precipitation distribution within a storm. Since the precipitation data 
consist mostly of groups of zero pulses, in most cases of extended length, 
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Fig. 7. Correlogram (cor x( t ) ,  x ( t  + T)) for simulated data by proposed stochastic model. 

difficulties arise when a stochastic model is used to model both the wet- and 
dry-period precipitation processes. Also, a Markov chain is used to model 
the rainfall distribution within the wet-period. A one-step Markov chain is 

TABLE VII 

Frequency counts for 13 years of historical data 

Absolute Relative Accumulated 
Amounts  frequency frequency frequency 

Gage 2 3 2 3 2 3 

0.001 3,228 2,019 12.6 10.9 12.6 10.9 
0.002 4,121 2,637 16.0 14.2 28.6 25.0 
0.005* 1,463" 1,142" 5.7* 6.0* 53.5* 47.6* 
0.007* 1,111" 639* 4.3* 3.4* 62.6* 56.0* 
0.010" 627* 443* 2.4* 2.4* 71.5" 65.0* 
0.020* 224* 163" 0.9* 0.9" 84.9* 79.2* 
0.050* 43* 31" 0.2* 0.2* 95.1" 93.5* 
0.070* 15" 15" 0.1" 0.1" 96.9* 96.0* 
0.100" 1" 2* 0.0" 0.0" 98.2* 97.6* 
0.200* 2* 2* 0.0" 0.0" 99.3* 99.2* 
0.508* 1" 1" 0.0" 0.0" 99.9* 99.9* 
0.730* 1" 1" 0.0" 0.0" 100.0" 100.0" 
0.811" 1" 1" 0.0" 0.0" 100.0" 100.0" 

Statistics for 13 years o f  historical data: 

Mean 0.014 0.017 
Mode 0.002 0.002 
St. dev. 0.034 0.040 
Median 0.005 0.006 
Variance 0.001 0.002 

*Intermediate values not shown in table. 
Total number  of data points = 25,712 ( gage 2 ), and 18,597 ( gage 3). 
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Frequency counts for 100 years of generated data 

271 

Absolute 
Amounts frequency 

Gage 2 3 

Relative Accumulated 
frequency frequency 

2 3 2 3 

0.001 16,712 3,382 
0.002 16,154 3,264 
0.005* 12,369" 3,482* 
0.007* 9,667* 3,434* 
0.010" 6,641" 3,504* 
0.020* 1,903" 2,950* 
0.050* 222* 803* 
0.070* 96* 343* 
0.100" 62* 104" 
0.200* 20* 1" 
0.495* 3* 1" 
0.660* 3* 
1.000" 1" 
1.326" 1" 
1.451" 1" 

Statistics for 100 years of  generated data: 

Mean 0.015 0.027 
Mode 0.001 0.010 
St. dev. 0.032 0.025 
Median 0.007 0.021 
Variance 0.001 0.001 

9.4 2.4 9.4 3.6 
9.0 2.4 18.4 6.0 
6.9* 2.5* 41.2" 13.4" 
5.4* 2.5* 52.8* 18.4" 
3.7* 2.6* 65.4* 26.1" 
1.1" 2.2* 84.3* 49.3* 
0.1" 0.6* 95.1" 85.9* 
0.1" 0.3* 96.8* 93.8* 
0.0" 0.1" 98.0* 98.1" 
0.0" 99.4* 99.9* 
0.0" 100.0" 100.0" 
0.0" 100.0" 
0.0" 100.0" 
0.0" 100.0" 
0.0" 100.0" 

*Intermediate values not shown in table. 
Total number of data points -- 178,664 (gage 2); and 136,555 (gage 3). 

used because the future amount  of  precipitation for a 15-min interval is 
mainly dependent  on the present amount  of  precipitation for a 15-min. 
interval. Weekly stationary precipitation sequences are obtained by  reducing 
the seasonal periodicity b y  employing stochastic models for each season of  
winter, spring, summer and fall. 

An extension and improvement  of the classic Markov chain transition 
probabil i ty matrix is developed and applied. This is done by  fitting an 
analytical funct ion to describe the matrix. The benefi t  is two-fold:  

(1) the scheme generates values that  have not  been observed. 
(2) it smoothes the observed data so that distinguishable trends in the 

shape  o f  t he  p r o b a b i l i t y  d i s t r i b u t i o n  can be  e x t r a p o l a t e d  to  c o m p l e t e  t he  
ta i l  end  o f  each  r o w  of  t h e  m a t r i x .  

The  c o m p u t e r  t i m e  r e q u i r e m e n t  b y  the  s tochas t i c  h y d r o l o g i c  m o d e l  
a l g o r i t h m  is n o t  excess ive ;  i t  is e s t i m a t e d  to  be  ~ 1 s of  CPU t i m e  on  a 
CDC®-175 c o m p u t e r  t i m e  pe r  y e a r  o f  d a t a  gene ra t ed .  The  p a r a m e t e r  
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estimation component for the precipitation distribution requires ~ 100 s of 
CPU time per year of observed input data. 

The principal advantage of this model is that it can statistically predict or 
project extreme events and preserve the statistical moments of the data base. 
This predictive capability is intrinsically incorporated into each component 
of the model. 

SUMMARY 

The major contributions are as follows: 
(1) An intermittent small-interval precipitation stochastic model in time 

and space. 
(2) A procedure to predict the probability of occurrences of the extreme 

events. 
(3) A tool for studying urban runoff by generating precipitation from 

past data, which can then be converted to runoff using a runoff model. 
Through the application of the proposed stochastic model to the 

Boneyard Creek network data, the following specific conclusions can be 
made: 

(1) The model can reproduce the trend of the frequency of precipitation 
amounts from the recorded 89-yr. Morrow plots data, with small spatial 
variations. 

(2) The model reproduces the mean and variance of storm precipitations, 
the storm lengths, the dry-period lengths, the transition probability distri- 
butions of the precipitations, and the autocorrelation structure of the 
Boneyard Creek network data. 
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