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IEEE Transactions on Power Apparatus and Systems, Vol. PAS-102, No. 5, May 1983

THE APPLICATION OF BOND GRAPHS TO ELECTRICAL

MACHINERY AND POWER ENGINEERING

K. SIRIVADHNA E.F. RICHARDS M.D. ANDERSON

University of Missouri-Rolla

ABSTRACT

The bond graph technique, which has been related
almost entirely to the field of mechanics, is a
modeling procedure where emphasis is placed on the flow
of power and energy in a system. Through specific di-
gital simulation programs such as ENPORT IV and V and
THTSIM the state space representation, associated
output equations and system dynamic response are di-
rectly obtainable from the bond graphs. This approach
has a great advantage where a complex system is com-
posed of electrical, mechanical, thermal, hydraulic or
pneumatic subsystems, such as would exist, for example;
in a boiler, turbine, generator exciter system together
with its associated controls.

The purpose of this paper is three-fold: (1) to de-
velop interest in the bond graph modeling technique in
power engineering -(2) to develop bond graph models
for typical synchronous and induction machines which
are not -as well developed in the literature as are the
graphs of mechanical components and (3) to complete some
of the missing links in the development of bond graphs
for electromechanical machines.

Standard well known orthogonal axis transforma-
tions are used in the model development. The bond
graphs thus developed from accurate mathematical re-
lations can be easily integrated into other electrical
or non-electrical systems through the power bonds of the
graphs.

INTRODUCTION

The application of bond graphs to electrical power
engineering has been very limited. This paper presents
basic concepts, identifies contributions which have been
made, provides references and presents bond graph struc-
tures related to field theory with application to elec-
trical machinery.

The pioneer of the bond graph was Henry M. Paynter
E1], who, through his simulation techniques using block
diagrams, recognized the need for introducing a concept
using power and energy as input-output variables. This
differs from block diagram structure where the input-
output parameters vary with the components. This con-
cept of using power and energy as input-output para-

82 SM 355-6 A paper recommended and approved by the
IEEE Power System Engineering Committee of the IEEE
Power Engineering Society for presentation at the IEEE
PES 1982 Summer Meeting, San Francisco, California, July
18-23, 1982. Manuscript submitted August 31, 1981; made
available for printing April 14, 1982.

meters easily permits the marriage of mixed components.
The general bond graph structure has been further de-
veloped in the last decade particularly by Karnopp and
Rosenburg [3], (13], [151, [17]. Rosenberg [ll]
provides a good list of references.

Bond graphs, by-definition, are a collection of
multiport elements bonded together. At each of the
ports two variables are defined whose product defines
power. Systems and subsystems are classified according
to the number of energy and power ports through which
energy or power is exchanged with the environment and
also in terms of the internal energy and power trans-
formations involved. A bond graph is analogous to a
linear network graphs where the multiport elements cor-
respond to the nodes and the bonds correspond to the
branches. The graphs may be of an open or closed loop
structure, simple or very complex.

In the past, most applications of bond graphs have
been almost entirely applied to mechanical systems. In
electromechanical energy conversion devices, such as
the rotating electrical machine, mixed energy conver-
sion occurs between electrical circuits and electro-
magnetic field domains and the use of bond graphs are
very applicable.

All systems which involve mixed engineering compo-
nents of all types (mechanical, electrical, hydraulic,
thermal) are conveniently represented by bond graphs.
The elements (components) are modeled as energy multi-
ports whose bond to other elements are through power-
bonds. The overall bond graph structure is easily re-
lated to a state-space formulation and the determina-
tion of linear system dynamics can be readily acquired
using the ENPORT IV or V digital computer simulation
programs.

Since the application of bond graphs in electri-
cal engineering has been minimal, the basic concepts of
graph formulation havebeen included in the Appendix.

BOND GRAPH MODELS

In this iection bond graph models of an ideal syn-
chronous machine and an ideal induction machine will be
formed and developed in two separate sections. The
equations describing these machines are summarized from
other references and the bond graph elements given
in the Appendix will be utilized.

A. Bond Graph Model of an Ideal Synchronous Machine

The following equations are the standard mathema-
tical relationships of the ideal synchronous machine
di;reloped for the odq transformed axis. obtained from:s&-
fe,rences [5], [18], [191.

0018-9510/83/0500-1176$01.00 i 1983 IEEE
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The flux linkage equations are:
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The voltage equations are:
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The stator d-axis and q-axis power flow equations are:

2vdid =rbid + did + wxqid
v i =r i + X i - w iq-q c q q q d q

Each term has the same interpretation as in the
o-axis equation. The last terms are speed-voltage
terms which produce the electrical torque. The bond
graph of d-axis power flow is:
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Rd = rb
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R - 1 MGY -- to produce torqued
q

to magnetic circuit

Similarily, the bond graph of q-axis power flow is:

v YiIq R = r
q c

The equation for the machine torque is:

Jdw-= T + T
d me

Te = (idAq iqXd)

Using the power flow approach, each of the voltage
equations will be multiplied by the corresponding cur-
rent flowing in that circuit. The stator o-axis power
flow is then:

2
v0i = r i + A i + (3r i + 3X i )i

v i = power input to o-axis

r i2 = power dissipated in r (stator re-
0 0 sistance) 0

X0i0 = power transferred into the magne-
tic circuit

(3r i + 3e i )i = the power lost and stored in the
s 0 s 0 0 neutral impedance

Under the bond graph modeling technique, two or more
of the same types of impedances cannot be presented at
a one junction and this equation must-be rewritten as:

2v i = (r + 3r )i + (A + 3t i )i

= R i + (A + 3,ei )i

The bond graph of the o-axis power flow is then (see
Appendix):

v 'i0 0

1 Ro (total resistance)

to magnetic circuit

R 1 MGY to produce torque
q Ad

d

to magnetic circuit

The power flow equation in the rotor field circuit is:

vi = rFi + xiF F F F F F

The bond graph of rotor field circuit power flow
then:

is

VF, 'F

R 1

Ito magnetic circuit.

The rotor d-axis and q-axis power flow equations are:

2
IVDiD =rDip+ XD D
v i =r i +A i
VQiQ = rQi + QiQQ Q Q Q Q

There is no direct power input to the D and Q damper
windings, so

VDiD = 0 , vQiQ = 0

The bond graph of rotor d-axis power flow is:

RD 1 to magnetic circuit

The rotor q-axis power flow bond graph is:

R -1- to magnetic circuitQ RQ = rQ

I- =o r
r r

RD = rD
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The magnetic circuit equations are the flux linkage
equations which can be represented by

to stator d-axis to stator q-axis

to rotor d-axis I - to rotor q-axis

to rotor field-"0 ' ~ "to stator o-axis

The swing equation power flow is:

wJdw = wT ++ eT
dt

= wTm + q(i - Xdiq)
= wT -wXi + wX im d q q d

wJdu = machine accelerating power
dt

wT = mechanical input of the machinem

ux i = electromechanical power in stator d-axis
q d

wX i = electromechanical power in stator q-axis.d q

The swing equation bond graph is:

T wm

to stator MGY 1- MGY to stator
d-axis xq xd q-axis

I = J
M

Now by combining the bond graphs developed, the entire
ideal synchronous machine can be represented as:

Vd'id Tm w v,iq

Rd_ MGY MGY----1 Rq
q j d

Im/
Ro~1 - I _ R0

V!
MF X F o 0i

By using the ENPORT IV program, the power flow and
causality are identified as:

Vd,id T,W

Rd M.G 1 1M Rq

Ro RD--XI;' 1 -

R Rq 1,RF 0

V ,i"F iF

B. Bond Graph of the Ideal Induction Machine

Using the same approach as in the last section,
the mathematical equations of the ideal induction ma-
chine are listed below [5], [19].

The flux linkage matrix in the odq reference frame is:

x 0 00 00 i
0 0Ss

xd 0 LSs 0 0
M ° id

0 0 L 0~ 0 I'm iq= ss q

X 0 0 0 L 0 0 i0 RR 0

xD O LM0 0 LRR 0 iD
x 0 0 LMM0 0 LR iT Q OOuionsRRaQ

The voltage equations are:
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The swing equation is:

Jdw= T + T
dt m e

Te = (iDAQ - iQX.)

Equations of power transfer are:
2 .2 2

p= (i0X + idX + iqXq) + (i0r + idr + iar)s oo dd q q o a d b a c

+W(idA - i X ) + (3r i + 3Si )i0d q q d s o s o o
2 2 2

Pr (iO + iDD + iQXQ) + (i0rA + iDrB + iQrd)
DSQ(iX iQAD) + (3ri0 + 3eri ) i

The stator o-axis power flow is:

2
v0i = rai2 + X i + (3r i + 3e i )i

vii = power input to o-axis

r i2 = power dissipated is r
a o a

X i = power transferred in to magnetic
circuit

(3rsi0 + 3esi0)i0 = the power lost and stored in the
neutral impedance

The bond graph of the o-axis power flow then becomes:

v i
oN 0

-- R (total resistance)
0

R = r +3r
to magnetic circuit o a s
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The stator d-axis and q-axis power flow equations;are:

vi =rbi2 + xAi +uAid d bdddqd

v i -ri' + A i
q q c q q q d q

Each tern has the same meaning as the o-axis re-
lationships. The last terms again are speed-voltage
terms which represent power transferred across the air-
gap to the rotor circuit.

The d-axis power flow bond graph is:

vd id d B=r
R =r

R - 1 MGY _ to rotor circuit
dX

q

to magnetic circuit

and the bond graph of q-axis power flow is:

vq, iq R = r
~~~~q

R 1 MGY to rotor circuit
q |

d

to magnetic circuit

The rotor o-axis power flow equation is:

2
v0io0 rAi0+xA00+ (3rri0 + 3 ri )i

v0io = power input to rotor o-axis = 0

rAiO = power dissipated in rA

A0io = power transferred into the magnetic
circuit

(Orri0 + 3erio)io = the power lost and stored by the
neutral impedance

The bond graph of the rotor o-axis power flow becomes:

1 R0 (total resistance)

to magnetic circuit

The rotor d-axis and q-axis power flow equations are:

2
D D rBiD + DiD + \QiD - U-S)xQiD
vQiQ = rciq + qiq -uwxDiQ + (1-s)@xDiq
vDiD = O , vqiq = 0

The third terms on the right hand side represent
the power transferred from stator circuit across the
air-gap by transformer action and the fourth terms on
the right hand side are the electromechanical power
output.

Finally, the rotor d-axis power flow bond graph is:

1 to produce torque

MGY %rD

I
RD I- MGY to stator circuit

AQ

to magnetic circuit

The bond graph of the rotor q-axis power flow is:

to produce torque
I RQ =rQMGYAX

RQ 1- MGY to stator circuit

AD

to magnetic circuit

The magnetic circuit equations are the flux lint
equations which can be represented by

to stator axis

to stator d-axis h to rotor d-E

to stator q-axis to rotor q-E

kage

axis

axis

to rotor axis

The swing equation power flow is:
dw

w J-= w T + w Tr dt r m r e

=wrTm + wr(A i - A'4)r m r Q D D Q

=wT + wAXi -X A
r m r D Q r QuD

wr = rotor angular velocity

dw
w .r = power stored in inertia of the machinerdt

wrTm = mechanical input of the machine

wrnQiD = electromechanical power in rotor d-axis

rADiQ = electromechanical power in rotor q-axis

The bond graph of the swing equation is:

T wml r

to rotor- MGY- 1 - MGY- to rotor
d-axis qQ AD q-axis

IM= i
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The bond graph of the ideal induction machine thus be-
comes:

This model can be compared to the bond graph model of
the synchronous machine by D. Sahn [7] which is shown
below:

Rd Tm wq

vd sid"' j.. MGY ,- 7 MGY - vq, iq
1 d

qdq
Il~~R0 I~

VFtiF

and

RQ

If the magnetic circuit is separated in the simplified
model, both models are exactly the same.

The induction machine model can also be simplified
by assuming balanced conditions and the modified induc-
tion machine bond graph models is:

t TF

\N vq,iq
MGY

%Rell 1 1

q RQ
C. Remarks Concerning ENPORT IV and V Digital Programs

The ENPORT IV or V programs do not have the capa-
bility of solving the non-linear bond graph. Because of
the MGY elements, the bond graph model of the syn-
chronous and induction machine are nonlinear. Even
though this program cannot compute the dynamic so-
lutions of these models, it can however,be used to find
power flow and causalities of the models as has been
previously indicated. Since these models are formed
from accurate mathematical equations representing the
ideal synchronous and induction machines, there is a
very high degree of confidence that these models will
generate representative characteristics of the machines
if these models were run on a non-linear digital
computer program.

The bond graph model of the synchronous machine
can be simplified by assuming balanced conditions, and
equal phase resistance in each stator circuit. If the
three phase circuit is balanced, there is no current or
voltage in the zero sequence and the o-axis circuit can
then be deleted from the model.

This leads to a simplified bond graph of the synchro-
nous machine:

Rd

MGY Vqi

xd\

I

1

/1 \

I Q Q\I
I IM -1-Tmwr I

\ ltMGY MGY

1
I I
Rq RQ

The bond graph model of the induction machine
by D. Sahn [7] is

Vd'id'

given

Etd Tmw@ Rq

.- MGY - 1- MGY v i
Aq Aq q

rI
j'--- 1. m- RD

1-R-F
I

RQ--

They are not alike. The model from [7] does not in-
clude the relationship to rotor speed and also does not
include transformer action. Both of these characteris-
tics are usually presented in the conventional model of
the induction machine, otherwise they would be equiva-
lent.

VdVid Tmiw vq iq

RA - M1 -1 1 - MG - _~ Rq

RQ 1_ I I RRF1 ~~~~~~~~~~~~~~~~~~~~~~~~~~1 G1~~~~~~~~~I
VF iF

Unfortunately, these models developed cannot be
used to simulate the machine dynamics at this time be-
cause the bond graph digital computer programs availa-
ble are unable to solve the non-linear bond graph mo-
dels. The authors were recently informed by Prof. R. C.
Rosenberg of Michigan State University that the program
named THTSIM is a bond graph digital program which has
been recently formulated to solve the non-linear bond
graph models. This program has been written by Prof.
J. J. van Dixhoorn of the Department of Electrical En-
gineering, Enschede, Netherlands for a PDP system (LSI-
11 under RSX 11M or Rt-ll) which must be translated to
run on an IBM system. With this program, a system
utilizing the non-linear characteristics of these ma-
chines can be studied easily by using the bdnd graph
technique of modeling.

IR
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CONCLUSIONS

The basic bond graph concepts have been introduced
considering the concept of power flow. The real advan-
tage in using this technique is (1) mixed energy sys-
tems can be bonded together without regard to the form
of the energy (2) the procedure provides a powerful
tool in developing a systematic approach to obtaining
the state equations for dynamic systems (3) the tech-
nique predicts problems in developing the system dyna-
mics before equations are written throughcausality con-
siderations and (4) it provides a very pictoral view of
the interactions of the various components.

The odq power invariant transformations have
been used to obtain the bond graphs for the synchronous
and induction machine. Through the use of the ENPORT
program causality and power flow directions have been
obtained.

The usefulness of the bond graph formulation for
linear and non-linear systems and the applications of
the ENPORT digital program to linear graphs for ob-
taining causality and dynamic response is very ap-
pealing. Future applications using the THTSIM program
or equivalent programs, which are being developed with
increasing interest, will remove the non-linear con-
straint from the bond graph approach and open up many
new applications of the procedure.

LIST OF SYMBOLS

o = stator o-axis winding
d = stator d-axis winding
q = stator q-axis winding
O = rotor o-axis winding
D = rotor d-axis winding
Q = rotor q-axis winding
F = rotor field winding
i = instantaneous current
v = instantaneous voltage
A = instantaneous flux linkage
L = inductance
r = resistance
R = total resistance
w = synchronous speed
J = angular momentum

Tm = mechanical torque
Te = electrical torque
rs= stator neutral resistance
t = stator neutral inductance
rr = rotor neutral resistance
tr= rotor neutral inductance
wr= instantaneous rotor angular velocity
s = slip

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on July 14,2023 at 19:31:31 UTC from IEEE Xplore.  Restrictions apply. 
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APPENDIX

BASIC BOND GRAPH CONCEPTS

A bond graph is a type of linear graph which gives
a clear display of the relationship between the
variables of a dynamic system. In bond graph notation
[2], [3], there are nine basic multiport elements and
four power-energy variables which are necessary in de-
scribing them. The multiport elements are considered
to be nodes of the graph and the bonds the branches.
These generalized four variables are:

a. Effort e(t)

Examples voltage, force, torque, pres-
sure, temperature

b. Flow f(t)

Examples current, velocity, angular
velocity, volume flow, heat flow

c. Momentum p(t) (time integral of effort)

Examples flux linkage, linear momentum,
angular momentum, pressure momentum

d. Displacement g(t) (time integral of flow)

Examples charge, displacement, rotation,
volume, heat energy

The bond representing a pair of effort and flow
variables gives a product which is scalar power.

P (t) = e(t)f(t) (1)

This bond may be represented as follows:

f

The half-arrow describes the direction for assumed
positive power flow. Each bond may be marked by a
short single vertical stroke which establishes a sense
of input-output to each of the elements in the system,
and defines the concept of causality.

This concept is important. For example: In the
case of an inductance (element), if we attempt to
introduce a step change in current (flow) an impulse in
voltage (effort) appears, which is unnatural. There-
fore a more appropriate input to the inductance is a
voltage which preserves energy continuity. This is
indicated in causality notation on a bond graph for
element L as:

e -,
-L*f

4f
or using the shortstroke -IL

notation

The nine interdisciplinary basic multiport ele-
ments without causality indicated are as follows:
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1. The inertance (storage element) represented as:

e ,,

L
i f

is defined by:

e(t) = L Df(t)L (2)

2. The capacitance (storage element) represented as:

e

f..4 c

is defined by:

f(t) = CDe(t) (3)

3. The resistance (dissipation element) represented as

_nannnab R
-ff

or

4 e

_____ R

f

e1 e3
f1 f 3

e2 f2

(9)

where:

e1 e2 e3
f = f = f1 2 3
NOTE: In an electrical circuit this would appear

as a series connection.

9. The common effort junction (a 3-port shown) is some-
times called a zero junction and is represented as:

e Oe

e2lf2

where by definition:

e1 e2 =e3

f1+ f2 f3
(10)

is defined by:

e(t) = Rf(t)

4. The effort source, represented as SE is
fined by:

e(t) = .SE(t)

5. The flow source, represented as SF----&,
fined by:

(4)

de-

(5)

is de-

f(t) = SF(t) (6)

6. The transformer (2-port) represented as:

f TF f1 2

is defined by:

Ie m ° re2

7. The gyrator (2-port) represented as:

-Q GY
f1 f21 2

is defined by:

e[J o m e2

(7)

NOTE: In an electrical circuit this would be a
parallel connection.

Both the zero and one junction are power conserva-
tive, i.e., the net power at the junction is zero and
is taken into account by directionality of the power
half arrows.

Special elements useful to the development of the
synchronous and induction machine are:

A. Modulated Gyrator (MGY)

A gyrator is a 2 port element. Mathematical
equations of the gyrator are:

where

e = effort

f = flow

r = gyrator modulus

The bond graph notation of the gyrator is:

el e2
f GY f
1 ~~~2

r

The modulated gyrator is a gyrator where its modu-
lus is a function of a variable in the model, g(x), in-
stead of a constant.

The bond graph notation of the modulated gyrator
is given as:

(8)

8. The common flow junction (a 3-port indicated)
is sometimes called a one junction and is represented
as:

MGY _
f f2

g (x)
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B. Multiport Inertance

One port inertance (I) can be represented by:
t-

pl(t) = pl(to) + X e1(s)ds s = a dummy
variable

f, g(p1)
The bond graph notation of one port inertance is:

el

fi

Multiport inertance has mathematical representation as:

i gi(P1 P29 P3 t Pn =

Pi(t) = pi(t0) + f ei(s)ds, i 1,,...,n

The bond graph notation is:

e e

f fn

2
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