
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Faculty Research & Creative
Works Computer Science

03 Jan 1982

A Theory Of Small Program Complexity A Theory Of Small Program Complexity

Kenneth I. Magel
Missouri University of Science and Technology

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
K. I. Magel, "A Theory Of Small Program Complexity," ACM SIGPLAN Notices, vol. 17, no. 3, pp. 37 - 45,
Association for Computing Machinery, Jan 1982.
The definitive version is available at https://doi.org/10.1145/947912.947913

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of Scholars'
Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution
requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F1317&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F1317&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1145/947912.947913
mailto:scholarsmine@mst.edu

-37-

technical contributions
.A Theory_ of Small Program Complexitj_

Kenneth Magel

University of Missouri-Rolla

Abstract

Small programs are those which are written and understood by one
person. Large software systems usually consist of many small programs.
The complexity of a small program is a prediction of how difficult it
would be for someone to understand the program. This complexity depends
on three factors: (I) the size and interelationships of the program it-
self; (2) the size and interelationships of the internal model of the
program's purpose held by the person trying to understand the program;
and (3) the complexity of the mapping between the model and the program.
A theory of small program complexity based on these three factors is
presented. The theory leads to several testable predictions, Experiments
are described which test these predictions and whose results could verify
or destroy the theory.

Small programs are those which are written by one person in approx-
imately two weeks or less. They generally have fewer than two hundred
executable source statements, often considerably fewer. Small programs
are distinguished from larger programs in a very significant qualitative
way as well as by size: a small program can be understood in its en-
tirety by one person.

Belady and Lehman have treated a large software system as a statis-
tical object made up of many small programs [1,2,3]. Just as thermody-
namics can manipulate the properties of gases without considering the
properties of the individual atoms in each gas, Belady and Lehman have
developed several statistical laws based on observations of very large
software systems. Nevertheless, to really understand how large software
systems evolve, we must look at the small programs which form the parts
of any large system.

Computer scientists who work on the complexity of small programs
always seem to know what the term program complexity means, but they
rarely are explicit about revealing their definitions. They might propose
program complexity metrics, but different metrics yield different rela-
tive results for the same set of programs [4,5,6,7,8,9]. A new metric
is justified on the grounds that it gives results consistent with modern
precepts of good programming style [i0,Ii].

A useful program complexity metric is one which predicts how difficult
some future task will be. Difficult can mean either how long the task
will take, how many resources it will require, or how successfully it will
be preformed. A minimally useful metric could be one which when applied
to two programs predicted on which the task would take longer than on
the other, but neither how long nor the relative proportions of time
required. This would be a comparative metric. A more useful metric

http://crossmark.crossref.org/dialog/?doi=10.1145%2F947912.947913&domain=pdf&date_stamp=1982-03-01

-38-

would indicate the relative proportions of time required. This would be
a relative metric. The most useful metric would indicate how much time
would b~ required. This would be an absolute metric.

There are at least four tasks for which predictions of required
time, required resources, or probable success are needed:

(i) understanding the program as evidenced by answering questions
on the program;
(2) maintaining the pro~g~am;
(3) modifying the program;
(4) testing the program.

Understanding the program is necessary for the other three tasks. We will
assume that all reasonable tasks depend on how easily and how well the
program is understood.

The remainder of this paper has three sections. The first describes
the features which existing program complexity metrics consider to con-
tribute significantly to complexity. The second section presents the
theory and some published data which can be interpreted to support it.
The final section begins with some predictions which arise from the theory.
Experiments are proposed to test those predictions. The types of res~Its
which would support or conflict with the theory are discussed.

Factors in Small Program Complexity

Many computer scientists have proposed program complexity metrics of
limited scope. Each metric identifies a different set of syntactic features
as contributing to complexity. The oldest and probably the most widely
applied complexity metric is program size: the larger a program, the more
difficult it is to understand. Several authors have pointed out that
program size can be measured in many ways, e.g. lines of code including or
not including comments and declarations versus number of statements versus
number of lexical tokens or even characters [12]. Nevertheless, the very
limited studies of complexity metrics as predictors of program understanda-
bility or maintainability indicate that program size does about as well as
any other metric [13,14]. None of the metrics seem to do very well. They
work!as comparative metrics most of the time, but there are unexplained
and unpredicted anomalies. There is no published evidence to indicate
that any existing metric can do more than order programs. Size clearly is
an important contributor to complexity, but not the only important con-
tributor.

Barry Boehm and several colleagues at TRW did an extensive study in
the early 1970's of characteristics of software quality [15]. The charac-
teristics which they identified as being most significant include those
which existing software complexity metrics have tried to measure. The
characteristics identified by the TRW study as most important are:

(i)
(2)

(3)
(4)

self-descriptiveness;
completeness;
accessability;
communicativeness;

-39-

(5) device independence;
(6) consistency;
(7) structuredness;
(8) accuracy [15 pages 4-6 through 4-11].

These are explained in the rest of this section.

Self descriptiveness measures the extent to which a program provides
its own documentation. Included are such characteristics as the degree
to which variable names are descriptive of their purposes in the program
and~the use of header blocks of commentary for major sections of the
program°

Completeness measures the degree to which the program explicitly
checks for unexpected data or data which might cause the program to per-
form incorrectly. For example, if the program contains the statement,
C=A/B there should be a previous check that B is not zero. Another as-
pect of completeness is the clarity and usefulness of the error messages
produced by the program.

Accessability measures the degree to which the program allows the
user to select desirable features such as printouts of intermediate values.

Communicativeness measures how easily a user can provide needed in-
puts and interpret the outputs of the program in meaningful ways.

Device independence measures the extent to which a program uses
machine independent features instead of machine or compiler dependent ones.
Programs which are written entirely in ANS standard languages and which
do not make use of the implementations of data structures ~e.g. the fact
that on many CDC machines, there are six characters in an integer variable)
would have high measures of device independence.

Consistency encompasses two more primitive characteristics. Internal
consistency is a measure of the degree to which the program always does
the same operations in the same way. External consistency measures the
degree to which the program's operations and structure match those called
for in the specifications.

Structuredness measures the extent to which the program has a defi-
nite, easily understood organization. Structured programming produces
programs with a very high degree of structuredness. Patching and the
addition of new code without ~onsideration of the overall program organ-
ization reduce the structuredness.

Accuracy measures the degree to which the program does calculations
and produces output with sufficient precision to satisfy their intended
uses. A financial program which loses a penny occasionally would have a
low degree of accuracy.

Existing program metrics have concentrated on measuring structured-
hess, and self-descriptiveness. No existing metric considers more than
one or two of the characteristics the TRW study found to be important.
Quality, of course, is a more general aspect of programs than complexity.
Complexity is an indication of how difficult it would be to do some task
on the program. Quality includes complexity as well as how difficult it
would be to do some task with the program Ci.e.~, use the program). Never-

-40-

theless~ the characteristics of quality should be important for complexity
as well since the tasks we want to do on the program arise from the cir-
cumstanhes of using the program. The success of something we do on the
program is measured solely by its effects on the use of the program.

The Theory

Program complexity depends on much more than the program alone. When
someone tries to understand a program~ he performs three major tasks:

(I) develops an hypothesis for what the program's function is~
(2) develops an hypothesis for how the program works,
(3) matches the hypothesis of program function with the hypothesis
for program operation.

The first task usually employs documentation for the system of whiCh the
program is a part or comments at the beginning of the program itself.
The second task depends primarily on the program itself, but can use the
first hypothesis to guide the activity. The second and third tasks often
are done concurrently. A portion of the program is examined and then a
tentative hypothesis for how that portion of the program operates is
matched with a portion of the program's purpose. The third task might
fail, forcing a return to the first or second tasks. When the third task
succeeds, the program is understood. Figure 1 illustrates the procedure.

j / othesis
! ~ ~ ~ of program's J
if failure ~ ~ operation /

\ I

/qU J
\ ~ ~ e ~ ~ m n g I~ if failure I ,/

Figure I: Understanding A Program

-41-

Tasks i~ 2~ and 3 are all translations° The complexities of the
three translations determines the complexity of the program. Preliminary
work o n o t h e complexity of a translation is reported in [16]. A rough
approximation to the complexity of a translation can be derived by divid-
ing the source and result into logical units and drawing arrows from each
source unit to the result units which implement it. The approximate com-
plexity is the count of the total number of arrows. Second order contri-
buters to the complexity of a translation are the number of source units
with outdegree greater than four and the number of target units with in-
degree greater than four and~he number of target units with outdegree
greater than four and the number of target units with indegree greater
than three. Experiments are continuing to determine the relative im-
portance of these factors and their reliability in predicting the trans-
lation's complexity.

The theory presented here is qualitative. Substantial refinement
is required before it can make quantitative predictions. Nevertheless,
a great deal of evidence exists to support this theory. Some of that
published evidence will be discussed in the remainder of this section.
Further evidence is described in a technical report [17]. The explana-
tions given here for the evidence, of course, are not the only possible
explanations.

First, consider the eight characteristics of software quality iden-
tified by the TRW study discussed in the last section. The more self
descriptive a program is, the less necessary external documentation is.
This means the person trying to understand the program can use the pro-
gram to develop both the function hypothesis and the operation hypot-
hesis. The third task becomes relatively trival. The second task becomes
easier as well since the function hypothesis can provide substantial
direction for developing the operation hypothesis.

The more complete a program is, the more explicitly it reveals how
different input are processed. The second task is easier as the program's
degree of completeness increases.

Accessability helps the second task also. For a complex program
someonetrying to understand it might have to execute it on sample in-
puts in order to develop the operation hypothesis. Communicativeness
also contributes to effective use of sample executions to develop the
operation hypothesis. Device independence, consistency and expecially
structuredness also make the development of the operation hypothesis
easier and less error prone. Accuracy is theonly one of the eight
characteristics which does not seem to reduce complexity according to the
theory.

Moher and Schneider have recently reported a study of I00 students
and sixty professional programmers [8]. They asked each programmer to
perform three tasks: (i) comprehension of a fifty-one line program as
measured by the time required to answer correctly questions about the
program; (2) the same comprehension task for a 221 line program; (3)
coding of a small program (length ranged from 38 to 94 statements).
Moher and Schneider tried to correlate a large number of background charac-
teristics of the programmers with their performances. Student programmer
performance correlated well with the amount of programming experlence and
with student aptitude (as measured by student grade point average). Pro-
fessional programmer performance correlated well with years of programming

-42-

experience, but not with any measure of aptitude. Moher and Schneider
report that the inexperienced student programmers (one computer science
course) .did 23% worse on the short writing exercise than on the short
comprehension exercise. As the students experience increased~ perform-
ances on these two tasks converged° The professional programmers with
zero to two years of experience had similar relative performances on the
three tasks, but as experience increased to over six years~ the perform-
ances on all three tasks converged.

The Moher and Schneider ~sults are consistent with the theory of
small program complexity. That theory implies that the major factors in
individual differences in understanding a program are: (I) knowledge of
the constructs used in the program and in its documentation; (2) ability
to discern patterns of similarity between the function hypothesis and the
operation hypothesis; (3) ability to abstract in meaningful ways from the
program and from the documentation, The last two can be taught, but de-
pend at least initially on innate skills and on previous experience and
training in nonprogramming areas. Therefore, the theory predicts that
individual differences in ability and previous nonprogramming experiences
with abstraction forming and pattern recognition should determine perfor-
mance by naive students. As the students gain more experience with pro-
gramming~ differences in ability should become less important. Perfor-
mance should improve due to practice with each additional year of experience
to overwhelm the aptitude factor.

The most supportive of the Moher and Schneider result for the theory
is the differences in performance on comprehending and writing short pro-
grams and the observation that these differences disappear with increasing
experience. Writing a program requires the author to develop the implemen-
tation hypothesis without the benefit of consulting the program. This
should be much more difficult for inexperienced programmers. As the pro-
grammer becomes more experienced, he can call on previous experiences with
similar programs to help develop the implementation hypothesis. Eventually,
it might even be easier to use experience to develop an implementation
hypothesis and write the program from it, then to develop an implementation
hypothesis from an unfamiliar program. Some Moher and Schneider results
for experienced professional programmers indicate that this reversal in the
difficulties of comprehending and writing does occur.

Space permits mention of only one other set of published data. Shep-
pard, Kruesi and Curtis have reported the results of a study on the in-
fluence of specification format on comprehension of a program [19]. Seventy-
two professional programmers were given nine specification-program pairs
and asked questions to assess their comprehension of the programs. The
specifications were presented in natural language, constrained language
and flowchart ideograms. The specifications were presented in three dif-
ferent spatial arrangements: sequential list of statements, branching
similar to a flowchart and hierarchical similar to a HIPO hierarchy chart.
There were three different programs. Results showed significant perfor -o.
mance differences due to experience with similar applications, and experi-
ence with a greater number of programming languages. These results are
consistent with the theory's assumption that someone trying to understand
a program uses experience to help develop the function and operation
hypotheses.

-43-

Test The Theory

Of°course none of the results mentioned in the previous section vali-
dates the theory. There are many other possible explanations for each of
the results° Ruven Brooks has published a different theiry which is also
compatible with most of those results [20]. The Brooks theory considers
the complexity of a program to be based on how many different knowledge
domains must contribute information to explain the operation of the pro-
gram. Brooks believes that the programmer travels conceptually through
a series of knowledge domain6 from the problem being solved to the program.
The~size and number of these domains determines the complexity of the pro-
gram. The Brooks theory is described in extremely general terms. It is
difficult to envision any evidence which would contradict it. The theory
presented in this paper is less nebulaus. Specific predictions can be
derived from it and tested.

For example the theory predicts that a program should be less com-
plex when presented along with an accurate specification than when pre-
sented alone, if the person trying to understand the program knows how to
use the specification. If the specification and the program do not ad-
dress the same problem, the presense of the specification should make the
program more complex. This prediction suggests an experiment. Profes-
sional programmers with similar experience should be divided into three
groups. Each group should be given a series of program comprehension
tasks where one group works with the programs alone, the second group
works with the programs and correct specifications in a familar format
and the third group works with the programs and incorrect specifications.
The third group is not told that the specifications do not match the pro-
grams. Care must be exercised to ensure that the third group does not
become suspicious of the specifications before the sequence of tasks is
completed. A fourth group also could be used which was given specifica-
tions in an unfamilar format.

The theory predicts that training people in forming abstractions
should improve their performances on program understanding tasks. Two
groups of novice programmers could be used to test this prediction. The
two groups would first be tested with a small series of programs and
specifications in familar formats. Then one group could be given training
and practi~e in constructing abstractions. This training and practice
would not have to be in a programming setting. The two groups could then
be tested with a different series of programs and their specifications.
The trained group should improve more than the untrained group. The
Moher and Schneider results indicate that the two groups should be selec-
ted to have similar aptitudes as measured by grade point averages.

The predictions mentioned above all come from the first and second
tasks that the theory states are involved in understanding a program. The
third task (matching the function and operation hypotheses) also can be
tested. Two groups of programmers can be given specification program pairs
and asked questions. The first group should be given pairs where the
specification and the program have the same structure and vocabulary. The
second group should be given pairs where the specification and program
have very different structure and use different vocabulary when discussing

-44-

the same concept. The first group should perform better on understanding
the programs than the second°

The theory assumes that someone trying to •understand a program forms
a function hypothesis and an operation hypothesis. This assumption could
be tested by asking a group to answer questions about a program from the
program and its specification. Then each member of the group could be
asked to give the function and operation hypotheses without looking at
the program or specification. Those who do well in answering the questions
should do well in recalling function and operation hypotheses. Those who
do poorly in answering the questions also should do poorly on the recall°

Many other experiments and variations on these experiments can be
done. We have experiments of these types underway now and expect to re-
port on the results in six months to a year. The importance of independent
efforts to validate or reject this theory is very great.

References

(1) Belady L. A. and M. M. Lehman, "A Model of Large Program Development",
IBM Systems Journal, Vol. 15, no. 3 (1976), pages 225-252.

(2) Lehman, M. M. and F. N. Parr "Program Evolution and its Impact on
Software Engineering", Proceedings of the Second International Con-
ference on Software Engineering, San Francisco, October, 1976, pages
350-357.

(3) Belady, L. A. and M. M. Lehman, "The Characteristics of Large Systems",
in Research Directions in Software Technology, Peter Wegner, editor,
The MIT Press, cambridge, Mass., 1979, pages 106-138.

(4) McCabe, T. J., "A Complexity Measure", IEEE Transactions on Software
Engineering, December, 1976, pages 308-320.

(s) Chen, E. T., "Program Complexity and Programmer Productivity", IEEE
Transactions on Software Engineering, May, 1978, pages 187-194.

(6) Curtis, B., S. B. Sheppard, P. M. Milliman, M. A. Borst and T. Love,
"Measuring the Psychological Complesity of Software Maintenance Tasks
With The Halstead and McCabe Metrics", IEEE Transactions on Software
Engineering, March, 1979, pages 95-104.

(7) Woodward, M. R., M. A. Hennell, and D. Hedley, "A Measure of Control-
fJow Complexity in Program Text", IEEE Transactions on Software
Engineering, January, 1979, pages 45-50.

(8) Zolnowski, J. and D. Simmons, "Measuring Program Complexity in a
COBOL Environment", Proceedings of the AFIPS National Computer Con-
ference, Vol. 49 (1980), pages 757-766.

(9) Harrison, W. and K. Magel, "A Complexity Measure Based on Nesting
Level", ACM SIGPLAN Notices, March, 1981, pages 63-74.

10) Kerninghan, B. W. and P. J. Plauger,~The Elements of Programming
Style, Second edition, McGraw-Hill BooT-Company, New Y~k, 1978.

-45-

(11)

(12)

(13)

(14)

(is)

(16)

(17)

(18)

(19)

(2o)

Ledgard~ H. Lo Pro~rammi~ Proverbs~ Hayden Book Company, New York,
1975.

Walston, Co Eo and Co P. Fleix, "A Method of Programming Measurement
and Estimation", IBM Systems Journal, Vol. 16, no. 1 (1977), pages
54-73.

Curtis, B., S. B. Sheppard and P. Milliman, "Third Time Charm:
Stronger Prediction of Programmer Performance By Software Complexity
Metrics", Proceedings of the Fourth International Conference on
Software Engineering, Munich~ Germany, September, 1979, pages
356-360.

DeYoung, G. G. and Go R. Kampen, "Program Factors as Predictors of
Program Readability", Proceedings of IEEE COMPSAC '79, Chicago,
November, 1979, pages 668-673.

Boehm, B. W., J. R. Brown, H. Kaspar, M. Kipow, G. J. MacLead and
M. J. Merrit, Characteristics of Software Quality, North-Holland
Publishing Company, New York, 1978.

Magel, K. "Dependence Diagrams in Software Development", Proceedings
of ACM North Central Regional Conference, September, 1981.

Magel, K. "Support for A Theory of Software Complexity", Computer
Science Department University of Missouri-Rolla, April 1981.

Moher, T. and G. M. Schneider, "Methods for Improving Controlled
Experimentation in Software Engineering", Proceedings of Fifth Inter-
national Conference on Software Engineering, San Diego, March, 1981,
pages 224-233.

Sheppard, S. B., E. Kruesi and B. Curtis, "The Effects of Symbology
and Special Arrangement on the Comprehension of Software Specifica-
tions", Proceedings of Fifth International Conference on Software
Engineering, San Diego, March, 1981, pages 207-214.

Brooks, R., "Using a Behavioral Theory of Program Comprehension in
Software Engineering", Proceedings of Third International Conference
on Software Engineering, Atlanta, May, 1978, pages 196-201.

	A Theory Of Small Program Complexity
	Recommended Citation

	A theory of small program complexity

