
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Mechanical and Aerospace Engineering Faculty 
Research & Creative Works Mechanical and Aerospace Engineering 

01 Jul 2006 

Attribute-level Neighbor Hierarchy Construction Using Evolved Attribute-level Neighbor Hierarchy Construction Using Evolved 

Pattern-based Knowledge Induction Pattern-based Knowledge Induction 

Thanit Puthpongsiriporn 

J. David Porter 

Bopaya Bidanda 

Ming En Wang 

et. al. For a complete list of authors, see https://scholarsmine.mst.edu/mec_aereng_facwork/5197 

Follow this and additional works at: https://scholarsmine.mst.edu/mec_aereng_facwork 

 Part of the Aerospace Engineering Commons, and the Mechanical Engineering Commons 

Recommended Citation Recommended Citation 
T. Puthpongsiriporn et al., "Attribute-level Neighbor Hierarchy Construction Using Evolved Pattern-based 
Knowledge Induction," IEEE Transactions on Knowledge and Data Engineering, vol. 18, no. 7, pp. 917 - 929, 
article no. 1637418, Institute of Electrical and Electronics Engineers, Jul 2006. 
The definitive version is available at https://doi.org/10.1109/TKDE.2006.104 

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for 
inclusion in Mechanical and Aerospace Engineering Faculty Research & Creative Works by an authorized 
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including 
reproduction for redistribution requires the permission of the copyright holder. For more information, please 
contact scholarsmine@mst.edu. 

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/mec_aereng_facwork
https://scholarsmine.mst.edu/mec_aereng_facwork
https://scholarsmine.mst.edu/mec_aereng
https://scholarsmine.mst.edu/mec_aereng_facwork/5197
https://scholarsmine.mst.edu/mec_aereng_facwork?utm_source=scholarsmine.mst.edu%2Fmec_aereng_facwork%2F5197&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/218?utm_source=scholarsmine.mst.edu%2Fmec_aereng_facwork%2F5197&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/293?utm_source=scholarsmine.mst.edu%2Fmec_aereng_facwork%2F5197&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/TKDE.2006.104
mailto:scholarsmine@mst.edu


Attribute-Level Neighbor Hierarchy
Construction Using Evolved Pattern-Based

Knowledge Induction
Thanit Puthpongsiriporn, J. David Porter, Bopaya Bidanda, Ming-En Wang, and Richard E. Billo

Abstract—Neighbor knowledge construction is the foundation for the development of cooperative query answering systems capable

of searching for close match or approximate answers when exact match answers are not available. This paper presents a technique for

developing neighbor hierarchies at the attribute level. The proposed technique is called the evolved Pattern-based Knowledge

Induction (ePKI) technique and allows construction of neighbor hierarchies for nonunique attributes based upon confidences,

popularities, and clustering correlations of inferential relationships among attribute values. The technique is applicable for both

categorical and numerical (discrete and continuous) attribute values. Attribute value neighbor hierarchies generated by the ePKI

technique allow a cooperative query answering system to search for approximate answers by relaxing each individual query condition

separately. Consequently, users can search for approximate answers even when the exact match answers do not exist in the database

(i.e., searching for existing similar parts as part of the implementation of the concepts of rapid prototyping). Several experiments were

conducted to assess the performance of the ePKI in constructing attribute-level neighbor hierarchies. Results indicate that the ePKI

technique produces accurate neighbor hierarchies when strong inferential relationships appear among data.

Index Terms—Approximate query answering, clustering, knowledge discovery, query-answering systems, similarity measures.

�

1 INTRODUCTION

A conventional database querying system requires an
“exact match” between the query conditions and the

values of the returned attributes. When a query is over-
specified (i.e., none of the existing tuples can satisfy all the
query conditions), a null answer is returned. This exact
match property of a typical query answering mechanism
translates into user frustration, especially when a negative
answer is not expected.

A cooperative query answering system, on the other

hand, offers approximate or partial answers even when all

the conditions of the submitted query cannot be matched

exactly. Instead of returning null answers, the cooperative

query answering system searches for the neighbors of the

unavailable exact-match answers [1], [2] using artificial

intelligence mechanisms and rules or facts from the existing

and/or supplemental knowledge developed by application

domain experts.
The problem of finding approximate answers was first

introduced by Cole and Morgan and was motivated by

applications in intelligent querying [3]. Since then, many
cooperative query answering techniques have been devel-
oped to improve information retrieval. These systems have
been incorporated (at various degrees of implementation) in
many application domains, such as biological, agricultural,
and health care [4], [5], [6].

The information retrieval system must possess the ability
to loosen overspecified conditions of a query to find
approximate or close match answers. Such a process is
called query relaxation. Query relaxation through attribute
value substitutions is carried out by replacing the attribute
values of the query selection conditions (i.e., the constants
of query conditions) that are evaluated as FALSE with other
attribute values until approximate answers are returned.
The value used in an attribute substitution can be any value
that is included in the domain of the attribute of the
selection condition. Obviously, to obtain the best set of
approximate answers (i.e., the alternative answers that are
closer to the unavailable exact matches), attribute values
must be substituted with their close neighbors as opposed
to any values in the domain. Distant neighbors of an
attribute value should be used in attribute value substitu-
tions only when all of the closer neighbors fail to produce
any partial answer.

Before a systematic search for approximate answers by
attribute value substitutions can be performed, values in
attribute domains must be organized so that different levels
of neighboring relationships among the attribute values
(e.g., close neighbors, related neighbors, and remote
neighbors) can be easily accessed when they are needed.
The most accepted way of representing this type of
neighbor information of attribute values is through attribute
value neighbor hierarchies. An attribute value neighbor

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 7, JULY 2006 917

. T. Puthpongsiriporn and J.D. Porter are with the Department of Industrial
and Manufacturing Engineering, Oregon State University, 118 Covell
Hall, Corvallis, OR 97331-2407. E-mail: {thanit, david.porter}@orst.edu.

. B. Bidanda is with the Department of Industrial Engineering, University of
Pittsburgh, 1048 Benedum Hall, Pittsburgh, PA 15261.
E-mail: bidanda@engr.pitt.edu.

. M.-E. Wang is with the Department of Industrial Engineering, University
of Pittsburgh, 1034 Benedum Hall, Pittsburgh, PA 15261.
E-mail: mewang@engr.pitt.edu.

. R.E. Billo is with the College of Engineering, University of Texas at
Arlington, Arlington, TX 76019. E-mail: richard.billo@uta.edu.

Manuscript received 3 Feb. 2004; revised 7 Apr. 2005; accepted 24 Jan. 2006;
published online 18 May 2006.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0037-0204.

1041-4347/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on July 18,2023 at 19:02:42 UTC from IEEE Xplore.  Restrictions apply. 



hierarchy indicates how similar each attribute value is to the
other values.

Neighbor knowledge construction is the foundation for
the development of cooperative query answering systems
capable of searching for close-match or approximate
answers. Consider the entities in relation ALUM_PLATE
shown in Table 1. Each entity in the relation has five
attributes—Stock Number, Width, Length, Area, and
Thickness. A stock number is unique and is therefore used
as the primary key to identify each record. The values of
attributes Width, Length, Area, and Thickness are non-
unique because they are shared among multiple tuples
(shown in bold in Table 1). The higher the number of
unique attribute values associated with an entity, the less
similar the entity becomes. Stocks s1, s2, and s7 share three
common attribute values (w1, l1, and a1). Thus, one may say
that they are relatively closer together than to the other four
stocks. Stocks s4 and s5 share two common attribute values
(l1 and t4). Therefore, s4 and s5 could also be considered
similar. However, the similarity between s4 and s5 should
be less than the similarity among s1, s2, and s7. All seven
tuples share a common attribute value l1.

Fig. 1 depicts one possible neighbor hierarchy of stocks
s1 to s7 based on the number of shared attribute values. In
this case, the neighbor hierarchy was constructed based on
the characteristic “stock dimensions.” A node indicates a
neighbor relationship at a certain degree of similarity
between two tuples, a tuple and a set of tuples, or two
sets of tuples.

Many techniques for neighbor hierarchy construction
have been proposed in the literature. Yu and Sun [7], Han
et al. [8], Han and Fu [9], Puthpongsiriporn [10], and
Merzbacher [11] presented a technique called Pattern-based
Knowledge Induction (PKI) as a tool to discover data
correlations and inferential relationships among data
instances in a relation. PKI can be used to generate attribute
neighbor hierarchies (which are essential for the query
relaxation process used to find approximate answers) when
coupled with the Binary Clustering algorithm. However,
PKI constructs neighbor hierarchies at the tuple level and
takes into consideration only existing combinations of
attribute values, thus facilitating approximate answer
searching only for those tuples that already exist at the
time in which the hierarchy is developed. Therefore, if a
query is issued to retrieve a nonexisting tuple such as an
aluminum stock with WIDTH ¼ w1, LENGTH ¼ l1, and
THICKNESS ¼ t5, the neighbor hierarchy depicted in Fig. 1
will fail to generate approximate answers. Through visual

inspection, the closest neighbors of the required aluminum
stock are stocks s6 (with WIDTH ¼ w5, LENGTH ¼ l1, and
THICKNESS ¼ t5), s1, s2, and s7 (with WIDTH ¼ w1,
LENGTH ¼ l1, and THICKNESS ¼ t1, t2, and t6, respec-
tively). Evidently, to determine the approximate answer
that is closer to the exact-match answer, the system needs to
be able to compare the semantic nearness between
WIDTH ¼ w1 and WIDTH ¼ w5, and THICKNESS ¼ t5
and THICKNESS ¼ t1, t2, and t6. Thus, finding approx-
imate answers for a nonexisting tuple requires a neighbor
hierarchy construction technique that is applicable at both
the tuple and attribute levels.

In this paper, a novel technique for neighbor knowl-
edge construction based on the original PKI is proposed.
This technique, referred to as Evolved Pattern-based Knowl-
edge Induction (ePKI), has several advantages over the
original PKI:

. It can be used to construct attribute value neighbor
hierarchies at both the tuple and attribute levels
utilizing inferential relationships among attributes in
the relation.

. The resulting attribute-level neighbor hierarchies
allow for a search of approximate answers by
relaxing each individual query condition separately.
Therefore, query relaxations are not limited to a
certain set of standard or predefined queries.

. Finally, the proposed neighbor hierarchy construc-
tion permits approximate answer searching for
tuples that did not exist in the relation when the
neighbor hierarchy was first created.

2 RELATED WORK

Relaxing queries through attribute value substitutions
requires that the database management system possesses
attribute value neighbor information. These sets of
neighbor knowledge are generally stored in the database
in the form of abstraction hierarchies. Neighbors of an
attribute value could vary from one application to another
as opposed to the domain of an attribute value that stays
the same within the database. This is because different
applications may have different abstract meanings for the
same attribute value. In addition, different applications
may require different resolutions or precisions for their
attribute value neighbor knowledge. For example, the

918 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 7, JULY 2006

TABLE 1
Relation ALKUM_PLATE

Fig. 1. Neighbor hierarchy of members of attribute STOCK_NO.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on July 18,2023 at 19:02:42 UTC from IEEE Xplore.  Restrictions apply. 



neighbors of “Thursday” could be {“Wednesday,” “Fri-
day”} based on the day order for a particular application,
or they could be {“Sunday,” “Tuesday”} based on the
alphabetical order in another application.

In the early years of cooperative query answering
research, the creation and updating of abstraction hierar-
chies was mostly performed by application experts. How-
ever, as the databases quickly grew larger, it was impossible
to keep up with the changes in their structure and stored
data. Many techniques have been proposed in the literature
that could be used to automate the two activities considered
as the main challenges of using abstraction hierarchies: the
development and the subsequent maintenance of the
hierarchies [7], [8], [9].

Huang [12] used various knowledge discovery tools to
develop the knowledge base for an intelligent query
answering system including generalization, data summar-
ization, concept clustering, rule discovery, query rewriting,
lazy evaluation, and semantic query optimization. Ozawa
and Yamada [13] used fuzzy logic techniques in conjunction
with a category utility to construct concept hierarchies of
data tuples to generate cooperative answers. Their methods
require that the predefined linguistic labels of the back-
ground knowledge for the data attributes, which were used
in classification of the data, be provided.

A more popular method used to construct neighbor
abstraction hierarchies for numeric values is information
entropy [14], which involves the evaluation of clustering
results using entropy measure and its main objective is to
maximize the entropy of data partitions [15], [16]. Since the
entropy is maximized when the data are partitioned evenly,
this approach considers only the frequency of each attribute
value. The value distribution of the data is excluded from
this method. Another method for developing neighbor
hierarchies of numerical values was proposed by Genari
et al. [17]. The proposed method, called CLASSIT, uses the
mean and standard deviation to classify numerical values
into classes. The original goodness measure used in their
work was 1=�, but this was further revised to � to resolve
the goodness value problem for single member clusters.
These two numerical value clustering methods consider
only the frequencies of values. Chu et al. [18], [19] presented
a method to automatically generate abstraction hierarchies
for numerical attribute values by considering both fre-
quency and value distribution of the data. They developed
a clustering measure called relaxation error that allowed
them to optimize their clustering results.

Finally, Merzbacher and Chu [20] developed a method to
generate abstraction hierarchies for both numerical and
categorical attribute values using PKI and the Binary
Clustering techniques. PKI is a tool to discover the data
correlations and inferential relationships among data
instances in a relation and can be used to perform binary
clustering of both discrete and continuous attribute values.
The algorithm not only generates hierarchies of clusters, but
also calculates nearness values between neighbors, which
are essential for the query relaxation process used to find
approximate answers. However, PKI constructs neighbor
hierarchies at the tuple level and takes into consideration
only the existing values of the attributes to do so. Thus, the

resulting neighbor hierarchies cannot be used for nearness
measuring or transformation of a selection condition that
contains a value that does not exist at the time in which the
hierarchy is developed.

3 PRELIMINARIES

Similar to association rule development, the ePKI technique
derives inferential relationships between two values of two
different attributes based on confidence and popularity of
occurrences in which the two attribute values coexist in the
same tuple. In order to formalize the concept of inferential
relationship first, a pattern is defined as the abstract
representation for a group of database instances with a
specified property. A pattern is expressed by an atomic
query condition. The formal representation of a pattern P is
PC ¼ P : D! T , where C is an atomic query condition that
expresses P , D is the domain of a relation, and T is a set of
tuples that satisfies the condition C. For example, if D
defines all tuples in Table 1 and pattern P is defined with
condition “WIDTH ¼ w1,” then PWIDTH¼w1

refers to tuples
1, 2, and 7. In other words, PWIDTH¼w1

: D! fs1; s2; s7g. By
the definition of a pattern, a relation instance can be a
member of more than one abstract pattern class. Tuple 1 is a
member of patterns PSTOCK NO¼s1

, PWIDTH¼w1
, PLENGTH¼l1 ,

PAREA¼a1
, and PTHICKNESS¼t1 .

Second, the inferential relationship between attribute
values v1 and v2 is defined as the likelihood that if v1 is the
value of attribute A of a tuple, v2 is also the value of
attribute B of the same tuple. The inferential relationship
between attribute values can be defined based on the
subsumption property of one pattern to another. In Table 1,
every time WIDTH ¼ w1 is observed, one may expect the
value of attribute LENGTH to be l1. However, the value l1
of attribute LENGTH does not strongly imply the value w1

of attribute WIDTH. The usefulness of an inferential
relationship is measured using the confidence and the
popularity of the relationship. Inferential confidence is used
for determining the accuracy of the relationship and is
defined based on the cardinalities of the patterns. The
cardinalities of patterns A and B are denoted by jPAj and
jPBj, and are defined as the number of distinct data
instances (i.e., tuples) matching the conditions of patterns
A and B, respectively. The inferential confidence of the
inferential relationship A! B is defined as:

�ðA! BÞ ¼ PA \ PBj j
PAj j

: ð1Þ

�ðA! BÞ can assume any value between 0 and 1,
inclusive. A confidence value of 0 indicates that there is
no inferential relationship between patterns A and B,
whereas a confidence value of 1 means that the relationship
between patterns A and B is deterministic. Equation (1)
assumes that set T always has one or more members. In
other words, there is at least one tuple in the domain D that
satisfies the condition C; therefore, PA > 0. One can view
inferential confidence of the relationship A! B as the
conditional probability that pattern B is true (i.e., occurs)
given that pattern A is true. For the Table 1 example, the
confidence of the inferential relationship from w1 to l1 is

PUTHPONGSIRIPORN ET AL.: ATTRIBUTE-LEVEL NEIGHBOR HIERARCHY CONSTRUCTION USING EVOLVED PATTERN-BASED... 919

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on July 18,2023 at 19:02:42 UTC from IEEE Xplore.  Restrictions apply. 



�ðPWIDTH¼w1
! PLENGTH¼l1Þ ¼

PWIDTH¼w1
\ PLENGTH¼l1j j

PWIDTH¼w1j j

¼ 3

3
¼ 1;

while the confidences of the inferential relationships from l1
to w1, l1 to w2, and l1 to w3 are .429, .143, and .143,
respectively.

If the premise and/or the consequence are sets of values,
the confidence of the inferential relationship could be
computed as follows:

�ðfA1; A2g ! BÞ ¼ ðPA1
[ PA2

Þ \ PBj j
ðPA1

[ PA2
Þj j

¼ ðPA1
\ PBÞ [ ðPA2

\ PBÞj j
ðPA1

[ PA2
Þj j

�ðfA1; A2g ! fB1; B2gÞ ¼
ðPA1

[ PA2
Þ \ ðPB1

[ PB2
Þj j

ðPA1
[ PA2

Þj j :

Popularity, as the second measure of an inferential
relationship, indicates how common a relationship is
compared to others and is defined as:

�ðA! BÞ ¼ PA \ PBj j
Cj j ; ð2Þ

where jCj is the total cardinality of class C.
By requiring that the popularity of an inferential

relationship exceeds some threshold, the system can discard
any inferential relationships that have low occurrence
frequencies, i.e., �ðl1 ! w2Þ, which do not provide strong
evidence of true relationships. Only inferential relationships
having confidence and popularity values exceeding some
predefined thresholds are accepted and stored in the
knowledge base. Those relationships that do not meet the
threshold are discarded. Using a high threshold value
results in fewer number of quantified inferential relation-
ships and translates into less computation time to calculate
neighbor hierarchies. Choosing a low threshold value, on
the other hand, may result in passing on some important
inferential relationships.

Once a set of inferential relationships is acquired, PKI can
be used to create a clustering hierarchy for attribute values
based upon the following rule of shared consequence:

If two inferential relationships share a consequence and have
the same attribute as a premise (but different values), then those
values are candidates for clustering [11].

The rule of shared consequence views the values in the
other attributes as “characteristics” of the two values. In
essence, two values from the same attribute (premise)
should be grouped together if both have the same
corresponding attribute value (consequence) in other
attributes. Stocks s1 and s2 could potentially be grouped
together since they both share the same consequence when
only STOCK_NO and WIDTH are considered.

3.1 Clustering Correlation Equation

A considerable amount of research has concentrated on
the development of techniques aimed at quantifying the
dissimilarity (or similarity) between two continuous or
discrete probability distributions defined for a common
range of values [21], [22], [23], [24], [25]. The family of
dissimilarity coefficients is defined as the expected value

of a continuous convex function � of the likelihood ratio
r ¼ pðxÞ=qðyÞ, EP ½�ðrÞ�, where �ð1Þ ¼ 0. It obeys the
discriminating property, according to which the measure
of divergence between the two discrete events should not
decrease for any refinement of both the discrete events
and their two distributions [26].

For the purpose of this research and by using the rule of
shared consequence, the clustering correlation equation is
defined as the product of the confidence of the two
inferential relationships and it is expressed as:

�ða1; a2Þ ¼ �ðA ¼ a1 ! B ¼ bÞ � �ðA ¼ a2 ! B ¼ bÞ: ð3Þ
Based on (3), the correlation of clustering s1 and s2 based

solely on the WIDTH attribute is

�ðs1; s2Þ ¼ �ðs1 ! w1Þ � �ðs2 ! w1Þ ¼ 1:

In an m-attribute relation, the clustering correlation
between any two values of an attribute based upon the
shared consequences from the rest of the attributes in the
relation is then defined as:

�ða1; a2Þ ¼
Xm
i¼1

�ðA ¼ a1 ! Bi ¼ biÞ � �ðA ¼ a2 ! Bi ¼ biÞ:

ð4Þ
From (4), the clustering correlation between attribute

values a1 and a2 of attribute A is equal to 1 if these have the
same corresponding attribute value ðbiÞ for each other
attribute in the table (Bi where i ¼ 1 to m). In that case,
attribute values a1 and a2 of attribute A should be clustered
together. Equation (4) possesses some interesting properties:

1. It can be determined for all pairs of attribute values.
2. It is symmetric, thus �ða1; a2Þ ¼ �ða2; a1Þ.
3. Neighbor hierarchies generated using ePKI and the

binary clustering algorithm obey the discriminating
property as long as the threshold (i.e., the minimum
normalized clustering correlation value) is chosen
appropriately. If the selected threshold is too low, it
is possible that this property will not hold. One way
to avoid such incidence is to allow only the pair(s) of
values (or sets of values) with the highest clustering
correlation in each iteration to be grouped. Although
it takes longer time to generate a neighbor hierarchy,
this approach guarantees that the discriminating
property is always achieved. In such a case, the use
of a threshold is irrelevant.

4. The proposed clustering correlation yields its max-
imum value when Pa1j j ¼ Pa1

\ PBi¼bj
�� �� and Pa2j j ¼

Pa2
\ PBi¼bj

�� �� for all consequence attributes (i) and
consequence attribute values (j). On the other hand,
the correlation takes its minimum value when
P a1\Bi¼bjð Þ\ a2\Bi¼bjð Þ : D! � for all i and j.

Based on (4), the clustering correlation of ðs1; s2Þ is

�ðs1; s2Þ ¼
�ðs1 ! w1Þ � �ðs2 ! w1Þ
þ�ðs1 ! l1Þ � �ðs2 ! l1Þ
þ�ðs1 ! a1Þ � �ðs2 ! a1Þ
þ�ðs1 ! t1Þ � �ðs2 ! t1Þ þ �ðs1 ! t2Þ � �ðs2 ! t2Þ

2
6664

3
7775 ¼

ð1þ 1þ 1þ 0þ 0Þ ¼ 3:

920 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 7, JULY 2006

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on July 18,2023 at 19:02:42 UTC from IEEE Xplore.  Restrictions apply. 



Notice that introducing factors �ðs1 ! w2Þ � �ðs2 !
w2Þ; . . . ; �ðs1 ! w5Þ � �ðs2 ! w5Þ in the equation to calculate
the clustering correlation of ðs1; s2Þ does not alter the final
value of �ðs1; s2Þ since the premises come from a unique
attribute (i.e., an attribute with nonduplicate values). From
the fact that the maximum value of the clustering correlation
formula is m� 1, the normalized clustering correlation is:

���ða1; a2Þ ¼
1

m� 1
�ða1; a2Þ; ð5Þ

where m represents the number of attributes in the relation.
The normalized clustering correlation of ðs1; s2Þ is

���ðs1; s2Þ ¼ 1� ð5� 1Þ � 3 ¼ 0:75. Such correlation can be
calculated for each possible pair of values in attribute
STOCK_NO, i.e., ðs1; s3Þ; . . . ; ðs6; s7Þ. Notice that there is no
need to calculate ðs2; s1Þ once ðs1; s2Þ is obtained since
���ða1; a2Þ ¼ ���ða2; a1Þ. One could choose to form groups of
pairs of values if their clustering correlations are relatively
high compared to those of other possible groupings. Once a
cluster is formed, the same process can be repeated again to
form more and/or larger groups. In the second or later
iteration, clustering correlation calculations are performed
for: 1) two individual values that have not been clustered
with other values, 2) a nonclustered value and a set of two
grouped values, and 3) two sets of clustered values. If a set
and a value are considered for grouping, their clustering
correlation is calculated as follows:

�ðS1; a3Þ ¼ � a1; a2f g; a3ð Þ ¼
Xm
i¼1

�ðA ¼ fa1; a2g ! Bi ¼ biÞ

� �ðA ¼ a3 ! Bi ¼ biÞ:
ð6Þ

The correlation value of clustering two sets of values can
be calculated using the same approach. Group formation
could continue until all values are contained in one large
group or none of the available cluster possibilities has a
high enough value for clustering correlation.

Merzbacher [11] proposed the use of the Binary Cluster-
ing algorithm in conjunction with the normalized clustering
correlation function for neighbor hierarchy constructions.
The binary clustering algorithm earned its name from the
fact that each individual value (or set of values) is allowed to
form a new (larger) cluster by combining with one and only
one other value (or set of values) once at any iteration. The
algorithm simply starts with determining and ranking ��� for
all possible clustering pairs, i.e., a value with another value,
a value with a set of values, and two sets of values. Then, for
each pair with ��� greater than a threshold, form a new cluster,
expand an existing cluster, or combine two clusters together.
In the next iteration, the new clusters then become new
clustering candidates with another value or set of values. For
example, s7 may be grouped with s3 in the first iteration,
despite the fact that it is more similar to s1 and s2.

3.2 Illustrative Example

An example of a neighbor hierarchy generated using PKI
and the Binary Clustering algorithm is illustrated in Fig. 2.
In this example, a Binary Clustering algorithm is performed
on the attribute STOCK_NO to construct a neighbor
hierarchy for the set of aluminum plates shown in Table 2.

In this example, due to the small number of samples

(tuples) involved in the construction of the neighbor

hierarchy, a popularity threshold of .125 or 1/28 is utilized.

This means that at least one occurrence of any pair of

attribute values must exist for an inferential relationship to

be valid. To determine the normalized clustering correlation

value between stock 308-0013 and 308-0020, the confidences

and popularities of the inferential relationships

ð00308� 001300 !WIDTH ¼ 3Þ;
ð00308� 001300 ! LENGTH ¼ 144Þ;
ð00308� 001300 ! AREA ¼ 432Þ;
ð00308� 001300 ! THICKNESS ¼ 0:5Þ;
ð00308� 001300 ! THICKNESS ¼ 0:375Þ;
ð00308� 002000 !WIDTH ¼ 3Þ;
ð00308� 002000 ! LENGTH ¼ 144Þ;
ð00308� 002000 ! AREA ¼ 432Þ;
ð00308� 002000 ! THICKNESS ¼ 0:5Þ;

and ð00308� 002000 ! THICKNESS ¼ 0:375Þ are first cal-

culated.
Then, the normalized clustering correlation is calculated

using (4) and (5).

PUTHPONGSIRIPORN ET AL.: ATTRIBUTE-LEVEL NEIGHBOR HIERARCHY CONSTRUCTION USING EVOLVED PATTERN-BASED... 921

Fig. 2. Neighbor hierarchy of members of attribute STOCK_NO in

relation ALUM_PLATE.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on July 18,2023 at 19:02:42 UTC from IEEE Xplore.  Restrictions apply. 



���ð00308� 001300;00308� 002000Þ

¼

�ð00308�001300!WIDTH¼3Þ��ð00308�002000!WIDTH¼3Þ

þ�ð00308�001300!LENGTH¼144Þ��ð00308�002000!LENGTH¼144Þ

þ�ð00308�001300!AREA¼432Þ��ð00308�002000!AREA¼432Þ

þ�ð00308�001300!THICKNESS¼:5Þ��ð00308�002000!THICKNESS¼:5Þ

þ�ð00308�001300!THICKNESS¼:375Þ��ð00308�002000!THICKNESS¼:375Þ

2
6666664

3
7777775

ðm� 1Þ

¼ 1þ 1þ 1þ 0þ 0ð Þ
5� 1ð Þ ¼ 3

4
¼ :75:

Using the process just described, the normalized cluster-
ing correlation could be determined for every possible pair
of premises. Since the clustering correlation between stock
308-0013 and stock 308-0020 is relatively high (when
compared to the other pairs of premises), both stocks are
clustered together in one of the earlier iterations. The
neighbor hierarchy of aluminum stocks shown in Fig. 2 is
obtained after several iterations of clustering attempts.

If a search is conducted based on the neighbor hierarchy
for a substitute for an aluminum stock with WIDTH = 3,
LENGTH = 144, and THICKNESS = 0.375 (or stock 308-
0020), the database management system may respond to the
request with the list shown in Table 3.

4 EVOLVED PATTERN-BASED KNOWLEDGE

INDUCTION (EPKI)

As mentioned in Section 2, the original PKI technique
constructs neighbor hierarchies only at the tuple level. Also,
it generates neighbor hierarchies using only attribute values
currently stored in a database management system. The

resulting neighbor hierarchies cannot be used for nearness

measurement or transformation of a selection condition that

contains an attribute value that does not exist at the time in

which the hierarchy is developed, as illustrated in the

simple ALUM_PLATE relation example presented in

Section 1.
PKI was developed for clustering relation instances at

the tuple level using the induced inferential relationships

between the values of the key attribute and the values of the

other attributes in the relation. Because of the uniqueness

property of the key attribute, each clustered value matches

up with one and only one value in another attribute in the

relation. However, mapping between values from a non-

unique attribute (i.e., an attribute with duplicate values) to

another attribute could result in one-to-many relationships.

For example, the value of 144 for attribute LENGTH can be

mapped to five values of attribute THICKNESS (i.e., 0.25,

0.375, 0.5, 0.75, and 1). Therefore, the clustering correlation

function presented in (4) works only if attribute A, as the

premise of the inferential relationship, is a unique attribute.

To develop a neighbor hierarchy of a nonunique attribute,

the rule of shared consequence proposed by Merzbacher

and Chu is generalized so that it can be applied to any

attribute in the relation. The Evolved Shared Consequence

Rule is as follows:
If two inferential relationships share the same “set of

consequences” (same set of values from an attribute) and have

the same attribute as a premise (but different values), then those

values are candidates for clustering.
The clustering correlation between a1 and a2 of

attribute A based upon their relationships with values in

attribute B according to the evolved shared consequence

rule is:

�0ða1; a2Þ ¼
Xn
j¼1

�ðA ¼ a1 ! B ¼ bjÞ � �ðA ¼ a2 ! B ¼ bjÞ;

ð7Þ

where bj is a unique value observed for attribute B. For

example, the unique values observed for attributes

922 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 7, JULY 2006

TABLE 2
Relation ALUM_PLATE

TABLE 3
Approximate Answers of Q: WIDTH = 3, LENGTH = 144,

and THICKNESS = 0.375

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on July 18,2023 at 19:02:42 UTC from IEEE Xplore.  Restrictions apply. 



THICKNESS and LENGTH in the ALUM_PLATE relation
example are ft1; t2; t3; t4; t5g and fl1g, respectively.

The clustering correlation function for any two values
based on the rule of shared consequence (i.e., multiple
consequent attributes), shown in (4), is also modified to:

�0ða1; a2Þ ¼
Xm
i¼1

Xn
j¼1

�ðA ¼ a1 ! Bi ¼ bjÞ

� �ðA ¼ a2 ! Bi ¼ bjÞ:
ð8Þ

Based on the information in Table 1, seven unique values
are identified in attribute STOCK_NO, one in LENGTH,
five in AREA, and six in THICKNESS. The clustering
correlation between w3 and w4 is determined as:

�0ðw3; w4Þ¼

P7

j¼1
�ðw3!STOCK NO¼sjÞ��ðw4!STOCK NO¼sjÞ

þP1

j¼1
�ðw3!LENGTH¼ljÞ��ðw4!LENGTH¼ljÞ

þP5

j¼1
�ðw3!AREA¼ajÞ��ðw4!AREA¼ajÞ

þ
P6

j¼1
�ðw3!THICKNESS¼tjÞ��ðw4!THICKNESS¼tjÞ

2
6664

3
7775:

Since STOCK_NO is a unique attribute, the first sum
factor always yields 0. Therefore, the equation above is
reduced to:

�0ðw3; w4Þ ¼
0þ �ðw3 ! l1Þ � �ðw4 ! l1Þ þ �ðw3 ! a3Þ
��ðw4 ! a3Þ þ �ðw3 ! a4Þ � �ðw4 ! a4Þ
þ�ðw3 ! t4Þ � �ðw4 ! t4Þ

2
64

3
75

¼ 0þ 1� 1ð Þ þ 1� 0ð Þ þ 0� 1ð Þ þ 1� 1ð Þ½ � ¼ 2:

Notice that when Bi is a unique attribute, then:

�ðA ¼ a1 ! Bi ¼ bjÞ � �ðA ¼ a2 ! Bi ¼ bjÞ ¼ 0

because no two tuples (A ¼ a1 and A ¼ a2) can have the
same consequence Bi ¼ bj. Such a characteristic prevents
the normalized clustering correlation between two values of
a nonunique attribute from reaching 1. The property creates
a bias in favor of substituting those unique attribute values
before those of nonunique attribute values. Therefore, the
theoretical maximum value of �ða1; a2Þ is m� 2 (instead of
m� 1) when A is not the key attribute. The normalized
clustering correlation presented in (5) is modified to:

���0ða1; a2Þ ¼
1

m� n� p �
0ða1; a2Þ; ð9Þ

where m is the total number of attributes in the relation, n is
the number of unique attributes in the relation, and p is 0 if
A is also a unique attribute; otherwise, p equals 1 and
m� n� p 6¼ 0. The Appendix includes an example of the
calculation of the normalized clustering correlation.

Neighbor hierarchies can be created for any attributes in
the relation by combining the modified clustering correlation
functions with the Binary Clustering algorithm. A neighbor
hierarchy of attribute WIDTH in the relation ALUM_PLATE
developed with the ePKI is shown in Fig. 3. For example, the
nearness value between WIDTH = 3 and WIDTH = 1.25 is
0.095 based on the neighbor hierarchy in Fig. 3.

Using the same approach, an additional neighbor
hierarchy for attribute THICKNESS can be constructed
(not shown here). The nearness value between THICKNESS
= 1 and THICKNESS = 0.375 is 0.062. Comparing the two

nearness values indicates that relaxing the WIDTH condi-
tion is better than relaxing the THICKNESS condition (since
0.095 is greater than 0.062). Therefore, when the user
searches for a part with WIDTH = 3, LENGTH = 144, and
THICKNESS = 1, the cooperative system would suggest the
aluminum plate with stock number “308-0019.”

5 EXPERIMENTAL RESULTS

Evaluating the soundness of a neighbor hierarchy could be
done using domain experts’ opinions. However, users may
prefer different neighbor hierarchies for different applica-
tions even though the information is derived from the same
data source. The authors’ experience has been that expert
decisions can be quite subjective. An excellent neighbor
hierarchy for one expert could receive a poor ruling from
another. Thus, in order to fairly judge the performance of
the proposed attribute-level neighbor hierarchy construc-
tion, data sets with explicit inferential relationships were
utilized.

An experiment was conducted to test whether the ePKI
was capable of correctly capturing inferential relationships
among attribute values using component-machine inci-
dence matrices. Component-machine incidence matrices are
used for grouping parts into families and/or machines into
manufacturing centers as part of group technology [27]. In
addition, an algorithm for transforming a component-
machine incidence matrix into its block diagonal form
using ePKI’s clustering correlations was developed.

PUTHPONGSIRIPORN ET AL.: ATTRIBUTE-LEVEL NEIGHBOR HIERARCHY CONSTRUCTION USING EVOLVED PATTERN-BASED... 923

Fig. 3. A neighbor hierarchy of WIDTH in ALUM_PLATE through the
ePKI technique.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on July 18,2023 at 19:02:42 UTC from IEEE Xplore.  Restrictions apply. 



An example of a component-machine incidence matrix is

shown in Table 4. Rows and columns in the table represent

components (i.e., parts) and machines, respectively. The

ði; jÞth element of the matrix (the value of attribute jth of

tuple ith) has a value of 1 if part ith visits machine jth;

otherwise, a value of 0 is assigned (shown as a blank cell in

Table 4). For example, component 7 stops at machine 25, 32,

and 40. It is important to note that the component-machine

incidence matrix does not specify the visiting order. The

matrix in Table 4 is transformed into a block diagonal form

to form part families and manufacturing centers by

rearranging components (tuples) and machines (attributes),

as shown in Table 5. In this example, parts 7, 14, 23, and 24

are processed by a common set of machines (i.e., 3, 25, and

32). Each submatrix in the block diagonal form suggests a
possible part family and a potential manufacturing center.

For a given set of data, a perfect block diagonal form in
which all 1s are in the diagonal submatrices and all 0s
occupy the off-submatrices may not exist. Chandrasekharan
and Rajagopalan [28] developed a methodology called
ZODIAC for transforming component-machine incidence
matrices into their block diagram forms. They also
suggested using Grouping Efficiency [29] as the measure of
the goodness of a block diagonal matrix—how close a
matrix is to its perfect block diagonal form. The reader is
encouraged to review [22] for a detailed explanation of the
grouping efficiency calculation. A perfect block diagonal
form has a 100 percent grouping efficiency. The matrix in
Table 5 has a grouping efficiency of 85.40 percent.

924 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 7, JULY 2006

TABLE 4
Component-Machine Incidence Matrix

TABLE 5
A Block Diagonal Form of a Component-Machine Incidence Matrix

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on July 18,2023 at 19:02:42 UTC from IEEE Xplore.  Restrictions apply. 



Component-machine incidence matrices were used in
this research for assessing the performance of the proposed
attribute-level neighbor hierarchy construction algorithms
for the following reasons:

1. Since data in a component-machine incidence matrix
exhibit true inferential relationships that are visible
after a block diagonal transformation, there is no
need to involve experts. The algorithms can be
evaluated to determine whether Type I or Type II
error exists in the resulting neighbor hierarchies.

2. By using the Grouping Efficiency measure, the
strength of the inferential relationships among
attributes and attribute values can be quantified.

5.1 ePKI-Based Block Diagonal Transformation
Algorithm

As demonstrated earlier, ePKI can be used with the Binary
Algorithm to construct neighbor hierarchies of attribute
values based on their relationship represented by other
attributes. Based on the fact that the resulting neighbor
hierarchies can also be viewed as a suggestion on how to
order attribute values (based on their similarities), the
following algorithm to transform a part-machine incidence
matrix into its block diagonal form was developed:

1. Select a column by which the rows of the part-
machine incidence matrix will be ordered.

2. Choose a target number of part families. The default
number of families is 1.

3. Construct a neighbor hierarchy based on the values
in the selected column using ePKI’s clustering
correlations and the binary clustering algorithm
until the desired number of part families is achieved.
If the default number of families is selected, continue
parts clustering until all parts are grouped. The later
case results in one large part family.

4. Rearrange the parts (rows) based on their order
shown in the resulting neighbor hierarchy.

5. If necessary, a part family can be broken into two
smaller families by removing the node with the
smallest clustering correlation value of the part
family.

A neighbor hierarchy of parts resulting from applying

the ePKI-based block diagonal transformation algorithm on

the part-machine incidence matrix shown in Table 4 is

depicted in Fig. 4. The part number column was chosen for

PUTHPONGSIRIPORN ET AL.: ATTRIBUTE-LEVEL NEIGHBOR HIERARCHY CONSTRUCTION USING EVOLVED PATTERN-BASED... 925

Fig. 4. Part families constructed by the ePKI-based block diagonal
transformation algorithm.

TABLE 6
Resulting Table from the Binary Data Modifications

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on July 18,2023 at 19:02:42 UTC from IEEE Xplore.  Restrictions apply. 



the clustering. The default number of part families of 1 was
used in this case. Seven part families (represented by the
solid black dots in Fig. 4) were obtained after removing six
nodes with the least clustering correlation values.

5.2 Synthetic Data Sets

Traditional component-machine incidence matrices only
contain 0s and 1s. If part (or machine) clustering is
performed on a machine column, the result will always be
a hierarchy of two attribute values (0 and 1). Some
modifications must be performed on the binary data so
that it represents the data found in typical relations. For our
performance evaluation purposes, an attribute is randomly
selected from the relation. Then, all 0s and 1s of the attribute
of interest (whose values are to be clustered) are replaced
with integers ranging from 1 to 2n, where n is the number of
tuples.

First, the entire range from 1 to 2n is divided into
unequal subsets based on the number of families and the
number of components in each family. The division of the
range into subsets ensures that no two interfamily instances
will be forced to combine together. Such a conglomerate is
acceptable only if it occurs within the same family. Then,
these subsets of integers are used to replace 0s and 1s in
each component family: 0s are substituted with randomly
selected even numbers, whereas 1s are substituted with
randomly selected odd numbers. For example, Family 1
consists of five components (i.e., 15, 6, 8, 12, and 18); thus,
integers 1 to 10 are allocated to the family. For a given
family, an integer may be used more than once. Table 6
shows an example of a component-machine incidence
matrix after the binary data modifications are performed
for column “33.”

5.3 Validation of the Resulting Neighbor
Hierarchies

The ePKI with the Binary Clustering algorithm was
utilized to construct neighbor hierarchies for component-
machine incidence matrices. The results were compared
with the best matrices’ block diagonal forms produced by

Chandrasekharan and Rajagopalan’s approach. It was
ruled that the proposed neighbor hierarchy construction
algorithm committed a mistake for each incident of Type I
error. Type I error is defined here as grouping two values
together when they were not supposed to be grouped. In
our case, there was no Type II error (i.e., two values were
not grouped together when they were supposed to be
grouped) because all values were eventually clustered
with another value or group of values by the ePKI
technique. Also, considering Type II error would result in
a double penalty for each fault.

All seven matrices mentioned in [29] were utilized in the
validation process. Based on Chandrasekharan and Rajago-
palan’s work, the highest achievable grouping efficiencies
of their matrices are 100 percent, 95.20 percent, 91.14 per-
cent, 85.40 percent, 77.31 percent, 72.43 percent, and
69.33 percent. Table 7 represents a block diagonal matrix
with a grouping efficiency of 91.14 percent.

5.4 Effect of Inferential Relationship Strength
Analysis

The effect of the strength of inferential relationships on the

resulting neighbor hierarchy was studied using the seven

component-machine incidence matrices. Ten attributes

(machines) were randomly selected and neighbor hierar-

chies were constructed using the proposed algorithm

described in Section 5.1. The number of occurrences of

Type I error was determined for each trial. The ratios of the

average number of fault groupings to times of clustering

(number of nodes) for all seven data sets are shown in Fig. 5.

When group efficiencies are at least 85.41 percent, results

show that the neighbor hierarchies constructed via the ePKI

agree with those suggested by the matrices’ block diagonal

forms generated using the ZODIAC technique [29]. The

percentage of Type I error is approximately at 30 percent

when the group efficiency is 69.33 percent. It is important to

note that despite the fact that Type I errors were observed

for the last three matrices, the recalculated Grouping

926 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 7, JULY 2006

TABLE 7
Component-Machine Incidence Matrix with a Group Efficiency of 100 Percent

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on July 18,2023 at 19:02:42 UTC from IEEE Xplore.  Restrictions apply. 



Efficiencies of those matrices’ block diagonal forms pro-

duced by the ePKI method were better than those suggested

by Chandrasekharan and Rajagopalan. For example, Chan-

drasekharan and Rajagopalan’s best block diagonal form of

the last component-machine incidence matrix has a Group-

ing Efficiency value of .6933, while the block diagonal form

for the same matrix that resulted from the ePKI-based block

diagonal transformation algorithm receives a score of .732.

When a component-machine incidence matrix is used to

develop families of components, application domain

experts may choose to accept a suboptimum solution for

some practical constraints. Therefore, any deviation from

Chandrasekharan and Rajagopalan’s results is still con-

sidered as an error for the consistency of the analysis.

Unlike those results of typical block diagonal form

transformation techniques, neighbor hierarchies generated

by the ePKI-based block diagonal transformation algorithm

not only group components into families, they also provide

additional information in terms of which families are closer

to which.
In summary, the ePKI technique is capable of generating

reliable attribute-level neighbor hierarchies if there are

strong inferential relationships among data in the table.

5.5 Effect of Unique Attribute Analysis

Both the original and the ePKI technique construct neighbor

hierarchies based on the rule of shared consequence. This

means these techniques can interpolate any inferential

relationships and group two attribute values together only

if they share at least one same consequence attribute value.

In the case that all attributes are unique, all nearness values

will be 0. Attributes with little duplication of attribute

values, which are more difficult to identify than a unique

attribute, will cause the same problem with lesser degrees.

In such cases, the nearness values of the resulting neighbor

hierarchy will obviously be biased, which could cause an

inaccurate approximate answer. Therefore, an experiment

was conducted to study the effect of unique attributes on

the final nearness values.

Additional unique attributes were introduced into the

calculation by replacing values (0s and 1s) in certain

attributes with sets of unique values. Then, the number of

unique attributes in the table was gradually increased and

the average nearness values in the neighbor hierarchies

were collected, which are shown in Fig. 6. Based on the

experimental results, average nearness values drop when

the number of unrecognized unique attributes increases.

The problem is more severe for data sets with strong

inferential relationships. Also, average nearness values

almost converge as the number of unique attributes grows.

Through the modified normalized clustering correlation

(see (9)), the average nearness values stay almost the same

for all numbers of unique attributes introduced.

6 CONCLUDING REMARKS

In this paper, an effective technique for developing

neighbor hierarchies at the attribute level has been

introduced. The ePKI technique allows for the construction

of neighbor hierarchies for nonunique attributes based

upon confidences, popularities, and correlations of relation-

ships among attribute values. In addition, the ePKI

technique is capable of clustering both numerical and

categorical attribute values.

Attribute value neighbor hierarchies generated by the

ePKI technique allow cooperative query answering systems

to search for approximate answers by relaxing each

individual query condition separately. As a result, users

can search for approximate answers even when the exact

match answers do not exist in the database. This capability

is essential for developing cooperative query answering

systems in many domains such as rapid prototyping

applications in the manufacturing information domain.
Several experiments were conducted to assess the

performance of the ePKI in constructing attribute-level
neighbor hierarchies. The results indicate the following:

. The ePKI technique produces accurate neighbor
hierarchies when strong inferential relationships

PUTHPONGSIRIPORN ET AL.: ATTRIBUTE-LEVEL NEIGHBOR HIERARCHY CONSTRUCTION USING EVOLVED PATTERN-BASED... 927

Fig. 5. Effect of inferential relationship strength on neighbor hierarchies.
Fig. 6. Effect of the number of unique attributes on nearness values.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on July 18,2023 at 19:02:42 UTC from IEEE Xplore.  Restrictions apply. 



appear among data. Degradations in the result
qualities become evident when the technique is used
on less related sets of data.

. The higher the number of irrelevant attributes (such
as unique attributes or alternate key attributes)
utilized in the calculation, the lower the resulting
nearness values. The effect of unique attribute on the
overall nearness values is relatively stronger when
the technique is used with tightly related data. In
other words, the domains of the consequence
attributes can affect nearness value suggested by
the algorithms.

APPENDIX

NORMALIZED CLUSTERING CORRELATION

CALCULATION EXAMPLE

From Table 2, 28 unique values are identified in attribute

STOCK_NO, 18 in LENGTH, 24 in AREA, and eight in

THICKNESS. The normalized clustering correlation be-

tween WIDTH=3 and WIDTH=0.3125 (represented as w1

and w2, respectively, in the formulas below) is calculated as

follows:

�0ðw1; w2Þ¼

P28

j¼1
�ðw1!STOCK NO¼sjÞ��ðw2!STOCK NO¼sjÞ

þ
P18

j¼1
�ðw1!LENGTH¼ljÞ��ðw2!LENGTH¼ljÞ

þ
P24

j¼1
�ðw1!AREA¼ajÞ��ðw2!AREA¼ajÞ

þ
P8

j¼1
�ðw1!THICKNESS¼tjÞ

��ðw2!THICKNESS¼tjÞ

2
666664

3
777775
:

Since STOCK_NO is a unique attribute, its contribution

to the equation is zero. Due to the same reason, only

attribute values found in LENGTH, AREA, and THICK-

NESS that associate with either or both w1 and w2 are shown

in the calculation below:

�0ðw1; w2Þ¼

0þ�ðw1!LENGTH¼144Þ��ðw2!LENGTH¼144Þ

þ�ðw1!AREA¼432Þ��ðw2!AREA¼432Þþ�ðw1!AREA¼45Þ

��ðw2!AREA¼45Þ

þ�ðw1!THICKNESS¼:375Þ��ðw2!THICKNESS¼:375Þ

þ�ðw1!THICKNESS¼:5Þ��ðw2!THICKNESS¼:5Þ

þ�ðw1!THICKNESS¼:75Þ��ðw2!THICKNESS¼:75Þ

2
666666664

3
777777775

¼
0þ 1�1ð Þþ 1�0ð Þþ 0�1ð Þþ 1=3�0ð Þ

þ 1=3�1ð Þþ 1=3�0ð Þ

� �
¼ 1:333

���0ðw1; w2Þ ¼ 1= 5� 1� 1ð Þ � 1:333 ¼ :444:

Obviously, a clustering of WIDTH=3 and WIDTH=0.3125

will not happen in the early iterations because of their

intermediate clustering correlation values. In this example,

(WIDTH=3, WIDTH=0.3125) was chosen to form a new

cluster in the third iteration after (WIDTH=6.75,

WIDTH=21.24) and (WIDTH=8, WIDTH=12.25) were

grouped together in the first and second iterations with

clustering correlations of .75 and .6667, respectively. In the

fourth iteration, one of the clustering candidates is combin-

ing {(WIDTH=3, WIDTH=0.3125) with WIDTH=.75}.

WIDTH=.75 is represented as w3. Their clustering correla-

tion computation is shown below:

�0ð w1; w2f g; w3Þ

¼

P28

j¼1
�ð w1_w2ð Þ!STOCK NO¼sjÞ��ðw3!STOCK NO¼sjÞ

þ
P18

j¼1
�ð w1_w2ð Þ!LENGTH¼ljÞ��ðw3!LENGTH¼ljÞ

þ
P24

j¼1
�ð w1_w2ð Þ!AREA¼ajÞ��ðw2!AREA¼ajÞ

þ
P9

j¼1
�ð w1_w2ð Þ!THICKNESS¼tjÞ��ðw2!THICKNESS¼tjÞ

2
66664

3
77775

¼

0

þ�ð w1_w2ð Þ!LENGTH¼144Þ��ðw3!LENGTH¼144Þ

þ�ð w1_w2ð Þ!AREA¼45Þ��ðw2!AREA¼45Þ

þ�ð w1_w2ð Þ!AREA¼108Þ��ðw2!AREA¼108Þ

þ�ð w1_w2ð Þ!AREA¼432Þ��ðw2!AREA¼432Þ

þ�ð w1_w2ð Þ!THICKNESS¼:25Þ��ðw2!THICKNESS¼:25Þ

þ�ð w1_w2ð Þ!THICKNESS¼:375Þ��ðw2!THICKNESS¼:375Þ

þ�ð w1_w2ð Þ!THICKNESS¼:5Þ��ðw2!THICKNESS¼:5Þ

þ�ð w1_w2ð Þ!THICKNESS¼:75Þ��ðw2!THICKNESS¼:75Þ

2
66666666666666664

3
77777777777777775

¼
0þð 3þ1ð Þ=4�1Þþð 0þ0ð Þ=4�1Þþð 3þ1ð Þ=4�0Þrþð 0þ0ð Þ=4�1Þ

þð 1þ0ð Þ=4�0Þþð 1þ1ð Þ=4�0Þþð 1þ0ð Þ=4�0Þ

� �
¼ 1

���0ð w1; w2f g; w3Þ ¼ 1=3 ¼ :333:

REFERENCES

[1] J. Minker, G.A. Wilson, and B.H. Zimmerman, “Query Expansion
by the Addition of Clustered Terms for a Document Retrieval
System,” Information Storage and Retrieval, vol. 8, pp. 329-348, 1972.

[2] F. Cuppens and R. Demoloube, “Cooperative Answering: A
Methodology to Provide Intelligent Access to Database,” Proc.
Second Int’l Conf. Expert Database Systems, 1988.

[3] H. Grice, “Logic and Conversation,” Syntax and Semantics, P. Cole
and J. Morgan, eds., Academic Press, 1975.

[4] E. Petrakis, G.M. Euripides, and C. Faloutsos, “Similarity
Searching in Medical Image Databases,” IEEE Trans. Knowledge
and Data Eng., vol. 9, no. 3, pp. 435-447, May/June 1997.

[5] D. Che, K. Aberer, and Y. Chen, “The Design of Query Interfaces
to the GPCRDB Biological Database,” Proc. User Interfaces to Data
Intensive Systems, pp. 22-31, 1999.

[6] D. Che, C. Yangjun, and A. Karl, “Query System in a Biological
Database,” Proc. 11th Int’l Conf. Scientific and Statistical Database
Management, pp. 158-167, 1999.

[7] C.T. Yu and W. Sun, “Automatic Knowledge Acquisition and
Maintenance for Semantic Query Optimization,” IEEE Trans.
Knowledge and Data Eng., vol. 1, pp. 362-375, 1989.

[8] J. Han, Y. Cai, and N. Cercone, “Data-Driven Discovery of
Quantitative Rules in Relational Databases,” IEEE Trans. Knowl-
edge and Data Eng., vol. 5, pp. 29-40, 1993.

[9] J. Han and Y. Fu, “Dynamic Generation and Refinement of
Concept Hierarchies for Knowledge Discovery in Database,” Proc.
AAAI Workshop Knowledge Discovery in Databases (KDD 94), pp. 157-
168, July 1994.

[10] T. Puthpongsiriporn, “Neighbor Hierarchy Construction at the
Attribute Level for Cooperative Query Answering,” Proc. 2003
Industrial Eng. Research Conf., May 2003.

[11] M. Merzbacher, “Nearness and Cooperative Query Answering,”
unpublished PhD dissertation, Computer Science Dept., Univ. of
California, Los Angeles, 1993.

[12] Y. Huang, “Intelligent Query Answering by Knowledge Discovery
Techniques,” thesis, Simon Fraser Univ., Canada, 1993.

[13] J. Ozawa and K. Yamada, “Discovery of Global Knowledge in a
Database for Cooperative Answering,” Proc. Joint Conf. Fourth
IEEE Int’l Conf. Fuzzy Systems and Second Int’l Fuzzy Eng. Symp.,
1995.

[14] C.E. Shannon and W. Weave, The Mathematical Theory of
Communication. Urbana, Ill.: Univ. of Illinois Press, 1964.

[15] D.K.Y. Chiu, A.K.C. Wong, and B. Cheung, “Information
Discovery through Hierarchical Maximum Entropy Discretization
and Synthesis,” Knowledge Discovery in Databases, AAAI Press/The
MIT Press, 1991.

928 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 7, JULY 2006

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on July 18,2023 at 19:02:42 UTC from IEEE Xplore.  Restrictions apply. 



[16] A.K.C. Wong and D.K.Y. Chiu, “Synthesizing Statistical Knowl-
edge from Incomplete Mixed-Mode Data,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 9, no. 6, pp. 796-803, 1987.

[17] J. Genari, P. Langley, and D. Fisher, “Models of Incremental
Concept Formation,” Artificial Intelligence, vol. 40, pp. 11-62, 1987.

[18] W. Chu and K. Chiang, “Abstraction of High Level Concepts from
Numerical Values in Databases,” Proc. AAAI Workshop Knowledge
Discovery in Database, pp. 133-144, 1994.

[19] W.W. Chu, K. Chiang, C.C. Hsu, and H. Yau, “An Error-Based
Conceptual Clustering Method for Providing Approximate Query
Answers,” Comm. ACM, vol. 39, no. 12, pp. 216-230, Dec. 1996.

[20] M. Merzbacher and W. Chu, “Pattern-Based Clustering for
Database Attribute Values,” Proc. AAAI Workshop Knowledge
Discovery in Database, 1993.

[21] S.M. Ali and S.D. Silvey, “A General Class of Coefficient of
Divergence of One Distribution from Another,” J. Royal Statistical
Soc., Series B, vol. 2, pp. 131-142, 1966.

[22] I. Csiszár, “Information-Type Measures of Difference of Prob-
ability Distributions and Indirect Observatons,” Studia Scient.
Math. Hung., vol. 2, pp. 299-318, 1967.

[23] J. Lin, “Divergence Measures Based on the Shannon Entropy,”
IEEE Trans. Information Theory, vol. 37, no. 1, pp. 145-151, 1991.

[24] S. Kullback and R.A. Leibler, “On Information and Sufficiency,”
Annals of Math. Statistics, vol. 22, pp. 76-86, 1951.

[25] L. Withers, “Some Inequalities Relating Different Measures of
Divergence between Two Probability Distributions,” IEEE Trans.
Information Theory, vol. 45, no. 5, pp. 1728-1735, 1999.

[26] D. Malerba, F. Esposito, and M. Monopoli, “Comparing Dissim-
ilarity Measures for Probabilistic Symbolic Objects,” Data Mining
III, Series Management Information Systems, vol 6, pp. 31-40, 2002.

[27] N. Singh, Systems Approach to Computer-Integrated Design and
Manufacturing. John Wiley and Sons, 1996.

[28] M.P. Chandrasekharan and R. Rajagopalan, “ZODIAC—An
Algorithm for Concurrent Formation of Part-Families and
Machine-Cells,” Int’l J. Production Research, vol. 25, no. 6, pp. 835-
850, 1987.

[29] M.P. Chandrasekharan and R. Rajagopalan, “Groupability: An
Analysis of the Properties of Binary Data Matrices for Group
Technology,” Int’l J. Production Research, vol. 27, no. 6, pp. 1035-
1052, 1989.

Thanit Puthpongsiriporn received the doctoral
degree from the University of Pittsburgh in 2002.
He is an assistant professor at Oregon State
University, where he teaches courses in the
Information Systems Engineering program. He
has performed research in the areas of wireless
computing, distributed information systems,
Web services and applications, automatic iden-
tification, and data capture. He has led several
information system designs and development

projects in the past 10 years. Selected projects include the development
of Disease Management and Early and Periodic Screening, Diagnostic,
and Treatment (EPSDT) systems for The University of Pittsburgh
Medical Center Health Plan and the evaluation of Radio Frequency
technologies for the Defense Research Projects Agency (DARPA), US
Department of Defense.

J. David Porter received the MS and PhD
degrees in industrial engineering from the
University of Pittsburgh in 1999 and 2000,
respectively. He is an assistant professor in the
Department of Industrial and Manufacturing
Engineering at Oregon State University. His
research interests include automatic identifica-
tion and data capture, intelligent transportation
systems, supply chain engineering, wireless
communications, and manufacturing systems

engineering. He is a member of SME and ASEE and is the current
Director-Elect of the Computers and Information Systems Division of the
Institute of Industrial Engineers (IIE).

Bopaya Bidanda is the Ernest Roth Professor
and Chairman of the Department of Industrial
Engineering at the University of Pittsburgh. His
research interests include manufacturing sys-
tems, reverse engineering, rapid prototyping,
and product development. He has copublished
two books with McGraw Hill (Automated Factory
Handbook and Shared Manufacturing), in addi-
tion to more than 100 papers in international
journals and conference proceedings. He is also

the president-elect of the Council of Industrial Engineering Academic
Department Heads (CIEADH). He has had industrial experience in
aerospace manufacturing, precision manufacturing, and tooling accrued
before graduate study. He regularly consults with corporate organiza-
tions and government agencies.

Ming-En Wang received the BS degree from
the National Chiao Tung University in Taiwan,
the MS degree from Iowa State University, and
the PhD degree in industrial and operations
engineering from the University of Michigan, Ann
Arbor. He is currently an assistant professor in
the Department of Industrial Engineering at the
University of Pittsburgh. While pursuing his PhD,
he worked at Ford Motor Company building an
integrated information and engineering system

for its car-body stamping division. His research interests are in
computational problems that arise in design, manufacturing, and
information technology. Some of his current projects include ad hoc
localization of sensor networks, supply chain diagnosis in an information
rich environment, preemption traffic network design, and hybrid design
representations.

Richard E. Billo is the associate dean of
engineering research at the University of Texas
at Arlington. He conducts research in database
systems, wireless networks, and bioinformatics.
He is currently the founding director of the Texas
Radio Frequency Identification Systems Re-
search Center. He has published more than 60
refereed papers, and been awarded more than
$20 million in funded research grants and gifts.
He has conducted research for the US Navy, the

US Defense Logistics Agency, the US National Science Foundation, and
such companies as Intel, Symbol Technologies, and Hewlett Packard.
He currently serves on the editorial board for the International Journal of
Manufacturing Systems. Previously, Dr. Billo served as chair of the
Industrial and Manufacturing Engineering Department at Oregon State
University, held joint appointments as an associate professor in the
Industrial Engineering Department and the Information Science Depart-
ment at the University of Pittsburgh, and worked as a technical group
leader for Pacific Northwest National Laboratories. He has won awards
as an Intel Faculty Fellow, Outstanding Engineering Faculty, and the
Whiteford Professorship.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

PUTHPONGSIRIPORN ET AL.: ATTRIBUTE-LEVEL NEIGHBOR HIERARCHY CONSTRUCTION USING EVOLVED PATTERN-BASED... 929

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on July 18,2023 at 19:02:42 UTC from IEEE Xplore.  Restrictions apply. 


	Attribute-level Neighbor Hierarchy Construction Using Evolved Pattern-based Knowledge Induction
	Recommended Citation

	Attribute-level neighbor hierarchy construction using evolved pattern-based knowledge induction

