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Sttdies of vibrational surface modes in ionic crystals. I. Detailed shell-model studies
for the unrelaxed (001) face of seven crystals having the rocksalt structuree

T. S. Chen and F. W. de bette
Department of Physics, University of Texas, Austin, Texas 78712

G. P. A11dredge~
Department of Physics and Graduate Center for Materials Research, University of Missouri, Rolla, Missouri 6S401

(Received 1 March 1976)

We present a comprehensive, unified account of the lattice dynamics of unrelaxed (001) faces of seven crystals

having the, rocksalt structure, three of which have an absolute gap between the acoustical and optical bulk

bands (RbF, RbC1, and NaI) and four of which have overlap between these bulk bands (NaF, NaC1, LiF, and

MgO). The results are obtained from calculations of the normal modes of a thin crystal film in which the
ionic interactions are described by the rigid-shell model. An outline of the formulation of the shell model for
the film is given, and the rapid convergence of surface-phonon frequencies with increasing film thickness is

demonstrated. Surface- and pseudosurface-phonon dispersion curves and bulk bands are displayed in the form

of the dispersion curves of a 15-layer film over the two-dimensional surface Brillouin zone. The surface-excess

phonon density of states f'(co) is given, and its peaks and valleys are correlated with features in the film

dispersion curves. The domains of existence and the vibrational character of the more prominent surface-

phonon bands are discussed. We establish the relation between the surface modes of the lattice models and the

macroscopic surface waves of the dielectric and elastic continuum theories (Fuchs-Kliewer and Rayleigh

waves, respectively). Comparison with experiments is made; the agreement with low-energy atom scattering
from single-crystal surfaces of LiF and with inelastic neutron scattering from microcrystallite samples of MgO
is particularly notable, although the latter comparison also displays some significant discrepancies.

I. INTRODUCTION

In recent years there has been considerable
interest in experimental and theoretical studies of
surface modes of vibration in ionic crystals. A
number of experimental studies have been re-
ported, using various methods such as electron-
energy-loss spectroscopy, "inelastic neutron
scattering, "4 infrared absorption, ' and inelastic
light-atom scattering. "' In theoretical treatments
three different approaches have been used, name-
ly, continuum dielectric theory, " slab lattice
dynamics j'o '0 and the Green's-function method. "

In slab lattice-dynamics calculations, two dif-
ferent models have been used, namely, the Kel-
lermann rigid-ion (KRI) modeP' and the more
realistic shell model. "*'4 A calculation with the
KRI model for a crystal surface was first carried
out for NaCl(001) by Lucas'0 at q =0 (q is the two-
dimensional wave vector parallel to the surface),
and subsequently by Tong and Maradudin" for a
coarse mesh of values of q throughout the two-
dimensional surface Brillouin zone (SBZ). The
first shell-model calculation for a crystal surface
was carried out by Chen ef a/."for NaCI(001). To
date, the direct slab lattice-dynamical method
has provided the most detailed results on surface
vibrations of ionic crystals. In addition, from
comparisons of experimental and theoretical re-
sults, it is evident that the shell model is superior

to the KRI model in obtaining agreement between
theory and experiment.

In the present paper we present a summary for-
mulation of the dynamics of ionic crystaQine slabs
with shell-model interaction, and report results
of a comprehensive study of the suxface vibrational
modes of the unrelaxed (001) faces of seven ionic
crystals: six alkali halides (NaF, NaCl, NaI,
RbF, RbCl, LiF) and MgO, all having the rock-
salt structure. The seven crystals are of two

types: one type with a large absolute gap between
the optical and acoustic bulk bands, and the other
type without such an absolute gap. The calcula-
tions for LiF, NaF, and MgQ were inspired by the
existence of experimental data on these crystals.
Although the results reported here are restricted
to the unrelaxed case, there are encouraging
points of agreement with sorn. e experimental re-
sults. It is hoped that the present results on seven
crystals will be a stimulus for further experimen-
tal work on these crystals (e.g. , inelastic neutron
and light-atom scattering), and the present re-
sults will serve as abench mark for comparison
with subsequent studies of the effects of relaxa-
tion on the surface dynamics of ionic crystals.

The paper is organized as follows. In Sec. jI we
outline the formalism. A description of the calcu-
lations follows in Sec. III. The general features of
vibrational surface modes are described in Sec.
IV; some comparisons with experimental results
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bearing most directly on vibrational surface modes
are also included in this section. Belated integral
properties, such as surface enhancement of the
thermal mean-square amplitudes, surface ther-
modynamic functions, and surface correlation
functions are the subject of papers to appear else-
where.

II. SHELL MODEL AND SLAB DYNAMICS

The shell model was developed to account for
long-range Coulomb and short-range overlap po-
larization effects in ionic crystals. Originally
conceived by Dick and Overhauser" to describe
dielectric effects, the model was subsequently
adapted for dynamical calculations, principally
by Woods et al. ,

"Cochran, "and Cowley. " This
development has been summarized in a number of
reviews and need not be repeated here. """

In this section we summarize the general formu-
lation and notation for the shell-model lattice dy-
namics of crystal slabs, following notational con-
ventions given by Allen et al." The formulation of
the shell model that we have used in this work
closely resembles that given for infinite crystals
in the recent review by Tenkataraman et al. ,"to
which we refer for details. In order to maintain a
unity of approach, we briefly define the slab nota-
tion here, state the equations of slab dynamics,
and reproduce the salient shell-model equations in
Appendix A. We consider crystal slabs with two
parallel surfaces, consisting of a finite number of
layers perpendicular to the z direction, and ex-
tending to infinity in the x and y directions. It is
useful to introduce two-dimensional vectors with
only x and y components, and to indicate these
with superior bars: lf r = (x,y, z) and 1 = (l„l„l,),
then r=(x, y) and 1=(l„l,). With this notation the
instantaneous position of the Nh ionic core in the
1th unit cell can be written as

r '(1 «) = r, (1 «) + u '(1 «') = r, (1)+ r, (l,«) + u '(I «),

where r, (1 «) is the mean position of the ion and
u'(1«) the instantaneous (i.e. , time dependent )
displacement of the core from its mean position.
Similarly, the instantaneous position of the cen-
ter of the outer shell of the same ion can be writ-
ten as

r'(1 «) = r, (l «) + u'(1 «) = r, (1 ) + r,(l,«) + u'(1 «) ,

(2)
where u'(1«) is the instantaneous displacement of
the center of the outer shell from its mean posi-
tion. The set of numbers I = (l„l„l,) together with
the index c specify a particular ion; l, labels a lat-

42= — 4~~ 1&;1'x' u~ 1 v uz 1'K'

where

+ C ~
(1 «; 1'«')u' (1 «)u' (1

' «')

+ C~~ (1 '«';1«)u'„(1 «)u', (1'«")

+ 4'„~(1 I«' )«(uI «)u~(1'«')]

8 '(fs)a '()'a'))
where n, p =x,y, or z, and the derivative quanti-
ties are evaluated for all ions and shells at their
mean positions. This implies that the quasihar-
monic-approximation force constants C z are
evaluated for a configuration of the crystal in which
bulk thermal expansion and (in principle) surface
thermal expansion have been taken into account.

The equations of motion of cores and shells are,
respectively,

842
M„u'„(1«) = —,

(j )

842
Bu (1«) '

where the 0 results from the zero shell mass.
In Appendix A we show that after substantial re-

arrangement and manipulation of the quantities in
these equations, and assuming that the short-range

tice plane parallel to the surface and (l„l,) speci-
fies a point of the two-dimensional lattice which
spans the plane l„&distinguishes the different
ions in the unit cell associated with a particular
l, lattice plane.

Assuming that the total potential energy of the
crystal slab C (r', r') is a function of the position
vectors r'(1 «) and r'(1«), we expand 4(r', r') in a
double Taylor series, in which both the core and
shell coordinates r '(1«) and r'(I «) are expanded
around the mean ionic positions r, (1 «); we then
have

C (r', r') —C o
= 4~ + C, +

In the quasiharmonic approximation one neglects
all terms but the second one on the right-hand side
of E(I. (3), the sum of the other terms being con-
sidered as a small perturbation. The quadratic
term 42 in the double Taylor expansion has the
form
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forces are entirely due to shell-shell interactions,
the equations of motion can be reexpressed in the
form

~2(c D)c

with

(10)

D= (R+ Z, CZ, )

—(T+ Z~CY~)(S+ Y~CY„) '(T*+Y~CZ„), (11)

where $' are the column matrices for the core
eigenvectors, C the matrix describing the Coulomb
interactions, and R, T, and 8 the matrices de-
scribing the short-range interactionsbetween neigh-
boring ions, between ions and neighboring shells,
and between neighboring shells, respectively.
Finally, Z„and Y„are the diagonal matrices for
the ion and core charges. Equations (10) and (11)
constitute the customary way of expressing the
equations of motion in the context of the shell mod-
el. In Appendix A we briefly sketch the derivation
leading from Eqs. (8) and (9) to Eqs. (10) and (11)
and in Appendix C we list the expressions for the
matrix elements R„~ and C ~ as they apply to slab
calculations.

III. CALCULATIONS

The calculations described in this paper were
carried out for unrelaxed crystal slabs; i.e. , we
have used the bulk nearest-neighbor distance x, as
the inter-ion distance throughout the slab and as-
sumed the static dipoles to be zero throughout. In
principle, surface relaxation (i.e. , the slight dis-
placement of the mean ionic positions and nonzero
static dipoles near the surface) can have an im-
portant influence on surface dynamic phenomena.
However, there are difficulties in developing a
shell-model description that is consistent for both
static structural properties, such as surface re-
laxation, and dynamical properties, such as phonon
spectra. For example, Benson and Claxton" have
calculated the static relaxation of the rocksalt (001)
surface on the basis of a simple shell model which
incorporates static dielectric properties and long-
wavelength optical properties; however, their
shell model is not adequate to describe accurately
the phonons throughout the Brillouin zone (BZ). On
the other hand, dynamical shell models, such as
we use, do not provide a systematic prescription
for modifying the model parameters when the ionic
coordinates change from those of bulk equilibrium.
For instance, a straightforward extrapolation from
the bulk equilibrium configuration for the energy,
using a Born-Mayer functional form, does not
lead to reasonable results for surface relaxation.
(We have incorporated relaxation effects in certain
of our preliminary calculations, "and will deal with

2V
8 df'g~

2V, -1 d4
8 t'g ~ df'

g

(12)

(13)

where V, = 2x0, x, is the nearest neighbor distance,
and 4 the potential function for the short-range
interactions. From Eqs. (12), (13), and (A9) one
can derive an expression for R,~ (I, z, l', a';q) (re-
member R = S is assumed) in terms of A'~ and B"
(without knowing the explicit form of potential func-
tion 4s).

(ii) The elements of the Coulomb interaction ma-
trix C contain lattice sums which converge ex-
tremely slowly in direct space so that special
methods have to be used to improve the conver-.
gence. Tong and Maradudin" used a modified-Bes-
sel-function transformation to bring the sums into
a rapidly convergent form. For the special case
of the Coulomb coefficients coupling ions in the
same plane, Chen et al."obtained a substantial

such effects in later publications. ) In view of the
considerable amount of additional work required
to adapt the dynamical shell model for relaxation
calculations, we consider it worthwhile to report
our shell-model calculations for unrelaxed slabs.

The main objective of slab lattice dynamical cal-
culations is to obtain the vibrational frequencies
e~(q) and the associated vibrational amplitudes
$'(l, w;qp), by solving the eigenvalue problem, Eq.
(10), for a representative set of two-dimensional
wave vectors q. In order to carry out this pro-
gram, one first has to evaluate the elements of the
dynamical matrix, which appears in the right-hand
side of Eq. (10). Of these, the elements of the di-
agonal matrices Z~ and Y„can be obtained very
easily from the parameters of the shell model.
However, the derivations of the elements of the
(nondiagonal) matrices R and C are both compli-
cated and tedious; this holds, in particular, for
the elements of the Coulomb interaction matrix C.
For this reason we will not present these deriva-
tions here, but restrict ourselves to mentioning
their salient points, and to providing a list of the
matrix elements of R and C in the Appendix C; for
details of the derivations we refer to Ref. 15.

Here we make the following specializations to the
general formulation for the interactions;

(i) For the short-range interaction, both nearest-
and second-nearest-neighbor interactions are taken
into account. Most of the existing shell models
provide us with six short-range parameters, A',
8', A. , B",A", and B", for the cation-anion,
anion-anion, and cation-cation interactions, re-
spectively. The short-range parameters A'~ and
8'~ are defined in the usual fashion:
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improvement in convergence over the modified-
Bessel-function method by using the method of
planewise summation, "which uses an incomplete-
gamma-function transformation. I,ucas" also
used the incomplete-gamma-function transforma-
tion but he presented the relevant expressions in
a very compact form which is not very transparent.
Our expressions in Appendix C are complete and
can be used directly.

(iii) The shell models that were used in the pre-
sent work were taken from several different neu-
tron scattering studies on the corresponding bulk
crystals. " In addition to the six short-range pa-
rameters, the bulk shell model usually gives the
electronic and mechanical polarizabilities Q.„and
d„rather than the shell charge F„and the spring
constant K„. To obtain the latter we use the rela-
tions given by Woods et a/. ,

'4 namely,

(14)

FIG. 1. Two-dimensional surface Brillouin zone (SBZ)
for the (001) surface of rocksalt-structured crystals.
The high-symmetry directions are & along the [100] di-
rection, 6 along [110], and Y running fromM= (1,0, 0)7r/

a through X= (2, &, 0)x/a, where a is the usual cubic
lattice constant. An irreducible element of the SBZ is
delineated by bold outline.

(15)

where the subscript 0 indicates the short-range
matrix element T (x) evaluated at q= 0.

For a 15-layer slab, there are 2 && 3 && 15= 90
frequencies for each wave vector q. In general
8 and C are complex Hermitian matrices of di-
mension 90 && 90. In the process of constructing D
we need at least three 2 &&90&&90 matrices for
manipulating the operations in Eq. (11). In order
to reduce the computation requirements of storage
and time, symmetry is used to the fullest extent.
For details about the use of symmetry for slab
calculations, we refer to the recent review by de
Wette and Alldredge. "

After construction of the dynamical matrix D,
the eigenvalue equation can be solved numerically
on a high-speed computer (in our case a CDC 6600).
Before carrying out the slab calculation, we per-
forxned independent bulk calculations with these
shell models in order both to assure ourselves
that in each case our results for the bulk were in-
deed identical with those of the original publica-
tions and to determine the bulk-band edges for
given q.

The slab calculations for all of the seven crystals
(except LiF) have been carried out for a uniform mesh
of 66 values of q in the irreducible 8th element of
the surface Brillouin zone (SBZ) (which is shown
in Fig. 1). This gives 66 x 90= 5940 independent
sample frequencies, a total of 36000 frequencies
in the whole SBZ. In addition, for the same crys-
tals we performed most of the bulk calculations
for a mesh of 422 values of q in the irreducible
~8th element of the three-dimensional BZ in order

to be able to evaluate the surface-excess distribu-
tion of frequencies f '(&u) (cf. Sec. VIC), the sur-
face enhancement of the thermal mean-square am-
plitudes, "and the other surface-excess thermo-
dynamic quantities (to appear elsewhere). There
were 422 x 6= 2532 independent sample frequencies
for a total of 82944 frequencies in the three-di-
mensional BZ. The results of these calculations
will be discussed in Sec. IV.

REVIEW OF RESULTS

Although some of our preliminary results have
already been published in earlier communica-
tions, ""the present paper presents a compre-
hensive and unified account of the results for the
unrelaxed surface of seven roeksalt-structured
crystals. In addition, recent corrections'~~' in
the bulk shell-model parameters of RbF and RbCl
forced us to redo the calculations for these crys-
tals, while extensive new results for NaI and NaF
are published here for the first time. Finally, the
calculations of the surface-excess frequency dis-
tributions f'(m) have been refined by the use of a
staggered-bin procedure. "

The results of the calculations are presented in
plots of the dispersion curves ~~(q), and of the
surface-excess frequency distributions f'(e), in

separate figures for each of the seven crystals
considered (see, e.g. , Fig. 2 for RbF). The dis-
persion curves are given for q values along the
high-symmetry lines l X, XM, and MI'. In the

figures, the slab dispersion curves lying in the
bulk bands are indicated by dashed lines, the sur-
face modes by solid lines, and the (so-called)
pseudosurface modes by dash-dot lines. In a few



STUDIES OF VIBRATIONAL SURFACE MODES IN IONIC. . .

rad sec ')
6

40'XP20 lo'
I I I I I I I I

I

IQIIIIISIIISQIIILOQ
~~asl,

~~~aaaeiig+&gNIEI
g/

2

4~m ~r~

IllaaljiIlIIssslslIlIIssa~(j

S, -

!R+W+~~

5 Ii=

I I
I I

I
I ~ 1 I ~ I I

+I 0

f' (43)

I
I

~ I

-I 0 g(O 05
X

'0=
q a/am

1.0
M

$00

FIG. 2. Dispersion curves and surface-excess distribution of frequencies f'(&) for a 15-layer slab of RbF with free
(001) surfaces. Most of the 90 normal-mode branches are bulklike modes within the bulk subbands and are shown as
dashed curves; an exception is the Fuchs-Kliewer modes FE which appear as loci of hybridizing modes in the LO bulk
subband for f~ 0.1. The surface-localized modes lie on branches shown as solid lines are denoted by the labels S; (i
=1,2, ~ ) according to an arbitrary scheme. f (cu) is given in units of (10 rad sec" )" per fraction of surface par-
ticles. Microscopic surface-mode resonance branches will be denoted by heavy dot-dash curves (none are shown in
this figure), and labeled MS;.

cases (e.g. , LiF) we have indicated the boundaries
of the bulk bands by dotted lines. The dispersion
curves have been computer generated and, except
for the traces of the Fuchs-Kliewer modes through
the bulklike longitudinal optical (LO) modes near
the zone center T', crossovers between the various
branches have not been resolved.

Because of the presence of two surfaces in the
slab, the surface modes occur in quasidegenerate
pairs. Each pair of surface modes is indicated by
a label S,. (i = 1,2, . . . , 8) according to an arbitrary
scheme, but consistent with our previous conven-
tions of labeling. When the S, surface-mode
branch lies within a bulk band and the surface
modes become mixed with bulk modes to form
mixed modes, then the resulting pseudosurface
branch is labeled MS, . The corresponding sur-
face-excess frequency distribution f'((u) is shown
at the left of the dispersion curves in each of the
seven figures. The general features of the re-
sults are summarized below.

A. Bulk subbands and gaps

It is well known that for bulk diatomic ionic
crystals, there exist six dispersion curves (six
degrees of freedom per unit cell), namely, one
longitudinal-optical (LO) and two transverse-
optical (TO) branches, '

and one longitudina, l-acous-
tical (LA) and two transverse-acoustical (TA)

branches. Thus, a 15-layer slab of the rocksalt
structure has 90 dispersion curves. Most of these
represent bulk modes and fall into six densely
populated bulk subbands (corresponding in cha. rac-
ter to the six bulk dispersion curves). However,
a small number of dispersion curves lie either
outside the bulk bands, or in gaps between the
bulk subbands, and these represent surface modes.
In addition there are resonances inside the bulk
bands which correspond to modes that have both
surface-localized and bulklike components; the
terms "mixed mode" and "pseudosurface mode"
are also applied to these resonances.

Along the high-symmetry lines I'X and Ml, two-
thirds of the 90 modes have polarizations in the
sagittal plane; these are the sagittal-plane (SP)
modes. One-third are polarized normal to the
sagittal plane; these a.re the shear-horizontal (SH)
modes. Of the six bulk subbands, the LO band and
one of the TO bands, and the LA band and one of
the TA bands consist of SP modes; the remaining
TO and TA bands consist of SH modes.

For most of the q values along the high-sym-
metry lines at least some of the bulk subbands
overlap each other, while for certain ranges of
q values there exist gaps between the bulk sub-
bands. The structure of these gaps, which is of
great importance for the occurrence of surface
modes, usually depends on the kind of crystal that
is considered. With respect to the structure of the
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bulk bands, the seven crystals are of two types.
(i) Type A: these crystals exhibit a large absolute
gap which completely separates the optical and
acoustic bulk bands. This gap is a result of the
large disparity of the ion masses in these crystals.
Examples are RbF (Fig. 2), RbCl (Fig. 6), and NaI
(Fig. 7). (ii) Type B: these crystals do not exhi-
bit the absolute gap of type A, because the mass
ratios of the constituent ions are smaller. Ex-
amples are NaCl (Fig. 3), Na. F (Fig. 8), LiF (Fig.
9), and MgO (Fig. 10).

The results can be summarized as follows:
In type-A crystals there exist three main gaps:

(i) an LA-TA gap centered around X; (ii) an
LO-TO gap near the origin 1, closing up about
one third of the distance from I' to X and opening
up wide around X; and (iii) the absolute TO-LA
gap spanning the entire SBZ. Because of the exis-
tence of these three large gaps one has an almost
complete separation between the optical and the
acoustical bulk subbands in RbC1, RbF, and NaI.
As a result of this situation, some particular
attention, both experimental and theoretical, has
recently been paid to the large-gap alkali-halide
crystals.

In type-B crystals the structure of the bulk
subbands is not nearly as simple. Since the struc-
ture of the gaps is much more complicated, owing
to the significant overlap of the optical and acous-
tic bulk subbands, the gaps are much smaller in
size and their shapes are much more irregular.
Roughly speaking, the LO-TO and LA-TA gaps
around X and (except for NaCl) the LO-TO gap
near the origin I" are still present but they differ
in size and shape. In Sec. IVB we examine how
the domains of existence of surface modes are
affected by the gap structure.

B. Surface modes: Macroscopic and microscopic

Vibrational surface modes can be divided into
two principal classes: The first class consists
of the so-called macroscopic surface modes, for
which the attenuation distance away from the sur-
face is proportional to the wavelength, and which,
therefore, for long wavelengths, extend over
considerable distances into the crystal. Since at
such wavelengths the atomistic crystal structure
(but not its anisotropy) is unimportant, such modes
can be found in elastic and dielectric continuum
theories. The second class consists of the so-
called microscopic modes, for which the penetra-
tion depth into the crystal is only a few interatomic
distances, no matter what the wavelength. There
is, in fact, a third class of surface modes which is
intermediate to the two principal classes. This
class does not exist in the continuum limit of lat-

tice dynamics ("the long-wavelength limit" ), but
for certain propagation directions it does exist at
arbitrarily long wavelength ("long-wavelength
regime") and its penetration distance scales not as
the wavelength, but as the square of the wave-
length. "

In principle microscopic surface modes and
macroscopic surface modes (at large wave vec-
tors) can be identified by examining the squares
of the polarization vectors of both the anion and
the cation, i.e. ,

l((~ «)I'= Il.(~ «)I'+
I &.(~ «)I'+ I4(~, «)l'

= M„l-u(~, «) I, (16)

as a function of layer index m(increasing away
from the surface); these are the so-called attenua-
tion curves. When a dispersion curve is found

outside a bulk subband or inside a gap, such a
curve can be identified immediately as belonging
to a surface mode, without recourse to an attenua-
tion curve being necessary. On the other hand,
if a surface mode is surrounded by bulk modes of
its own symmetry type of polarization, one must
examine the attenuation curve for identification of
its surface-localized character; in the first case
the surface mode has interaction with the sur-
rounding bulk modes and is in effect a mixed or
pseudosurface mode (e.g. , MS, in Fig. 3). In the
case that a surface mode is surrounded by bulk
modes of a different symmetry type no interaction
with the surrounding bulk modes can occur be-
cause the surface mode is decoupled from the
surrounding bulk modes; hence it exists as a pure
surface mode (e.g. , S, and S, in Fig. 3).

The simplest kind of attenuation curve of a sur-
face mode is that exhibiting an exponential decay
with distance from the surface. Although the sur-
face modes S, exhibit this kind of behavior, for
most surface modes the attenuation curves are
considerably more complex. As examples, in Fig.
4, we present for NaC1 the attentuation curves
for S, and S, calculated for the wave vector at X;
since the Na' and Cl ions have different vibra-
tional patterns in these modes (as, of course, they
do in all modes) there are four attenuation curves.
Notice that the maximum amplitude of both sur-
face modes is in the outer layer for the Na' ions
but in the second layer for the Cl ions. (In fact,
in S, at X the Na' ion has zero amplitude for m
=2, 4, 6, . . . , where the Cl ion has zero amplitude
for m=1, 3, 5, . . . .)

In the present investigation of the surface vibra-
tions of the (001) face of rocksalt-structured slabs,
we have found eight pairs of surface modes to
exist in crystals of type A, and eight or fewer
pairs of surface modes to exist in crystals of type
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FIG. 3. Dispersion curves
and surface-excess distri-
bution of frequencies f '(~)
for a 15-layer slab of NaC1
with free (001) surfaces.
(For notational conventions,
see caption of Fig. 2.)

B. Two of these pairs are macroscopic surface
modes, namely, the Rayleigh modes S, and the
Fuchs-Kliewer modes; the other six pairs are
either microscopic modes or modes of the inter-
mediate third class. %e briefly discuss the char-
acter and appearance of these modes.

(a) S, : By our labeling convention, S, is the
branch of surface-mode pairs lowest in frequency
for each q in the SBZ. It is peeled down from the
bottom edge of the TA bulk bands by the perturba-
tion imposed on the dynamics of the bulk crystal
by the free-surface boundary condition. Along

Na)

IO

Ol

IO

e(CI)

S4(Na)

lO

I

S4(CI)

FIG. 4. I((m, II)I' versus layer index m for S4 and SI
of NaCl at the oint X. The eigenvectors are normal-
ized such that ~ „I$(m,x)I =1, and the curve is the
arithmetic mean of the even and odd members of the in-
dicated mode pair. Note that symmetry at X forces
anion components of S& to vanish at the surface (m = 1)
and at all other odd-numbered layers, while cation com-
ponents of S& vanish in the first subsurface (m=2) and
all other even-numbered layers.

I'M and at long wavelength, S, is the Rayleigh sur-
face wave which was first described by Lord Ray-
leigh for isotropic elastic media and which has
been generalized subsequently for anisotropic
media. " S, is also the Rayleigh wave along 1"X

for those crystals having a cubic anisotropy
parameter I) [= 2c«/(c» —c»)]& l, a class that
includes five of the seven crystals in the present
study. For those crystals having q&1, LiF and

MgO, S, along I"X is the SH surface mode of the
intermediate third class"; between the I'X and
1M directions S, undergoes a smooth transition
between the two different mode characters as S,
transfers its SH character to S, (discussed below)
and S, transfers its SP character to S„with the
transition most pronounced in the neighborhood
of 30' off I'M, as can be seen in the dispersion
curves along XM.

(b) EK: The Fuchs-Kliewer modes (labeled by
EK) are optical surface modes, first obtained by
Fuchs and Kliewer' in studies of ionic slabs based
essentially on dielectric continuum theory; they
are SP modes. In our shell-model calculations,
the EK modes consist of two branches of pseudo-
surface modes (except for part of the branch EK
in the LO-TO gap around the origin I') represen-
ted by a locus of hybridizing branches in the LO
and TO bulk subbands near the origin. 1 K (cor-
responding to Fuchs and Kliewer's &u ), the lower
branch, is of even symmetry with respect to re-
flection in the median plane of the slab, and it
starts at I' at the bottom of the TQ band, moves
up through this band and the LQ-TO gap and into
the LO band (details of these hybridizations for
very small wave vectors are given in Fig. 5). The
upper branch (odd symmetry), EK', starts at I'
at the top of the LO band, moves down inside this
band, and joins up with EK somewhere in the



CHEN, BE WETTE, ANB ALLDREDGE

3.8

[4(01

'o

Q
c4

~ 3.4-

32 =:

3.0
S4g p S5,S4

0,002

g = qa/2vr

0.004

FIG. 5. Detailed dispersion curves for I'E:, S2', S4',
and S5' of RbF in the vicinity of I, for a very fine mesh
of two-dimensional wave vectors (one-hundredth of the
coarse mesh of Fig. 2). Bulklike branches are shown
as fine solid lines. Surface modes and surface-local-
ized segments of hybridizing modes (I'X ) are shown as
heavier solid lines. The lower edge of the bulk LO sub-
band is delineated as a dotted line, since the lowest LO
bulklike mode in the 15-layer slab is noticeably higher
than the band edge. S and S; are, respectively, the
even and odd members of the ith pair of surface modes;
E'K is the lower IE. branch and it is even. Note that
the SH and SP bulklike modes of the TO subband are
degenerate within the resolution presented in the figure.

upper half of the LO band. For larger wave vec-
tors the EK modes merge with the bulk bands;
i.e., they lose their surface-localized character.

To the question of what is the limiting frequency
of EK as q-0, there have been two seemingly
different answers: Jones, Fuchs, and Kliewer""
assert that the limiting frequency is that of the SP
Lucas modes (which we call S, below), whereas
in previous papers" "we state that the bulk TO
frequency &To is the limiting frequency of EK, as
it is in dielectric continuum theory. There is
actually no difference between the two groups
based on the primary results of calculation; the
difference is one arising from different choices
of the criterion for interpreting what the limit is
to be. We may illustrate the point by reference
to Fig. 5, which gives our dispersion curves for
the RbF(001) slab for frequencies in the neighbor-
hood of co» on the very fine mesh of q near I'.
Jones et al. choose as their criterion for the
limit of EK what we may call the nodal character
of EK . In dielectric continuum theory, EK is a
mode symmetric in the coordinate z and it has no
nodes between the surface and the median plane.
In lattice dynamics, the discreteness of the field
makes the concept of nodes somewhat imprecise,

but there are occurrences of relatively small
values of

~
$(l,)

~

' at some l„which can be thought
of as being near nodes. Thus, because S4 is
"nodeless" in this sense at I', but immediately
developes a "node" as q leaves I', and because
the branch labeled EK in Fig. 5 appears to be
nodeless where it is sufficiently far from a hy-
bridization with an even bulk branch or the even
members of S„Jones et al. identify S', at I" as
the limit of EK". On the other had, if one chooses
as the criterion the locus of the EK dispersion
curve as we have done, it is clear from Fig. 5
that the EK dispersion curve does not literally
connect to S4 as q-0, but instead connects to the
lowest even TO bulk mode which converges to
~To as the slab thickness increases. That is, in
the TO bulk band and in the LO-TO gap, EK- can
be readily traced as a continuous dispersion curve
as q - 0, except where it encounters S', or an even-
parity bulk mode in a region of hybridization, and
the lowest TO bulk branch is the terminus of the
last segment of EK in the TO bulk band. There is
no continuous dispersion curve in the interval be-
tween the S4,S, complex and the bottom of the TO
bulk band, an interval which in RbF is greater
than the width of the TO bulk band and over half
the width of the LO-TO gap. This connectivity
of the EK trace is what leads us to our statement
of its limit. There is, to be sure, some apparent
interaction between EK and $4. In addition to the
exchange of nodeless character mentioned already,
S; is split upward in frequency about 1/g (for 15
layers) of its I' value as q leaves I'; this splitting
is inversely related to the thickness of the slab.
So in the absence of a more fundamental principle,
the question of the limit of EK may be inherently
ambiguous.

(c) S, and S, : These two microscopic surface
modes are transverse-optical surface modes
(TOSM) at the long-wavelength limit, originally
found by I.ucas" at q= 0 in his KBI model calcula-
tion for a NaCl slab. The existence of S4 and S,
at q= 0 and for finite wave vectors has been con-
firmed by Tong and Maradudin, "Chen et al. ,

"
and Jones and Fuchs" in independent calculations
with the same KBI model. One of the important
features is that S4 and S, are degenerate at the
origin I'. The polarization of S4 is SP and that
of S, is SH. (i) For type-A crystals S, and S, are
the dominating surface modes in the gap. Since
they are well separated from the bulk bands, they
both exist for rather large regions of the SBZ,
except that in RbCl S, rises into the TO bulk band
not far from I'. The clear definition of $4 and S,
in these crystals is favorable for a direct experi-
mental verification of their existence. However,
no direct experimental verification has been made
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so far for any of the microscopic surface modes
in type-A crystals. (For indirect experimental
evidence see Sec. IVE). (ii) For type-B crystals,
as q is increased from zero, along the I"X and
I"M directions the modes S4 mix with the sur-
rounding LA bulk modes and becomepseudosurface
modes MS, immediately. In the gap near X, MS,
reappears as a surface mode, as is shown by its
attenuation curves for NaCl in Fig. 4. As men-
tioned above, S, is rigorously decoupled from the
surrounding bulk modes, so S, persists as a sur-
face mode in both the I'X and M I" directions, ex-
cept that in NaF, LiF, and MgO S, encounters the
SH TO bulk band on the way from I' to M and then
becomes a pseudosurface mode.

(d) S,: Another important pair of microscopic
surface modes, found first in BbF and RbC1 by
Chen et al. ,

"are the longitudinal-optical surface
modes (LOSM) S,. In some cases, S, exists both
at I' and at finite wave vectors; the polarization
of S, is SP type and at long wavelength the particle
motion is predominantly vertical. (i) For type-A
crystals, the appearance of S, is much less pre-
dictable than that of S4 and S,. For instance, in
RbF, S, appears only in the absolute gap around
M and in the small LO-TO gap around the origin
1'; in both cases it lies higher than S4 and S,.
However, in RbCl, S, is peeled down from the LO
bulk subband far below S, and S, and becomes the
dominant surface mode in the absolute gap, Final-
ly, in NaI, S, is inside the TO bulk subband at the
origin I" and becomes a mixed mode for small q.
It reappears around M as a surface mode in the
absolute gap. (ii) For type-B crystals, S, only
exists in the small LO-TQ gap around the origin
in NaF. It is absent in all three other crystals,
although it may exist as a weak resonance in a
bulk band.

S„S4, and S, are the only microscopic surface

modes existing for q= 0. At this point S4 and S,
are rigorously degenerate and their polarization
vectors are parallel to the surface; S, is linearly
polarized in the z direction (normal to the sur-
face). For increasing q along the high-symmetry
lines I'X and I'M, the polarizations of S4 and S,
(both SP-type modes) become elliptical parallel
to the sagittal plane while S, remains SH polar-
ized. In BbF and NaI, a hybridization between S,
and S, occurs along I'X and I'M at about one-tenth
of the way out from I . As a result, at M S, is
polarized in the z direction and S, is linearly
polarized parallel to l M.

(e) S,: S, is a microscopic surface mode which
exists in the LO-TO gap near the zone boundary
XM. It is an optical surface mode peeled down
from the LO bulk subband into the LO-TO gap.
This mode was first discovered in our NaCl cal-
culation with the KRI mode. " In the present work
we find the behavior of S, to be very similar for
all seven crystals. Because of its proximity to the
LO bulk subband and its limited appearance at
large wave vectors only, it will probably be very
difficult to obtain direct experimental verification
of the existence of S,.

(f) S, : According to our labeling conventions,
S7 is the branch of TA surface -mode pairs lying
above S, in the long-wavelength regime along l X.
It appears for all seven crystals. Just as the
vibrational character of S, depends on the cubic
anisotropy, so does that of S,. For q&1 (i.e. ,
except for LiF and MgO), S, is an SH surface
mode, since for this anisotropy the SH TA bulk-
band edge lies higher than that of the SP TA bulk-
band edge. For g&1, S, is an SP surface mode
embedded in a background of SH TA bulk modes.
As q swings away from the I"X direction, S, cou-
ples with the background TA bulk modes, where
it is embedded and becomes a pseudosurface
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mode; for RbF, NaI, NaF, and LiF, S, clears the
background TA bulk band before it reaches X and
consequently exists as a pure surface branch away
from FX in a neighborhood of X. For g& 1, S,
and S, undergo a hybridization as q swings away
from l X, with the interaction being most pro-
nounced about 25' to 30' off FM; in the long-wave-
length limit for this anisotropy, S, is the pseudo-
Rayleigh wave described by Lim et al."for
Cu(001).

(g) S, : S, is a microscopic acoustic surface
mode peeled down from the LA subband. For
type-A crystals it appears in the LA-TA gap along
the zone boundary XM. But for type-B crystals
the appearance of S, becomes unpredictable be-
cause of the strong overlap of the acoustic and
optical bulk bands.

We conclude this subsection by listing in Table I

the frequencies of all important surface modes at
the high-symmetry points for all seven crystals.

C. Surface-excess distribution of frequencies f'(~)

The surface-excess distribution of frequencies
f'(~) is defined as

f'(cu) = (Ã/n)[f""((v) -f'"'"((u)], (17)

where N is the total number of ions in the slab,
and n the number of surface ions; for a l5-layer
slab A'/n= 7.5. Here, f(~) is the fre|luency dis-
tribution function for the slab or the bulk, defined
such that f(v) d~ is the fraction of the vibrational
frequencies in the interval between & and (d+ de.
The normalization relation for f'""(a) or f""'"(a)
1s

TABLE I. Summary of surface-mode frequencies (in units of 10 3 rad sec ) at high-sym-
metry points in the SBZ.

Mode RbF RbC1 NaI NaC1 NaF LiF MgO

S2

S4, s

S2

S3

S4

Sg

S6

SY

Sg

S2

S4

Sg

S6

Sg

3.345
2.905

4.405
2.725
2.965

1.263
1.115

3.068
2.591
3.068

0.946

2.215
2.248

1.970
2.680

2.090
1.654
1.227
0.857

1.836
2.343
2.343

0.724

2.274
2.117

1.917
2.804
1.322
8.595
7.585

2.182
1.868
2.182

0.687

2.980

3.818
2.362
2.346

1.933
1.735

3.105

1.530

5.184
4.447

3.558
3.534
2.979
2.985
2.874

2.642
2.556

5.291

10.235
5.467
4.720

3.676
2.986

5.804
~ ~ ~

3.803

6.774

10.980
6.256
5.682
4.901
5.201
4.323

5.050
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d~f(&u)= g a&uj(&)=1, (18)

where &co is the channel width of the histogram
form of f(v). All f'(+}histograms reported in
this paper were obtained by a ninefold staggered-
bin smoothing procedure. That is, the smoothed
number of frequences in a, given channel (v, e
+ &(o} is the average number of frequencies in the
nine channels shifted from the reference channel
by jA&a/9 (j=0,+1,+2, +3, +4), with each shifted
channel assigned the weight —', . From Eqs. (17)
and (18) it is evident that f '(~) integrates to zero.
In general, f '(u&) will exhibit a succession of peaks
and valleys, indicating that the occurrence of sur-
face modes is accompanied by the depletion of an
equal number of bulk modes. Some caution is
urged in the inference of details of surface-mode
existence from the surface-excess distribution
of frequencies. In some frequency intervals, a
positive contribution due to the presence of sur-
face branches in some part of the SBZ can be
largely canceled by the depletion of bulk bands
required in other regions of the SBZ; a notable
example is provided by S, in BbF, NaI, and NaF.
Although S, is fairly flat and occurs over a can-
siderable part of the SBZ, its contributions to

f (&u) are swamped by the depletion of the flat TO
bulk band which accompanies the formation of S4
and S,.

The results for f'(&u) are shown on the left of
each of the seven dispersion curves. The scale
used to display the f'(a} histogram is determined
by Eqs. (17) and (18). Note that the magnitudes of
the peaks and valleys near &«are larger for
type-A than for type-B crystals; on the other
hand, the magnitude of the lowest peak, peak I,
is approximately the same for both types.

We summarize the results as follows:
(a) RbF, Fig. 2: the positive peaks can be iden-

tified as I, a resolved doublet due to S, and S7,
II, due to S„ III, a resolved doublet due to S, and

S, ; and IV, due to S, and the lower reaches of S3
and the EK modes.

(b) RbCl, Fig. 6: the peaks can be identified as
I, due to S„. II, due to S„ III, due to S„ IV, due

mainly to S, and partially to S„V, due to the
lower reaches of S, and the EK modes.

(c) NaI, Fig. 7: the peaks can be identified as
I, a resolved doublet due to S, and S„' II, due to
S„ III, a resolved doublet due to S4 and S„ IV, due
to the lower reaches of S, and the EK modes.

(d) NaC1, Fig. 3: the peaks can be identified as
I, due to S, and S„ II due to S4 and S, in the gap
around X; III, due to S„ the resonance MS4, and
resonances associated with the small gaps at X
and M near 3 x 10" rad/sec (the latter a,re un-
labeled here, but were labeled MS, and MS, in
Ref. 16);IV, due to S, and the EK modes.

(e) NaF, Fig. 8: the peaks can be identified as
I, due to S„S„andS„ II, due to S, and S, in the

gap around X; III, due to S„MS„and quite likely
some unidentified resonance near the SBZ bound-

ary; IV, an apparent weak triplet due to S„S„
and the EK modes.

(f) LiF, Fig. 9: the peaks can be identified as
I, due to S, and S„ II, due to S, and S„ III, due to
S, and the FK modes. Note that f'(v) for LiF has
the highest precision of this series of calcula-
tions; it was derived from a sample of 231 points
in the irreducible element of the SBZ,

(g) MgO, Fig. 10: the peaks can be identified
as I, due to S„S„andS„ II, due to S4 and S„.
III, due to the lower reaches of S, and possibly
some unidentified resonances; IV, due to the upper
reaches of S, and the FK modes.
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FIG. 8. Dispersion curves
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bution of frequencies f (cu)

for a 15-layer slab of NaF
with free (001) surfaces.
( For notational conventions,
see caption to Fig. 2.)
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usual 422 points in the irreducible element of the bulk BZ). Along 5 and F, dotted lines delineate some bulk-band edges.

D. Effects of slab thickness

In this subsection we discuss the effect of slab
thickness on the calculated macroscopic and mi-
croscopic surface modes. We already pointed out
in Sec. IVB that the penetration of the macro-
scopic surface modes is much deeper into the
slab-shaped crystal than that of the microscopic
surface modes. One therefore expects the maero-
scopie surface modes to be much more dependent
on the slab thickness than the microscopic ~odes.
On the other hand, there exist many more micro-
scropic than macroscopic surface modes. In order
to have assurance about the validity of our results
we investigated how these results depend on slab
thickness and which slab thicknesses are suffi-
cient for acceptably accurate results. Some of

the results of calculations for different slab thick-
nesses are summarized in Table II.

One criterion that can be applied is the degen-
eracy of S, and S„which should occur at the
origin I' [see Table II(a)]. In our earlier KRI mod-
el calculation, we found that the degeneracy of
S, and 8, (to the sixth significant figure) can be
achieved in a 15-layer calculation; on the other
hand, in a shell-model calculation we obtain this
degeneracy (to the same accuracy) already in a
nine-layer calculation. This is another demon-
stration of the superiority of the shell model
vis-a-vis the KRI model.

In Table II(b) we show the thickness effect on the
pure microscopic surface modes S, and the macro-
scopic Rayleigh modes. We find that for a 15-
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FIG. 10. Dispersion
curves and surface-excess
distribution of frequencies
f'(~) for a 15-layer slab
of MgO with free (001) sur-
faces. (For notational con-
ventions, see caption to
Fig. 2.) The surface-
excess distribution of fre-
quencies of Hieder and
Horl [Hefs. 3(b)] is shown

by a dotted line in the left-
hand panel; it is scaled in

ambit'~ units so as to fit
into the f'(~) frame.
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TABLE II. Illustration of the convergence of surface-mode frequencies (in units of 10
rad sec ) with increasing slab thickness. KHI denotes the Kellermann rigid-ion-model re-
sult, and SM denotes the shell-model result.

Mod
o. of layers

(a)

NaCI (KHI), I NaCI (SM), I'

15

S4 2.418 76
2.418 09

2.418 43
2.418 41

2.418 42
2.418 42

2.979 902
2.979 902

2.979 902
2.979 902

No. of layerslModes

(b)
NaCl (SM), X

15

LiF (SM), f = (0.2, 0)

21

$5

Rayleigh

2.345 657
2.345 653

1.735 811
1.734 850

2.345 655
2.345 655

1.735 685
1.734 972

5.382 035
5.382 035

1.330 395
1.295 611

5.382 035
5.382 035

1.312279
1.309 037

layer slab the degeneracy of the frequencies of
the pair S, at X is achieved to the seventh signi-
ficant figure. On the other hand, for the Rayleigh
modes we find that the splitting of the frequencies
in the pair is larger than that of S, and does not
diminish as fast with increasing slab thickness.

On the basis of these comparisons we can con-
clude that the accuracy of the 15-layer slab re-
sults is excellent for the microscopic surface
modes, and quite acceptable for the Rayleigh
modes over most of the SBZ.

E, Comparison with experimental results

Although the investigation of vibrational surface
modes has gained increasing interest in recent
years, the more common experimental methods
probe only the long-wavelength region around the
origin I'. Two most notable exceptions are the
inelastic light-atom and neutron scattering ex-
periments.

For those experiments which probe only the
long-wavelength region, we can only give an in-
direct comparison with our results. The early
work of Boersch et al. ' on electron-energy-loss
spectroscopy can be used as an example. These
authors reported observations of energy-loss
spectra with maxima in a range from 0.042 to
0.050 eV in LiF foils, and they attributed these
peaks to interactions with the EK" mode. We
found that the energy range of the peaks matches
the LO-TO gap around the origin, which lies be-
tween u& = 6.5 x 10" rad/sec (0.043 eV) and &u

= 6.5 x 10" rad/sec(0. 056 eV) in our calculation
for the LiF slab. This finding may suggest that
the EK branch is more easily detected in a gap.

Now we turn to the more direct comparisons
with the inelastic light-atom and neutron scatter-

ing experiments. In the inelastic atomic scatter-
ing, results are available from two groups of ex-
perimentalists. We first mention the results of
Williams"" on LiF(001)-He scattering and of
Mason and Williams"b' on NaF(001)-He scatter-
ing. In the first case, from his analysis of the
experimental data, Williams determined a dis-
persion curve for Rayleigh waves along [100]
for the (001) face which agrees fairly well with
the results predicted by continuum theory. The
ratio of the Rayleigh wave phase velocity to the
transverse bulk phase velocity obtained by Wil-
liams is 0.81; the result for this ratio from our
shell-model calculation is 0.813. Thus the agree-
ment between the LiF-He scattering experiment
and the two theoretical results is very good. For
the NaF-He scattering, a similar analysis by
Mason and Williams yielded points which are taken
to represent the dispersion curve of the Rayleigh
waves; however, these results showed much
greater scatter and the mean curve through them
falls considerably below the theoretical line at
long wavelengths. In comparison, the ratio of
Rayleigh wave velocity to transverse bulk wave
velocity is 0.95 from continuum theory and 0.932
from our shell model.

A second LiF(001)-Ne scattering experiment
was performed by Boato and co-workers at the
University of Genoa (cited in Ref. 7). After his
analysis of the experimental data, Benedek' re-
ported experimentally fitted frequencies for the
Rayleigh modes at M(R„), and the Lucas modes
at I'(Lr), M(L„). Here we list the frequencies
of these modes (in units of 10" rad/sec) from
experimental analysis, Benedek's Green's-func-
tion (GF) method, and our shell-model (SM) slab cal-
culation4':
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R„=3.91(expt), 3.95(GF), 3.80(SM slab),

I.r = 5 42. (expt), 5.84(GF), 5.29(SM slab),

I.„=5.95(expt), 6.15(GF), 5.80(SM slab),

The overall agreement is quite good. However,
notice that all the frequencies in the shell model
are smaller than the measured ones. This might
indicate that a small inward surface relaxation,
which would raise the surface-mode frequencies,
has been neglected in our shell-model slab calcu-
lation. 4'

Finally, we turn to a discussion of the results
of inelastic neutron scattering from samples of
microcrystallites, from which an experimental
curve can be obtained for f'(&u), the surface-in-
duced change in the phonon density of states. As
we discussed in Sec. IVC, the major features in
f'(ur) can often be correlated rather clearly with
specific portions of the surface-phonon bands and
their associated bulk-band depletions. To date,
microcrystallite samples of two rocksalt-struc-
tured crystals, magnesium oxide' and titanium
nitride, ' have been studied with inelastic neutron
scattering.

Titanium nitride belongs to the type-A crystal
defined in Sec. IVA. Conduction electrons play a
substantial role in the bulk lattice dynamics of
the transition-metal carbides and nitrides, "so
that the simple shell model used in the present
study cannot be adequate for TiN. Nevertheless,
there is a qualitative resemblance between Bieder
and Drexel's surface-excess density of states for
TiN and our f'(a) for type-A crystals, especially
RbF and NaI. For TiN, there is a peak I, a de-
pletion valley in the TA-LA bulk band just above
peak I which has the hint of a peak II in it, a re-
solved doublet peak III between the LA and TQ
bulk bands, and a peak IV near the upper limit of
the bulk density of states. The lower subpeak III
overlaps the upper extent of the bulk LA subband
enough that Rieder and Drexel speculate that it
may be due primarily to a band of LA surface
modes pushed up from the LA bulk band. The
minimum value in the valley between the two sub-
peaks of peak III is, however, sufficiently large
to permit a hypothesis that the lower subpeak III
is due to a TQ surface band such as S~ near a
(surface) critical point, with the high values in
the valley due to this surface band crossing that
spectral region farther away from a surface criti-
cal point. At the present stage of development, we
cannot choose between these two hypotheses on the
type of surface modes contributing to the lower
subpeak III; accounting for the role of conduction
electrons in both surface statics and dynamics
of materials such as TiN is a problem even more

difficult than the still unsolved problem of surface
relaxation in the closed-shell ionic systems which
are the subject of the present paper.

We are able to make a direct comparison with
the inelastic-neutron-scattering results for MgQ,
a crystal of type B. The refined result" ' of Hie-
der and Horl's"" measurement on MgQ is shown
as the dotted curve on the left side of Fig. 10
[this curve is based on more extensive neutron
scattering data than the original curve of Ref. 3
(a)]. Because of difficulties in the experimental-
determination of the specific surface area of a
powder sample we have not attempted to standard-
ize the two curves to the same f'(u&) scale in Fig.
10 (the scale for the experimental curve is arbi-
trary). Instead we concentrate on the location of
features in the curve and their relative magnitudes,
There is good agreement in the locations of peaks
I and II and the valley between them. The valley
just above II also appears to be in good agree-
ment, and the doublet structure in this valley is
strikingly apparent in both curves. The small
peak around III is noticeably shifted. There is no

agreement for peak IV. Hieder originally specu-
lated that peak IV may be due to a surface-propor-
tional distribution of imperfections or perhaps
to the presence of residual absorbed water mole-
cules on the surface (although considerable effort
was exerted to exclude water). However, our
preliminary results on the influence of surface
relaxation show that the big peak IV appears in
the calculated f'(&) if we take a small inward sur-
face relaxation into account. "

Finally, we should note two striking discrepan-
cies remaining between our results for f '(u) and
that derived in Refs. 3: (i) The flat-topped struc-
ture of peak I reported in Refs. 3 does not appear
in our result. (ii) The scale of the f'(&u) curve
from Befs. 3, by use of the specific surface area
of 110 m'/g reported there, is about 4.4 times
larger than the scale shown in Fig. 10; that is, the
value of the maximum of peak II in Ref. 3(b) is
0.75 [when converted to f'(&u) according to Eq.
(35)], which is to be compared to the value of
0.21 for the peak II of the histogram. Although a
simple histogram can underrepresent a peak
height by as much as 50% when the channel width
is about half the peak width, as in Fig. 10, the
discrepancy in the peak amplitudes of the two
curves for f'(ui) is well outside such an allowance;
when the staggered-bin smoothing of the histo-
gram is considered, the discrepancy is even more
definite. The experimental value of the specific
surface area might be suspected. However, the
110-m'/g value was determined from a fairly
direct examination of particle size by means of
electron micrographs and of x-ray line broaden-
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ing, and that value is already 2.6 times larger
than the surface area as determined by a BET
(Brunauer-Emmett-Teller) adsorption analysis"b',
to bring the experimentalf'(&u) curve into closer
correspondence with the theoretical curve below
9 && 10" rad/sec would require a further increase
of the experimental surface area by at least an-
other factor of 2. (As a point of comparison, our
15-layer MgO slab has a specific surface area of
177 m'/g. ) Clearly, additional work will be re-
quired to resolve these significant discrepancies. 4'

V. SUMMARY

In this paper we present a self-contained out-
line of the dynamics of a crystal slab with shell-
model interaction, and report results of a com-
preherisive study of the vibrational surface modes
for the unrelaxed (001) faces of six alkali-halide
crystals (RbF, RbC1, NaF, NaC1, NaI, LiF) and MgO,
all having the rocksalt structure. The seven crys-
tals were chosen because of a variety of theoreti-
cal and experimental interests in their surface
dynamics.

In our numerical calculation of the dynamical
matrix elements a substantial improvement in the
convergence of the Coulomb lattice sums is ob-
tained by the use of the incomplete-gamma-func-
tion transformation for the case of intraplanar
interactions (I', = I,). For the benefit of other
workers in the field we present a complete list
of the dynamical matrix elements of the Coulomb
interactions.

The seven crystals considered are of two types:
The crystals of type A (RbF, RbC1, and NaI) have
a large absolute gap separating the optical and

acoustic bulk bands; the crystals of type B (NaF,
NaCl, LiF, and MgO) do not exhibit such an abso-
lute gap. The appearance of the surface-mode
branches is strongly affected by the structure of
the bulk subbands. In the present investigation of
the surface vibration of the (001) face of rocksalt-
structured slabs, eight pairs of surface-mode
branches are found in type-A crystals. Two of
these are macroscopic, namely, the Bayleigh
modes (which are S„along I'M, and which may be
S, or S, along I'X, depending on anisotropy) and
the Fuchs-Kliewer modes; and six of these pairs
are microscopic, namely, S2 $3 S4 S„S„and the
long-wave SH surface waves along I'X (which may
be S, or S„depending on anistropy). In type-B
crystals, at least six pairs of surface-mode
branches are found; of these S, and S, are rather
unpredictable owing to the strong overlap of the
acoustic and optical bulk bands. Generally speak-
ing, each of the six bulk subbands, to the extent
that they are separately distinguishable, would

give rise to at least one pair of surface modes.
We find that the frequencies of the pure micro-

scopic surface modes obtained for a 15-layer slab
have approached, to high precision, the values that
are appropriate to an infinitely thick crystal. The
effects of slab thickness on macroscopic Bayleigh
and long-wave SH surface modes are small except
in a small region around the origin of the SBZ.

In the comparison with limited experimental re-
sults, we find the general agreements to be good
for the inelastic-atomic-scattering experiments
on Ne-LiF, ' and He-I, iF.' Some of the discrepan-
cies between our calculations and Rieder's inelas-
tic-neutron-scattering experiment may be dimin-
ished by incorporating a small surface relaxation
into the calculations (see also Ref. 44).

All in all, the results of our unrelaxed 15-layer
slab with realistic shell-model interactions are
reasonably good. The seven sets of dispersion
curves, and the surface-excess spectral density
f'(&) and Table I should provide a rather complete
picture of the vibrational surface modes of the
unrelaxed (001) face of rocksalt-structured slabs.
It is to be hoped that a substantial amount of this
information might be of interest to experimental-
ists, and that it will help stimulate further experi-
mental interest in this area.
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APPENDIX A: OUTLINE OF SHELL-MODEL FORMULATION
FOR AN IONIC CRYSTAL SLAB

In the reformulation of the equations of motion
(8) and (9) it is customary to separate the force
constants (5)-(7) into parts representing the short-
range and long-range Coulomb parts, respectively,
i.e. ,

4 .(it&; 1'z') -4 .(lw; 1'8)+X+„,C;a(lv;1'8),

(Al)

4'-~(lx; I'a')-4"~(IK;1 K )+XgY„,C'-8(lac; I'"),
(A2)

4„~(it&& 1'/c') 4-'8(lv; I'x')+ Y„Y„,4-'8(ltc; I'/c').

(As)

With the various Coulomb interactions explicitly
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4 q(lac;I'/c') = 4,q(l, /c; l ', ll';1 -1). (A4)

This two-dimensional translational invariance of
the force constants implies that the normal-mode
solutions of Eq. (8) and (9) have the form of two-
dimensional Bloch functions. Eliminating u (ltd)

in favor of a new quantity w(ltd), which is the dis-
placement of the center of the shell with respect
to the core, we may write

displayed, henceforth 4~&, 4~&, and 4 ~~ shall
stand for the force constants for the core-core,
core-shell, and shell-shell short-range interac-
tions, respectively. 4'~ is the force constant for
Coulomb interactions between positive unit
charges.

Since the crystal is invariant under a translation
through a two-dimensional lattice vector in the
slab, the force constants 4 ~(lz;1'8) depend only
on the difference of 1' and 1:

uc(1/c) (F7M ) z(-~q )e(1 g)

x exp(i(q [r,(p+ r,(l,a)] —u&t}), (A5)

w (lr)=u'(1~) -u'(1')
=(ÃM ) '~'Q q (l,z)

xexp(i [q [r,(l)+ r,(l, II.)] —art}), (A6)

where N is the number of lattice points in a plane
in the period of two-dimensional periodic boundary
conditions, M„ the mass of an ion with index v, Q,
an amplitude factor, and P (l,z) and g (l, r) polari-
zation vectors; q is a two-dimensional wave vec-
tor in the xy plane and co is the vibrational fre-
quency.

Using the expressions (A1)-(A6) to rewrite the
equations of motion (8) and (9), we obtain after
some algebraic manipulations the following eigen-
value equations in terms of $' and g

&u~(q)$'„(l,~;qP)= [G ~(l,~;1',~';q)+Eg (l,'~';l, ~;q) +l, (l,~;l',8;q)
l 3'

+S ~(l,v;l', 8;q)+ (X„+Y„)(X„,+ Y„,)C,B(l,z;1',~';q)]4(l', 8;qp)

+ E, 2, I(. ;2,'I(."';q +S, 2,a;2', ~';q + X„+Y„Y„,C, 2,~;2,'8;q g, 2',8;qp,
l3ff 8

(A7)

0= g[l g (l',8;l,z;q)+ S, (l,~;1,'8;q) 1+'„(X„,+ Y~)C, (l,a;lp';q)]4(l', Ir';qp)
3

+ S g 23K 23m ';q + Y Y & z 2,&; 2',8;q g~ 23K qp
l'e 8

where we have used the following definition for the elements of the dynamical matrix:

H g (l~K'13K; q) = (M„Mz) ' 'g 4"(l,z; 1',8;1' —I ) exp(iq [r,(1 —1 )+ r, (l', 8) —r, (l, tc)]},

(A8)

(A9)

where H= 6, E, 8, or C.
The equations can be further condensed, and at

the same time given a direct physical interpreta-
tion, by introducing two new dynamical matrix
contributions, R and T:
R ~ (l,~;13m '; q) = G ~ (l,a; 1',a''; q )

+ T,~(l, tc;l,'a'';q)+Eg (1,'s';l, v;q)

(A10)

T~g (l,~;l', &';q) =F~q(l, z;f3'';q)+S 8(l,z;1',w';q) .
(A11)

Note that the same-site (l,v= 1',v') shell-core cou-
pling in F and F~ is in R and T canceled by parts
of the self-interaction coupling in G and S, so that
the only remaining same-site shell-core coupling
in the equations of motion is in the self-interaction
part of S in Eq. (A8). Consequently, R can be in-
terpreted as arising from the short-range coupling
between pairs of ions, with each ion taken as a
unit. Similarly, T arises from the short-range
coupling between the displacement of an ion as a
complete unit and the relative shell displacement
of another ion. -Substitution of R and T in Eqs.
(A7) and (A8) yields

&o~(q)g(l, v;qp) = g L[R ~(l,&; 1',a'';q)+Z„Z„.C ~(l,v;l', a';q)]4(l', a'';qp)
lp0

+[T,~(f,z;13tc';q)+Z„Y„.C ~.(l,v;1', Ic';q)]rl~(l', a';qp)}, (A12)
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0= TZ 1', II,";l3I(';q +F„,Z„,C Z l3e;l'3Z';q Z
l', Z';qp

l3K I

+[S ~(l,z;1',a'';q) + Y„I'„,C,~(l,~;1',~';q)]q~(l', ~';qp) ] . (A13)

Usually, the assumption is made that the short-
range forces are entirely due to shell-shell inter-
actions; this expresses the original view of the
shell model that the short-range interaction is
dominated by the overlap and the distortion of the
outer electron clouds and that, in the model, these
effects are caused by the relative motions of the
shells. In this approximation 6=T = S (which im-
plies G=F=0, except that F40 for a shell on its
own core). An additional term in Eq. (A13) results
from the self-interaction term of S ~ (l,a; 1',v';q)
(see Appendix B); we relabel S„B(l,z;1',a'';q) as
8 ~ (l,v; I',v', q), which is expressed as

S,~(l,x;ltx', q) =S ~(l,a; l', a', q)

'3'3 ""

(A14)

i.e. , 8 ~ includes the interaction of the core and
the shell of the same ion, while S ~ does not. With
this notation incorporated, Eqs. (A12) and (A13)
can be written in matrix notation as

~'&' = (B+ Z,CZ„)~'+ (T+ Z, CY,)q, (AI6)

0=(T + Y~CZ~)P+ (8+ Y~CY~)q . (A16)

Here Z„and Y„are the diagonal matrices for the
ion and shell charges; $' and g the column ma-
trices for the eigenvectors of cores and shells,
respectively; R = T = S and C the nondiagonal ma-
trices for the interactions, in which the masses
of the ions have been absorbed. Finally, Eqs.
(A15) and (A16) can be combined and written in the
form given in Eqs. (10) and (11).

APPENDIX B: SELF-INTERACTION ELEMENTS

The self-interaction elements of the shell-shell
interaction matrix can be written as [cf. Eq. (A9)]

S ~ (l, lx, qx)=(1/ M) 4~ (1, lh,~; )+0',S,8

where

4'„~(l,z;l, tc;0)=- g 4'~(l, x;1,'z', I' —1)
1' /'K'

3

1'/'K '
3

4"„(1',x', l,x, l —P) .

the prime on the first summation indicates that
the term 8 =I, /3'=l„8 = I(.

' is to be omitted. Re-
lation (B3) follows from the requirement that the
forces on the shells remain zero if an arbitrary
translation is performed on the lattice in its equi-
librium configuration, i.e. , from the condition 0
= -E;(Tw)= BO,/Su'(1v), where 4, is given by Eq.
(4).

The matrix elements 4~~ describe the core-
shell interactions; in particular, 4 z(l,z; l,v;0)
describes the interaction between the core and the
shell of the same ion. Since in the shell model
this interaction is described by an isotropic spring
of constant E„, we have

4"~(l,x;l,tc;0)=-K„5 ~ .

Substituting Eq. (B4) in Eq. (B3) we have

(B4)

+4 f, (l', v';1, 7x-P)] K+„5 ~

= —g 4.',(1,~;1',8;I' -1)+IC„6.„
3

(B6)

where we have used the relation

4,~(l, z; 1',8;1' —I)

= 4 ~~(l,a; 138;1' - 1)+ 4 ~~ (1',a', l,a;1 - 1'),

which follows from Eq. (All). It now follows from
(B3) that

4 ~(lr, a; l,x; 0) = — Q 4,~(l, tc; 1',x';1'-T); (B6)
1' l'K'

3

hence

4~~(l, z; l,z;0) = 4r„,(l,e; l,z;0)+K„5„~. (B7)
S',~

=—g'4'~ (l,v; l, a",T' —I) exp[le r(1' —1 )]
K

(B2)

The prime on the summation indicates that the
term P = I, which is the first term in the right
hand side of Eq. (Bl), has to be omitted. We fur-
ther have

Substitution of (B7) in (Bl) gives

S (l, ~8; l,~;q) = (1/M„)[4 r~(l, e;l,v;0)+IC„5 8]+S' ~.

(B8)

The assumption that the short-range interaction
between the ions is entirely due to the shell-shell
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interaction, leads to the following equalities:

G=F=O, R= T=S, (B9)

R„„(l,a; l,'a; q)=R,„=P[,A"—~8++A""+28«

while FWO for the core-shell interaction on the
same ion.

In Eq. (B8) we now rename the matrix element
S ~ as 8 ~ and replace 4~~ by CN~~ according to
(89); we then have

8 z(l, z; l,a;q) = (1/M„)C 'a(l, e, l,a;0)

+S'8+(1/M„)K„5 a

=S a(l, a;l,a;q)+(I/M„)lf„5 a.

(B10)

R«(l, a; l,'a; q) =P(,'A' +-8' +A""+28""

—8""c„c,)5,„&,,

R„,(l,a; 1',a; q) = ,P(A""—8"")s—„s,5,

R„,(l,a; 13a; q) =R„(l,a; 13'; q) = 0.
For a surface layer,

R'„„=R' = 4P[2A' + 38' + 3A""

8«)c c ]5

(c7)

(C8)

(c9)

(C10)

S,a(l, a;l,a;q) is the self-interaction element of the
dynamical matrix of a shell model in which the ions
have internal structure, i.e. , an isotropic spring
with constant K„connecting the core and the shell
of the same ion. The element S z(l, a;l,z;q) is
now defined as the self-interaction element of the
dynamical matrix of a shell model without this
internal structure.

For the case l', 0 l„e'= ~ we have the following
relation:

x (5t3, li+x + 5ls, ls-1) &

R (l,a; 1'a; q) = —P[(A""+8"—")c + 28""c„]

(C13)

(C11)

R8 = 4P(A' i 48 + 2A.""+68""—48""c„c~)5(

(C12)

where P= e'/+pl„, s, = sin(q ~,), (o' = x, y).
(ii) If I, + l,' is odd,

R„„(l,a; 1,'z; q) = ,'P[(A-""—+8"")c„+28""c,]

8 a(l, a;1',a';q) =S„(l,a;l', a';q)

+(M~„,) '~ 5. ..5„„.5 Q„.

APPENDIX C: DYNAMICAL MATRIX ELEMENTS
FOR A NaCI {001)SLAB

x(5. . ., + 5. . .),
R,(l,a; l,a; q) =- ,'p(A""+ 8"")(—c„+c,)

x(5/ppyg+5g f g)

R„„(l,a; 1,'a; q) = 0,

R„,(l,a; 1,'a; q)= -(f/4)p(A 8)-
x s (-5i,, r,"i+5i, r3 i).

(C14)

(C15)

(C16)

(C17)

1. Short-range contributions

4f. K AK

R z(l,z; 1,'a'; q) =0, if o, x P

(i) If l, + l,' is even,

(C2)

(C3)

(C4)

R„„(l,a; l,'a'; q) =R,„=,'QB' (5, ,~ „+5g, —,),

R„„(l,a; 1,'a'; q) = ,Q(A' c„+8' c„)5-.. . ,

R„(l,a& l,'K'; q) = 2Q(B' c„+A' c,)5, ",~,

R„(l,a; 13a'; q) = ,'QB' (c„+c,)5. —

where Q= e'/r' (o-MaM)' a', c =cos(q x,) (z=
=x, y).

(ii) If l, + l,' is odd,

R„(l,a; l,'a; q) = -(i/4)p(A"" 8"")-
x s,(-5.. .;„+5. . .) . (C18)

2. Coulomb cqntributions

a l3' —=l3 —l3 40
U2

C„„(l,a; 1,'a';q)=G g Hf„exp(-~l,"~T),

(C19)

P'2

C„(l,a; 1,'a';q)=G g Hf„—exp(-~l,"~T),
Pelf 2

(C20)

(c6)

(C6)
C„(l,a; l,'a'; q) = -(C„„+C„,), (C21)

(i) If l, +l', is even,

b. V =If." C„,(l,a; 13a';q)=G g Hf„exp(-~l", jT),
PIP2

(C22)
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lt

C„,(l,/:; 1,'/(. ",q) =iG g Hf~V ', e~(- Il" I
T)

P 102 3

(G23)

II

C»(13tc; l3z', q) =iG Q Hf~V „exp( ~1"
~
T),

3

V= ]/t,], +q,r„T= (U'+ V')' ', and (i) if /(:=/(. ", then

1, if l, +l,' is even
G = ]//2r~„, H =

(-1) &) ].f lg+ ls ls odd)

and (ii) if /(:4 8, then

where f„=[1+(-1)~&'~2], U = ]/t/, , + q„r„

(C24} (-1)~&", if l, +l,' is even
G=v/2r', (M~„,}'/2, H=

—1P 1f l3+ l3 1S OdCl.

b. 13'—= 13 —l~ = 0

C„(l s;) sq) S„(l s;l's', q)s, &, p r, I[( +s/)ssss+(s+/) sssQ] —)'(—',, sN)s —')'(—', aN))
1,, 2W 1 M

2"
B Q ~ 2p

+ 1/2 S+ g)
—

3 Clt, &
—Cft, I}t

+ 2y Gp + 2 C~z+ Cfl, y
+ 2 p Q p,

1

r'"
(C25)'4n ' 4a I

Sm'"

where f D(-1)~~'" "2, fc=(-1)")~2", fD=(-1)'~", a=1. 57, N=)a', +g,', M=t], ', —a', , 8=i/, ,q„r, +g,qp'„
(t)= i/,,q„rD —i/, q,ro, C„~=cos(t]q ro), (///=x, y), r(n, x) = f„"e t" 'dt;and (i) if K=K, thenW=1/rgb„, s=-i,
J=-1; and (ii) if /(or', then W=1/r'(M„M„)' ', S=1,J=(-1)"', and1,, 4W

"
1 M

k P j=l 02=1

n'"
+ W g [( 1)+(-1)"]f„N"'—r —.', —,'r

4W~1, , 2 3/
1/2 ~ 3 fDr(&l +) } 1/237l'

m2
even odd 2'

W g g g [1+( I)""]f„",'„e~( ~f; ~N'/').
r"~0 r"
3 3~o

C»(l, /".; l, /('; q) can be obtained by exchanging q„and q, in C„„.
4S' P, ,P2 w'/'

C„„(l,z; l,d;q) =,.-~ g g '/,'[(s+fs) cosa —(s+fc) cso](t)(r,', c/N) — -W g Zf„ I' —,',
-1 g 11 2

(C26)

C„,(l,z; l, /('; q) =C„(l,/(; l,d;q}=0. (C 27)
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