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Optimal Cantilever Dynamic 
Vibration Absorbers 
This work considers the use of a double-ended cantilever beam as a distributed parameter 
dynamic vibration absorber applied to a single-degree-of-freedom system in the presence 
of sinusoidal forces. The problem is analyzed exactly and by an energy approach using 
a single mode approximation for the cantilever beam. The results for both techniques 
compare favorably and damping is introduced in the form of a complex beam modulus. 
Optimal tuning and optimal damping parameters are found for a given ratio of absorber 
mass to main mass. 

Introduction 

In the past three-quarters of a century the dynamic vibration ab
sorber has proven to be a useful device to limit undesirable vibration 
in hundreds of diverse applications in machine design and structural 
dynamics. The dynamic vibration absorber was first applied to damp 
the rolling motions of ships by means of a tuned U-shaped column of 
water aboard the ship [l].1 Another early application was the Stock-
bridge absorber, which was employed to damp wind-induced oscil
lations which cause fatigue in electrical power transmission lines 

[2]. 
The analysis of the dynamic absorber was first presented in the now 

classic paper of Ormondroyd and Den Hartog [3]. Optimal damping 
in dynamic absorbers was the topic of a later paper by Brock [4]. 
Subsequently this device has been used successfully to damp building 
oscillations caused by reciprocating textile weaving equipment [5]. 

Young considered the application of dynamic absorbers to beams 
[6], while later the application to elastic plates was considered [7]. 
Several investigators have considered the design of optimal vibration 
absorbers to minimize some measure of system response in the case 
of randomly excited vibratory systems [8, 9]. Another paper considers 
the time domain optimization of a dynamic absorber which minimizes 
transmitted force or time for energy dissipation [10]. Recently Kar-
nopp investigated the use of auxiliary distributed systems as dynamic 
vibration absorbers for distributed parameter main systems [11]. In 
a current paper Snowdon treats the application of circular plates with 
massive rims to act as dynamic absorbers for force- and displace
ment-excited single-degree-of-freedom lumped parameter systems 
[12]. It is this paper which stimulated the authors to recall some earlier 
investigations in which a double-ended cantilever beam was employed 

l Numbers in brackets designate References at end of paper. 
Contributed by the Vibration and Sound Committee of the Design Engi

neering Division and presented at the Winter Annual Meeting, New York, 
December 5-10,1976, of THE AMERICAN SOCIETY OP MECHANICAL 
ENGINEERS. Manuscript received at ASME Headquarters August 2,1976. 
Paper No. 76-WA/DE-17. 

as a dynamic vibration absorber [7]. 
This problem is analyzed by employing the principle of superpo

sition and the solution of the Bernoulli-Euler beam for the absorber 
force in terms of the vibratory amplitude of the mass where vibration 
control is sought. An assumed mode approximate analysis is also given 
and proves to be very accurate when compared to the exact analysis. 
Optimal tuning and structural damping in the absorber beam are 
derived in the context of the approximate analysis and are shown to 
hold also for the exact analysis for frequencies well below the second 
natural frequency of the distributed parameter absorber. Design 
curves for optimal beam-type absorbers are presented and should be 
useful to designers of machine elements and structural systems. 

Theory 
Exact Analysis. Consider the undamped system shown in Fig. 

1, which is composed of a spring-supported lumped mass which is free 
to move only vertically. Attached to that mass is the double-ended 
cantilever beam as shown. For purposes of analysis, separate the 
system into three parts as shown in Fig. 2 and employ the method of 
superposition to examine the coupling between the subsystems. The 
equation of motion for the main mass M is 

d2w 
M + Kw = P0e-""( + 2V0e'« 

dt2 (1) 

where the Voe-i"' term is the yet unknown vibration absorber force 
for a single beam on the main mass. The solution to (1) would be but 
a simple matter if the complex transmitted force amplitude Vn were 
known. 

This force can be obtained as the shear force at the root of a dis
placement-excited cantilever beam. The governing equation for the 
cantilever beam under the assumption of Bernoulli-Euler bending 
theory is 

d4v d2y 

dx4 dt2 

with the following boundary conditions: 

0 (2) 
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y(0, t) = W0ei> 

dy 

dx 

i>2y 

dx2 

d3y 

dx3 

(0, t) = 0 

(£, t) = 0 

(L, t) = 0 

(3) 

(4) 

(5) 

(6) 

j u t 

In order to obtain a steady-state solution to (2), assume a solution of 
the form 

r 
x(t) 

Y(x, t) = Y(x)ei" (7) 

which will yield the spatial complex amplitude distribution Y(x). The 
shear force amplitude at the root of the cantilever is then 

E.l.pAX 

Fig. 1 Single-degree-of-freedom system with beam-type dynamic absorb
er 

V0 = -EI 
d3Y(Q) 

dx3 (8) 
.*•* 

Solving (2) subject to boundary conditions (3)-(6) and then using 
expression (8) gives a shear force amplitude of 

Vo = EIWo/33 [sinh fiL cos fiL + cosh fiL sin fiL" 

1 + cosh fiL cos pL 

where the parameter fl is defined by 

pAui2 

fi4 = -
EI 

The steady-state solution to (1) is 

w{t) = WoeJ"1 

where Wo is the complex amplitude, so 

(-Mco2 + K)W0 = Po 

+ 2EIW0fi
3 [sinh fiL cosh fiL + cosh fiL sin fiL 

(9) 

(10) 

( ID 

(12) 

'2w(t , _ ^ 

j I w(t) 

V.eJ"1 

y(x,t ) 

Fig. 2 Freebody diagram of the absorber system 

where 

1 + cosh fiL cos fiL 

Note that the second forcing term on the right side of (12) is a function 

PL = 1.875 V -
V rwi 

(19) 

Approximate Analysis. This analysis will be accomplished in 
of the complex vibratory amplitude of the mass WQ. This presents no order to see whether or not the results of such analysis compare fa-
problem in that (12) can still be solved for Wo as a function of the vorably with the exact answers given in the previous section. The 
external forcing function amplitude PQ or 

WV 
P 0 ( l + cosh fiL cos fiL) 

(K - Ma>2)(l + cosh 0L cos fiL) - 2£//33(sinh fiL cos fiL + cosh fiL sin fiL) 
(13) 

In order to get maximum benefit from the foregoing analysis it • 
is expedient to introduce some nondimensional quantities. Define the technique to be employed will be the method of assumed modes [13] 
tuning ratio, T, to be the ratio of the first natural frequency of the and, hence, there is a need to formulate the kinetic and potential 
cantilever to the natural frequency of the main lumped parameter energies, which are respectively 
system 1 L 

^ 1 . 8 7 5 ' /ELM , i / n KE = -Ma,2 + PA£ [fi + MrWPdx (20) 

L * pAK Qi 
(14) 

11 L' »™ and 
The mass ratio /i is the ratio of the total absorber mass to that of mass 
M 

2PAL 

M 

V = -Kw2 + EI 
2 r «•(£)• dx (21) 

(15) where <j>i(x) is the first cantilever mode as given by Pelgar and Young 
[14]. The integrals involving <j>i(x) and its second derivative in (20) 

Define the frequency ratio X as the ratio of the forcing frequency to and (21) have been tabulated by Pelgar [15]. Application of Lagrange's 
equations to these energies yields the following differential equations, 
which are written in nondimensional form using the previously de

ll*') fined dimensionless quantities: 

the natural frequency of the K — M combination of 

IM_ 

K 

while the static deflection of the main system is defined to be 

P0 Wsi 
K 

(17) 

r l + p 0.78291p"| p i 2 0 "j[~"''l 
Lo.7829M 1 J U J + L o 7 , 2Qi2JLqJ" 

P o • t — sin tut 
M 
jo 

(22) 

The frequency response function in dimensionless form is then 

Wo_ 

WBt 

1 + cos fiL cosh fiL 

(1 - X2)(l + cos fiL cosh fiL) TZ^~ ( s i n h PL c °s PL + sin PL cosh fiL) 

(18) 

1.875 
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Solving for the system frequency response function yields 

W± 

Wst' 

T 2 _ X 2 
(23) 

(24) 

X4(l + 0.3871M) - X2[l + T2(l + M)] + T2 

where the nondimensional parameters are the same as defined pre
viously. The nondimensional result given by Den Hartog [1] for the 
case of a lumped parameter absorber is 

Wo_ = T 2 - X 2 

wst ~ x4 - x2[i + r 2 ( i + M)] + T2 

It is interesting to note the only difference in expressions (23) and (24) 
is the modification of the first term of the denominator. 

Evaluation of these expressions for the undamped frequency re
sponse yields the frequency response curves of Fig. 3 for a tuning ratio 
of unity and a mass ratio of 0.2. It is apparent that the lumped pa
rameter equation (24) does not accurately predict the new induced 
natural frequencies but that the approximate equation predicts very 
accurately the behavior given by the transcendental harmonic re
sponse function (18) as long as the forcing frequency is less than half 
the second natural frequency of the cantilever, which is 6.27 times the 
first natural frequency [14]. The two lowest natural frequencies as a 
function of the mass ratio are shown in Fig. 4 for a tuning ratio of 
unity. It is clear from these results that for a distributed absorber of 
a given mass ratio, the frequency spread will not be as wide as that for 
a lumped absorber of the same mass ratio. This occurs because those 
portions of the absorber near the absorber root do not vibrate with 
the relative amplitude as those portions further outboard and, hence, 
the shear forces developed are not so great. 

Optimization of the Damped Absorber. Damping may be in
corporated into the absorber by treating the beam as having a complex 
elastic modulus as first discussed by Soroka [16] and Myklestad [17]. 
This type of damping is considered in the excellent text by Snowdon 
[18]. Since the beam's elastic modulus directly controls the tuning 
ratio, as indicated by equation (14), it is appropriate to replace the 
square of the tuning ratio, T2, in the undamped analyses by the square 
of a complex tuning ratio, T*2, where 

T*2 = T2(l+jS) (25) 

This type of modulus represents damping forces which for harmonic 
motion are in phase with velocity and proportional to displace
ment. 

The approximate absorber will now be optimized to make the fre
quency response as flat as possible with the result being peaks of very 
nearly equal height. 

This procedure for absorber optimization was derived by Brock [4] 
and is outlined by Snowdon [18] and yields an optimal tuning ratio 
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Fig. 4 Frequency spread of induced frequencies due to absorber system 
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Fig. 5 Optimal tuning ratio for beam-type dynamic absorber 

$ 

0.5 1.0 1.5 

FREQUENCY RATIO , X r U/Sl, 

Fig. 3 Typical frequency response for undamped beam absorber 
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n = 
VI + 0.3871M 

1 + M 
(26) 

which is illustrated in Fig. 5 as a function of the mass ratio. With this 
tuning ratio then the optimal damping coefficient 8o is found and is 
illustrated in Fig. 6 for various mass ratios ii. For comparison, the 
optimal lumped structural damping coefficient computed from a 
frequency response function similar to (24) except for the inclusion 
of complex structural damping is also given in Fig. 6. To evaluate the 
incorporation of the optimal values evaluated for the approximate 
system in the transcendental (distributed) system, the transcendental 
frequency response function (18) was evaluated using those values 
and compared to the results of equation (23) and again there was 
negligible difference for frequencies well below the second natural 
frequency of the cantilevers, as illustrated in Fig. 7. The damped 
absorber was shown to also suppress the higher resonances of the 
system, as shown in Fig. 8 for the third natural frequency of the 
composite system. 

Transactions of the ASME 

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

anufacturingscience/article-pdf/99/1/138/6504487/138_1.pdf by M
issouri U

niversity of Science & Technology user on 07 July 2023



0 . 8 

MASS R A T I O 
2 P A L 

Fig. 6 Optimal complex damping parameter for various mass ratios 
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Fig. 8 Optimal and undamped frequency response over a large range of 
frequencies 
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Fig. 7 Frequency response optimally tuned and damped beam-type ab
sorber 

Summary and Conclusions 
The authors have investigated the possibility of the use of a dou

ble-ended cantilever beam as a dynamic vibration absorber for a 
lumped-parameter single-degree-of-freedom vibration system but 
its application would not be limited to such a system. It is found that 
treating the system as a lumped system yields significant errors in 
prediction of system dynamics. It was also found that for frequencies 
well below the second natural frequency of the beam, an assumed 
mode energy technique yields answers which agree quite favorably 
with those of an exact analysis treating the cantilevers exactly. Based 
on these results, the authors would be hesitant to attack a similar 
problem with a tedious exact analysis when an assumed mode energy 
approach yields answers which are not distinctly different. The 
availability of the tables of references [14] and [15] makes the for
mulation of potential and kinetic energy expressions a relatively 
simple task. 

Structural damping is incorporated into the beam model by 
choosing a complex elastic modulus and the parameters of optimal 
absorber beams of a given mass are given and presented in the form 
of design curves. 
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