
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Electrical and Computer Engineering Faculty 
Research & Creative Works Electrical and Computer Engineering 

01 Jan 1980 

MTI Improvement Factors For Weighted DFTs MTI Improvement Factors For Weighted DFTs 

Rodger E. Ziemer 
Missouri University of Science and Technology 

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork 

 Part of the Electrical and Computer Engineering Commons 

Recommended Citation Recommended Citation 
R. E. Ziemer, "MTI Improvement Factors For Weighted DFTs," IEEE Transactions on Aerospace and 
Electronic Systems, vol. AES thru 16, no. 3, pp. 393 - 397, Institute of Electrical and Electronics Engineers, 
Jan 1980. 
The definitive version is available at https://doi.org/10.1109/TAES.1980.308908 

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for 
inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized administrator 
of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for 
redistribution requires the permission of the copyright holder. For more information, please contact 
scholarsmine@mst.edu. 

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F4932&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F4932&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/TAES.1980.308908
mailto:scholarsmine@mst.edu


MTI Improvement Factors for Weighted DFTs

Correspondence
Abstract

The use of the discrete Fourier transform (DFT) to enhance the
detection of moving targets in ground clutter is examined. The
improvement factor, defined as the signal-to-clutter ratio at the
DFT processor output compared with that of the input, is given
as a function of normalized clutter spectral width for various
weighting functions on the DFT input. The effect of quantiza-
tion of the weights on the improvement factor is also examined.

I. Introduction

The use of the discrete Fourier transform (DFT) to deter-
mine the velocity of moving targets by means of coherent
pulse-Doppler radar systems has become common with
the availability of high-speed digital processors. In pulse-
Doppler radar-system implementations, a clutter canceller
often precedes the Doppler filter bank in order to improve
the detectability of the target in the presence of ground
clutter entering the radar receiver through the mainlobe
of the antenna pattern (so-called main beam clutter).

The signal-to-clutter ratio enhancement provided by
multiple delay-line cancellers has been analyzed for various
configurations and appears in the literature [1] . An
alternative scheme for mainlobe clutter rejection in DFT-
processing radar receivers is to simply not use the DFT
outputs in the vicinity of the main beam clutter spectrum,
which is typically tracked and centered at zero frequency.
For processors where sample values are represented by
binary numbers with a small number of bits (say eight
or less), both techniques may be employed due to the
limited dynamic range of the processor. Recently, how-
ever, digital hardware has become available which makes
possible the implementation of processors employing
12- or 16-bit number representations. In such cases it is
feasible to employ the DFT clutter rejection scheme alone.
In addition to being simpler, the elimination of the clut-
ter canceller results in uncorrelated noise samples at the
DFT input, which in turn results in higher overall process-
ing gain [2].

It is the purpose of this correspondence to examine
the influence of various types of DFT weighting functions
on the clutter improvement factor, as well as the impact
of the number of bits used in representing the weights.

II. Derivation of Improvement Factor

It is convenient and reasonable to assume a Gaussian
spectrum of the form
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C(.) MO exp( K2fj ) (1)

for the imiain beam clutter. For airborne platforms, the con-
stant K can be related to the azimuthal beamwidth of the
antenna pattern (-)fi the wavelength of the radiated wave-
formn X, the radar platform velocity V, the antenna azi-
muth angle 0%, and depression angle q0, as

(2)K V,/k X csc 00 sec Q0/(2 VOB)

where k = 5.5452 to place the one-way --3-dB power
response of the antenna at 0- = (O)B/2. This expression
ignores the effects of phenomena such as scanning and
shear wind which are secondary for airborne application

The autocorrelation function corresponiding to the
clutter spectrumii given by (I) results from application
of the Fourier transform pair [3]

exp[ T r(t/To)21 rOexp[ 7(ToJ)2f]

It is

R,(T)= MoTo' exp [ -- (7/K)2 J

where

To = (K2/7r)/ .

where 3 is the normalized frequency (fTp, where Tp
equals the sampling time) of xs(t) and 0 is a random
phase angle. It follows that the power in the signal com-
ponent at the kth filter output of the DFT is

|Xs(k)2 =A' SE w(n)w(m) expUL2iT( - k)(n
n,m =O

m)/NJ.

(10)

The clutter power at the output of the kth filter, found
by taking the ensemble average of the product of

N-1
XC(k)= I w(n)x,(n) exp[-j2irkn/NI

n=OIS.
(1 1)

with its complex conjugate, is [2]

IX,(k) 2 = 2 El Rc(n - m)w(n)w(m) cos[27rk(n - m)/N]
(3) n,m =o

(12)

where, from (4), the sampled autocorrelation function
(4) of one quadrature component is given by

Rc(n - m) = Rc [(n - rn)Tp }

(S) = MOTO-l expJ- [7r(n -)PIK] 2 } .

Now the output of the DFT at its kth frequency (here-
after referred to as DFT filter number k) is given by

N-1
X(k)= z w(n) x(n) exp(--2j2rkn/N) (6

n O0

where N is the number of DFT points and w(O), w(l),
..., w(N - 1) are a set of input weights. The input samples
to the DFT consist of signal plus clutter, and may be
expressed as

x(n) = x (n) + xC (n) (7

where the subscript s denotes signal and the subscript c
denotes clutter. Thus the DFT output in filter k can be
represented as

X(k) = Xs(k) + Xc(k) (8

where expressions for Xs(k) and XC(k) can be obtained
from (6) by replacing x(n) by xs(n) and xc(n) respec-
tively.

Assuming a coherently pulsed sinusoidal input signal
to the receiver, it follows that the input to the DFT,
which includes both in-phase and quadrature low-pass
signal components, can be represented as

xs(n) = As exp [j (2 rf3n/N + 0)]

0018-9251/80/0500-0394 $00.75 © 1980 IEEE

The interpulse period (IPP), Tp, has been introduced in (13)
as a result of the sampling by the digital processor at IPP
intervals.

) The signal-to-clutter power ratio at the kth DFT output
filter is the ratio of (10) to (12). The moving target indi-
cator (MTI) improvement factor F is defined as the signal-to-
clutter power ratio at the output of the kth DFT filter
divided by the signal-to-clutter power ratio at the receiver
input for a signal with normalized frequency ,B k. It is

N-1 N-1
F = [ nmw(n)] = w(n)w(m)

n=0 n,m =0

* exp - [V/2 7r(n - m)un] 2 } cos [2irk(n - m)/N] (14)

where Un is the clutter spectral spread (standard devia-
tion) normalized by the pulse repetition frequency fp

) and can be expressed in terms of Tp as

a = T /V2K.np (15)

III. Results

Equation (14) was evaluated by computer for various
sets of weighting coefficients for both unquantized and
quantized weights. The weighting sets employed are
summarized in Table I along with their equivalent noise

(9) bandwidths [4]. The MTI improvement factor is p,lotted
versus the normalized spectral spread in Figs. 1-3 for the
Hanning, Hamming, and Blackman weighting functions.
Figs. 4-10 shown similar plots for the Kaiser-Bessel weight-
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TABLE I

Weighting Functions and Corresponding Equivalent Noise Bandwidths

Weight Mathematical Equivalent noise
function specification of w(n) bandwidth normalized
name n = 0, 1 ...NN - 1 to frequency resolution

Hanning 0.5[1 - cos(2nrr/N)J 1.500

Hamming- 0.54 - 0.46 cos(2n7r/N) 1.363

Blackman 0.42 - 0.5 cos(2n7r/N) + 0.08 (4n7r/N) 1.727

Kaiser-Bessel Io [rTa/1 - (2n/N - 1)21 1.393 (O= 1.5)
Io [7r Ct] 1.509 (ot= 2.0)

1.654 (ot= 2.5)
1.796 (Oa= 3.0)
2.053 (cv= 4.0)
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Fig. 2. MTI improvement factor for Hamming weights.
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Fig. 4. MTI improvement factor for Kaiser-Bessel weights; ct = 1.5.
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Fig. 6. MTI improvement factor for Kaiser-Bessel weights; t = 2.5.
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Fig. 9. MTI improvement factor for a 16-point, Kaiser-Bessel
weighted DFT with ot = 2.5.
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ing function for various values of the window parameter
a and for various DFT sizes. These figures illustrate how
the improvement factor can be bounded by selectively
discarding DFT filter outputs. In the improvement factor
computations, the clutter is centered in the zeroth filter.
The labeled curves show the improvement factor for
both the filter listed and the corresponding image filter.
Hence, all lower filters and corresponding image filters are
discarded to achieve the desired improvement factor. Fil-
ter 1 is not shown because it sufficiently overlaps the clutter
region as to provide a negligible improvement factor. Like-
wise, curves are not plotted for filter numbers higher
than 8 for the 32-point DFT because this already entails
greater than 50 percent bandstop filtering.

It is interesting to compare Figs. 1-3. For example,
suppose F> 60 dB is required for 0 < an < 0.03. For
Hanning weights, DFT filter number 7 provides at least
60-dB improvement for On in this range, while filter
number 6 suffices if Blackman weights are employed.
Hamming weights were designed to provide constant
sidelobes with -44 dB peaks [4] ; hence, the improve-
ment factor is bounded by this constraint.

The Kaiser-Bessel weighting function is convenient
because of the possibility of trading mainlobe width for
sidelobe level of its frequency spectrum by varying the
parameter a. For example, Figs. 4-10 show that filter
number 5 of a 32-point DFT provides at least 50 dB of
MTI improvement for the following ranges of an and
corresponding values of a: an < 0.02 if a = 1.5;
On S0.024ifa= 2.0;On <0.028 if a = 2.5;
an < 0.026 if a = 3.0; and an < 0.023 if a =40.
Thus increasing a does not necessarily provide a larger
clutter spectral width over which a minimum MTI im-
provement factor is attained. Increasing a does appear
to provide a larger maximum MTI improvement factor,
however, as can be seen by comparing curves for the
same filter number for a fixed value of On, say an = 0.02.

The effects of quantized weights on the improvement
factor are shown in Figs. 3 and 6 by the dashed curves.
The quantization specifications include sign; thus 8 bits
of quantization means 7 bits of magnitude plus a sign bit,
even though the weights are all positive. Quantization of
the weights results in the occurrence of spurious sidelobes
in the magnitude spectrum of the weighting function.
Quantization of input samples and subsequent roundoff
or truncation errors in the DFT, which are not included
in this analysis, can be characterized as an additive noise
source as long as nonlinear effects such as saturation and
deadbanding are negligible. Note from Fig. 3 that improve-
ment factors in excess of 70 dB can be achieved with 12-
bit arithmetic, and that 8-bit arithmetic provides a maxi-
mum improvement of not quite 60 dB. Some results for
16-bit weight representation were run and found to pro-
vide virtually identical results to the unquantized cases
for the range of parameters considered. The effect of
DFT length on MTI improvement factor can be studied
with the aid of Figs. 9, 6, and 10, for which Kaiser-Bessel
weights having a = 2.5 were employed for DFT lengths

of 16, 32, and 64, respectively. In comparing these figures,
one should keep in mind that the DFT resolution in-
creases by a factor of two with the doubling of the DFT
size. Thus, for example, one should compare MTI improve-
ment factors for filter number 2 in Fig. 9 with those of
filter number 4 in Fig. 6, and with those of filter number
8 in Fig. 10. The advantage of a larger DFT size is appar-
ent when one considers the superior improvement char-
acteristics for filter number 8 of a 64-point DFT with
the very poor characteristics of filter number 2 of a
16-point DFT.

As an example of using these curves for system design,
consider an airborne radar for which the wavelength is
0.1 ft, the azimuthal beamwidtlh is 4.4°, and the pulse
repetition frequency is 10 kHz. Suppose, further, that
the platform velocity is 1500 ft/s and that the antenna
scans a ± 450 sector in azimuth. From equations (15)
and (2), the maximum value of an occurs for e0 = 450,
and its value is 0.04891. A 32-point DFT length is de-
sired. If a 40-dB minimum MTI improvement factor is
desired, one would need to discard filters 1-6 for Hanning
Hamming, and Blackman weights. For Kaiser-Bessel
weights, filters 1-6 would be discarded for a = 1.5,
a = 2.0, and a = 2.5, filters 1-7 for a = 3.0, and filters
1-7 for a = 4.0. Note that although only filters 1-6 need
to be discarded for a = 1.5, the maximum improvement
factor for any value of a, is limited to about 52 dB. To
achieve a larger minimum improvement factor, one must
use a larger value of a.
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