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The notion of a dentable subset of a Banach space was introduced by Rieffel[7] 
in conjunction with a Radon-Nikodym theorem for Banach space-valued 
measures. Davis and Phelps [l] (also Huff [2]) have shown that those Banach 
spaces in which Rieffel’s Radon-Nikodym theorem is valid are precisely the ones 
in which every bounded closed convex set is dentable (definition below). Sub- 
sequently, Phelps [5] showed that the Banach spaces which have this property 
(the “Radon-Nikodym property”) coincide with those which have the property 
that every bounded closed convex subset is the closed convex hull of its strongly 
exposed points (definition below). Saab [8, 9, lo] has extended some of these 
results to FrCchet spaces. Of immediate interest to us is Saab’s characterization 
of FrCchet spaces with the Radon-Nikodym property as those which have the 
property that every bounded subset is dentable. 

In the present paper, we consider additional geometric characterizations of 
the Radon-Nikodym property. In particular, we prove that a Banach space has 
the Radon-Nikodym property if and only if every closed convex cone with a 
bounded closed base is the closed convex hull of its strongly exposed rays. In 
FrCchet space, we iive a necessary and a sufficient condition in terms of cones 
for the space to have the Radon-Nikodym property. We wish to thank Professor 
Phelps for suggesting the construction used in the proof of Theorem 3 which 
resulted in a shorter proof of that theorem. 

DEFINITION 1. Let E be a Hausdorff locally convex space and let E* denote 
the topological dual of E. 

(i) A subset C C E is said to be de&able if for every nbhd U of 0, there 
is a point .E E C such that x $ cl-conv [C\(x f U)], where cl-conv denotes 
“closed convex hull.” 
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(ii) A point x E CC E is called a denting point of C if for every nbhd U 
of x, x 4 cl-conv(C\,li). 

It follows from the separation theorem for convex sets that x0 is a denting 
point of C if and only if for each nbhd U of x,, there exist f E E* and 01 E R 
such that 

x0 E {x:f(x) < Lx} n c c c n u. 

It is clear that any set whose closed convex hull has a denting point is dentable. 

DEFINITION 2. A ray p = {x + hz: A 3 0, z # Oj- of a convex set ,y in a 
Hausdorff locally convex space is a denting ray of X if for any nbhd U of 0, 

p’ n cl-conv[X’,(r 2 (z> + U)] = 4: 

where S’ is anv bounded convex subset of X, p’ = p n X’, and (z,? denotes 
the one-dimensional subspace generated by z. 

THEOREM 1. Let X be a closed convex cone in a Hausdorjjr locally convex 
space E with a bounded closed base Y (that is, there exists f E E*, f # 0, such that 
I7 = {x:f(x) = I> n S and X = {hy : h > 0, y E Y}) and let p = {A.~(,: h 2 0}, 
where x0 E Y. Then p is a denting ray of X if and only if ,q, is a denting point of I'. 

Proof. It is evident that if p is a denting ray of X, then x0 is a denting point 
of Y. Conversely, assume that x,, is a denting point of Y and I- + (xJ. Let X’ 
be a bounded convex subset of X and let LI be a balanced convex nbhd of 0. 
We may assume X’ C {x: f (x) < 1) n X. Since x,, is a denting point of Y, there 
exists g E E* and N > 0 such that 

Let T == {s: g(x) = CV) n I’. Since Ir # {NJ, we may assume T =:~ d. Now 
T .L 1,’ ,x0) is a closed convex set, [0, x0] = {Ax,: 0 < h < 1) is a compact 
convex set, and [0, x0] n (T + (x0>) = 4. Hence, there existf,, E E” and /3 > 0 
such that [0, x0] C{x:f&s) < /3) and T -i- (x0> C{x:f&x) > /3). 

If y E Y such that fo(y) < ,B, then .f(~*) 7~ 1 and [x0 , y] n T = 4. It follows 
that g(y) < a and hence, y E (x0 + U) n Y C (NJ A CT. On the other hand, 
if y E X such that f (y) < 1 and f,,(y) < j?, then there is a unique X > 0 such 
thatf (Js + hx,) = I. From [3, p. 2351 we hav-e y + hx, E S. Hence, y - Ax, E I 
and fo(y + /\x,) = fO(y) < /3, since fo(x,,) = 0. By the previous argument, it 
follows that y + /\x,, E x0 + U and so y E (1 - X) x0 -7 U C (x0> 1- cr. Thus, 
if y E (x:fO(x) < ,9j n S’, then y E (x,,;, + LT. It follows that X”(s,, mu c’) C 
{x: j+) 2 p;. so 

p’ n cl-conv[X”,,((x,,> L- U)] ~7; Q, 

since f,(p) = 0 < ,8 and p’ = X’ n p. Therefore, p is a denting ray of S. 
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DEFINITION 3. Let C be a nonempty subset of the Hausdorff locally convex 
space and let x E C. The point x is a strongZy exposed point of C if there is an 
f E E* such that {C,: = {{y E C:f(y) .< a>: 01 >f(x)) is a nbhd base of x in C. 
The functional f is said to strongly expose x. 

DEFINITIOX 4 (Zizler [12]). Let X be a nonempty subset of a Hausdorff 
locally convex space E and let p be a closed ray in X. Then p is a strongly exposed 
ray of X if there exist f E E* and 01 E R such that (i) f(x) = 01 for x E p and 
f(x) > a: for x E Xl,, and (ii) if U is any nbhd of 0 and {xi} is a bounded net in X 
such that f (xi) + 01, then {xi> is eventually in p + U;. The functional f is said to 
strongly expose p. 

THEOREM 2. Let X be a closed convex cone in a Hausdorff locally convex 
space E with a bounded closed base Y and let p = (Xx,,: A 3 01, where x,, E Z’. Then 
p is a strongly exposed ray of X if and only if x0 is a strongly exposed point of Y. 

Proof. Let f E E*, f # 0, such that {x: f(x) = l} n S = I- and 
X = {hy: h > 0, y E Y}. Assume Y # {x,,}. Let g E E* such that g strongly 
exposes x0 on Y and g(x,,) < g(y) for each y E Y\{x,). If g(xJ < 0, then let 

W = {x: f (x) > I$ n {x: g(x) s g(x,)) 

but if g(x,) > 0, then let 

w = (x: f (x) < I> n (x: g(x) > g&)>. 

In either case, IV is a nonempty open convex subset of E and W n L = 4, 
where L = (x0>. By the separation theorem there is fO E E* such that 
L C {x: f&x) = 0} and WC {x: f&x) > 0} (see [l 1, Theorem 3.6-E]). Therefore, 
fO(x) > 0 for x E X\p and p is an exposed ray of X. 

Let CT be a balanced convex nbhd of 0. Since x,, is strongly exposed by g on 
Y, there is an 01 E R such that g(xJ < (Y and 

{x E Y: g(x) < CL} C (x0 + G) n Y. 

Since there are at least two points in I’, u: can be chosen so that 
{x E Y-: g(x) = a} # 4. Let .z E Y such that g(z) = 01 and fO(z) = ,8 > 0. Then 

(x:fi,(~) == p) n {x:.f(x) = 1) = (Z - x0) + (x:fo(x) = 0} n {x: f(x) = I> 

= (Z - x0) + (x: g(x) = g(x&} n (x: f (x) = l} 

= :.y: g(x) = a} n {x: f(x) = I>. 

It follows that 

{X E I’: fo(x) f p} = (X E Y: g(x) < a} C (x0 + U) n I?. 
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If (xi) is a bounded net in X such that fs(xJ + 0, then f,[(l/iVl) si] + 0 and 
(l/M) U is a balanced convex nbhd of 0, where M = sup(f(x,)}. Hence, there 
is a /I > 0 such that 

{x E Y: f”(X) < p> c [X,) + (1 /M) U] n Y. 

Since fs[(l/M) xi] --f 0, there is 1 so that f,[(l/M) q] < /3, whenever i > I. 
For each i > I, there is a hi E [0, l] such that f[(l/M) xi + &x0] = 1 and it 
follows that ( 1 /M) xi + &x0 E Y. Then fO[( 1 /n/r) xi + h+q,] -: fO[( 1 /M) XJ < /3 
for each i > I; that is, (1 /M) xz’i + &.x0 E 3~‘s j- (1 /M) U and xi E M( 1 - Xi) x,, + 
0’ C p + U. Therefore, p is a strongly exposed ray of X. 

THEOREM 3. Let C be a nonewlpty bounded closed convex subset of a Hausdorfl 
locally convex space E such that 0 $ C. Ij the comex cone A’ = RfC = {Xx: h 3 0, 
x E C} has a strongly exposed ray, then C has a denting point. 

Proof. Choose f E E” such that Y = (x:f(~) = l> n X is a base for X 
(for example, f is determined by a hyperplane which separates 0 and C). Let p 
be a strongly exposed ray of X and let g E E* such that g strongly exposes p 
(say g(p) = 0 and g(x) > 0 for x E X\p). Let z E p such that z # 0 and x0 = 
h,z E C, where h, = sup{h: hz E C]. Assume that x,, E I’; that is, f(q,) = 1. 
For each ,8 E (0, l), let 

A, = c n (x: f(x) > 1 - p> n {x: g(X) < p>. 

We will show that if U is any nbhd of 0, then there exists p E (0, 1) such that 
x0 E A, C x,, + U. It suffices to show that if {pi} is a net of decreasing positive 
real numbers, ,& + 0 and xi E A,, , for each i, then xi -+ x,, . Note thatf(xJ --f 1. 
If not, then since f is bounded’on C there is a subnet {Xj} of {xi} such that 
f(q) --f t + 1. Since f(xj) > 1 - /3j , we must have t > 1 and we can assume 
f(xj) > 1, for all j. Let yi = [l/‘(q)] xi , then yi E Y and g( yi) + 0 = g(q). 
Since x,, is strongly exposed on Y by g, we must have yi - x,, . But then 

Yj + Cl - [l/f(xj)l) x0 = [lif(%)l xi + C1 - [l/f(xj)l) %o 

is in C and converges to x0 + [l - (l/t)] x0 E C n p, contradicting our choice 
of x0 . Then f(q) --f 1 and yi = [Iif(q)] xi converges to x0 , which means 
xi =f(xJ yi converges to x0 . 

Now suppose x0 E cl-conv(C\A& for some fi > 0. Since 

C\A, = [C n {x: g(x) 3 p}] u [C n {x:~(x) G 1 - p}], 

we can choose nets {&} C [0, I], {xi} C C and {yi} C C such that g(q) > /3 and 
f(yJ < 1 - /3 and zi = h,.q + (1 - Ai) yi -+ x0 . Choosing a subnet if neces- 
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sary, we can assume A, - h E [0, I]. If X = 0, then since {q} is bounded yi - x0 , 
contradicting f(yi) < 1 - /3 < 1 =f(xJ. Thus, h > 0. Since g(yi) ‘,‘- 0, then 

0 < g(eTf) = (l/hi) g(Zi) - (l/hi) ( 1 - A[) g(Ji) 

< ( ljhi) ,dzl) - (I/‘) A%) = O* 

contradicting g(q) 2 /3 > 0. Th us, x0 6 cl-conv(Ci,&), for each /3 > 0. Let U 
be a nbhd of 0, then there exists /3 > 0 such that x0 E A, C or, f Lr and 
x0 $ cl-conv(C\&). Therefore, x0 $ cl-conv[C\,(x, j-- U)] and it follows that q, 
is a denting point of C. 

In the proof of Theorem 3, the denting point x0 is not necessarily a strongly 
exposed point of C as the following example shows. Let D, ---= {(.v, y) = 
(x - 1)2 i (y - 3)’ < 1, ’ and D, = {(x,y): (x - 1)” -+ (1, - 2)2 < I} be discs 
in the (.x, y) plane. Let C = conv(D, u D,) and let X be the cone generated by C 
with vertex (0, 0). It is easy to see that the nonnegative y-axis is a strongly 
exposed ray of X which intersects C in the closed segment ((0, y) = 2 < y < 3). 
However, neither (0, 2) nor (0, 3) is an exposed point of C. 

If C is a bounded subset of a Banach space and the cone generated by 
cl-conr(C) is the closed convex hull of its strongly exposed rays, then by 
Theorem 3, C is dentable. On the other hand, if a Banach space has the Radon- 
Nikodym property, then by Theorem 2, every closed convex cone with a 
bounded closed base is the closed convex hull of its strongly exposed rays. 
Therefore, a Banach space has the Radon-Nikodym property if and only if 
every closed convex cone with a bounded closed base is the closed convex hull 
of its strongly exposed rays. 

Zizler [12] showed that every closed convex weakly locally compact cone in a 
Banach space is the closed convex hull of its strongly exposed rays. The following 
example shows that the above characterization of the Radon-Nikodym property 
can be used to cstend this result. Let B be the unit ball in Zr and let 
f == (1, 1, l,...) E I”. Then H = {.v:f(x) = ?I I’ is a closed hyperplane in Z1 that 
meets B in a bounded closed convex subset Y = B n H. Let X be the closed 
convex cone generated by Y with vertex 0. The Banach space Zr has the Radon- 
Kkodym property. Therefore, X is the closed convex hull of its strongly 
exposed rays. But by [6, Proposition 11.6; 4, Lemma 4.21 one can show that X 
is not a weakly locally compact cone. 

If C is a bounded subset of a FrCchet space and the cone generated by 
cl-conv(C) is the closed convex hull of its strongly exposed rays, then by Theo- 
rem 3, C is dentable. Thus, if in a FrCchet space, every closed convex cone with 
a bounded closed base is the closed convex hull of its strongly exposed rays, 
then the space has the Radon-Nikodym property. On the other hand, if a 
FrCchet space has the Radon-Nikodym property, then by Theorem 1, every 
closed convex cone with a bounded closed base is the closed convex hull of its 
denting rays. 



CONVEX CONES AND DENTABILITT 585 

REFERENCES 

1. W. J. DAVIS AND R. R. PHELPS, The Radon-Nikodym property and dentable sets in 
Banach spaces, Proc. Amer. Math. Sot. 45 (1974), 119-121. 

2. R. E. HUFF, Dentability and the Radon-Nikodym property, Duke Math. J. 41 (1974), 
111-114. 

3. V. KLEE, Extremal structure of convex sets, Arch. Math. 8 (1957), 234-240. 
4. C. G. LOONEY, A Krein-Milman type theorem for certain unbounded convex sets, 

J. Math. Anal. Appl. 48 (1974), 284-293. 
5. R. R. PHELPS, Dentability and extreme points in Banach spaces, J. Functional Analysis 

17 (1974), 78-90. 
6. R. R. PHELPS, “Lectures on Choquet’s Theorem,” Van Nostrand, New York, 1966. 
7. M. A. RIEFFEL, Dentable subsets of Banach spaces, with application to the Radon- 

Nikodym theorem, in “Proceedings of a Conference on Functional Analysis,” 
pp. 71-77, Thompson, Washington, D.C., 1967. 

8. E. SAAB, Dentabilite et points extrtmaux dans les espaces localement convexes, 
Seminaire Choquet, 13” annee, 1973-1974, no 13. 

9. E. SAAB, Points extrtmaux et propriete de Radon-Nikodym dans les espaces de 
Frechet dentables, Seminaire Choquet, 13” annee, 1973-1974, no 19. 

10. E. SAAB, “Sur la propriete de Radon-Nikodym,” These, Paris, 1975. 
11. A. E. TAYLOR, “Introduction to Functional Analysis,” Wiley, New York, 1958. 
12. V. ZIZLER, On extremal structure of weakly locally compact convex sets in Banach 

spaces, Comment Math. Uniu. Cnrolinne 13 (1972), 53-61. 


	Convex Cones And Dentability
	Recommended Citation

	PII: 0022-247X(77)90163-9

