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Evaluation of a model for the contribution of phonon-induced tunneling to donor ESR
spectral narrowing in germanium*

David L. Meier, ~ W. F. Parks, and Edward B. Hale
Physics Department and Materials Research Center, University of Missouri-Rolla, Rolla, Missouri 65401

(Received 23 July 1973; revised manuscript received 21 March 1974)

The model commonly assumed to explain the narrowing of the ESR spectra of donor impurities in

germanium is examined in detail. This model combines the Anderson line-narrowing theory with the

Miller and Abrahams theory for the phonon-induced tunneling (hopping) of an electron between

impurities. The predictions of this model are found to be in drastic disagreement with experimental

results now available. It is shown that the narrowed linewidth should depend strongly on donor

concentration, acceptor concentration, and temperature. Future spin-resonance experiments in highly

compensated samples may show the effects of hopping, but no evidence now exists which indicates that

hopping is influencing the narrowing of the ESR spectra.

I. INTRODUCTION

It has been well established that shallow-donor
electron-spin-resonance spectra in semiconduc-
tors become narrower with increasing donor con-
centration and temperature. ' " To explain the
observed narrowed linewidth, the narrowing equa-
tion of Anderson""

has often been used. Where ~ is the line breadth
(equal to one-balf the linewidth at half-maximum},
(Hm), „ is the mean-square spread of the non-nar-
rowed spectrum from its center, and, for motion-
al narrowing, co is the averaged transition rate
between hyperf ine states.

This paper considers in detail the motional nar-
rowing which would result from the so-called
"hopping" mechanism. This mechanism is the
phonon-assisted tunneling of an electron from an
occupied donor to an unoccupied donor. In this
process, the hyperfine state changes because the
electron moves to a different donor nucleus. If
the average hopping transition rate, ~~ is suffi-
ciently fast, the observed spectrum will be nar-
rowed to a single line, whose breadth is given by
Eq. (1.1) with m =m„.

The narrowed donor spectrum in germanium was
first observed in 1959 and was attributed to mo-
tional narrowing. ' It was later proposed that the
hopping model of Miller and Abrahams" described
this motion. Linewidth data in various semicon-
ductors has subsequently been analyzed' """""
using Eq. (1.1) and various forms for &u~ which
were nonrigorously adapted from the hopping mod-
el. The purpose of this paper is to clarify how

hopping will influence the spectra. In particular,
the theoretical linewidth is determined as a func-
tion of the system parameters, such as tempera-

ture, donor concentration, and acceptor concen-
tration. This is done by computing +„using the
appropriate rigorous expression derived within
the framework of the Miller and Abrahams model ~

This derivation is carried out in Sec. II. In Sec.
III the calculations are compared with the data.
Discussion and conclusions are presented in Sec.
IV. This research was motivated by the consider-
able confusion, which has existed for about ten
years, over how the ESR spectrum would be in-
fluenced by the hopping motion. As will be shown,
it appears that the effects of hopping on the spectra
have not been observed.

II. CALCULATION OF THE AVERAGE

HOPPING TRANSITION RATE

A. The model

In the Miller and Abrahams model" the crystal
is a group-IV semiconductor with dielectric con-
stant Kp It is doped with a random distribution of
ND donors and N~ acceptors. The compensation
ratio, K =N„/ND, is less than unity implying that
ND-N„donors are occupied and N„are vacant at
low temperature. The ground state of a given do-
nor is perturbed by the electric field of the nearest
negatively charged acceptor. If the unperturbed
ground-state energy is taken as E =0, then the
ground-state energy of tbe ith donor is E, =e'/
(gg, „},where r,„is the distance from donor i to
the nearest acceptor.

If the donor concentration is sufficiently high,
an occupied donor i and an unoccupied donor j may
interact because of the overlap of their wave func-
tions. They would form a hydrogeniclike molecu-
lar ion except for the perturbation due to the near-
est acceptor, which tends to localize the electron
on the lower-energy donor site. A change of state
involves a phonon with energy ~,.~ =F, —F.„and the

10 S14



10 EVALUATION OF A MODEL FOR THE CONTRIBUTION OF. . . 815

transition of an electron from donor site i to don-
or site j.

To determine the breadth of the motionally nar-
rowed line from Eq. (1.1), the average transi-
tion rate for an electron, &„=~, must be deter-
mined. If tJ, is the electron transition rate from
donor i, then +„may be obtained by averaging U,
over the electron ensemble. In essence, this is
an average over the occupied donors and thus,

(2.5}exp[-JS I - 5 )]
1++8 exp[-p(E,' —g, )]

'

where F.,". is the energy of the electron in the a
state on donor i. The Fermi energy g, is obtained
in Appendix A in the case where the temperature
is sufficiently low so that the excited donor states
are unoccupied.

~8= Qf&r
t=I

gf(,
s=1

(2.1)

ND

U, =Q 1 —I f)e;,=I', te„,
j=l 6 j=1

(2.2)

where U, j is the transition rate from i to j if i is
occupied and j is not and W, j is defined by the

equation.
The transition rate between donors for phonon-

induced tunneling has previously been calculated
to be

where fp is the probability that the state cf on don-
or i is occupied by an electron. The average is
performed only over the ground state, i.e., (2 =0,
because we are only cnncerned with narrowing of
the ground-state hyperfine interactions. (In the
temperature range of interest, most of the elec-
trons are in their ground state and there are few

phonons available to produce hopping into excited
states. )

The total transition rate from i is a sum over all
the transition rates to the various final states on

the vacant donors. That is,

e
U, =U(E, ) =4vNn dr dn. r'G(b, )W(E„r, n},

0 "b,-
(2 8)

where the integration over Q has been performed
and the 8 integration has been changed to one over
~ by use of the normalized distribution function

G(n) with limits n and a' (see Appendix B).
To evaluate the sum over i in Eq. (2.1) it is con-

venient to sum the donors according to their var-
ious ground-state energies E, and to introduce a
density of states E(E,}. If a Poisson distribution
for the separation r,„of a donor and its nearest
acceptor is assumed, then EN', ) has the formaa

SE3
y'(E )

— A e (eg/e() 8-
where „E=e'/z Aa„ndaB„=(3/4vN„)'

(2.7)

C. Distribution of the impurities

One may convert the summations in Eqs. (2.1)
and (2.2) to integrals by assuming a random geo-
metrical distribution for the donors. Consider a
coordinate system with the origin at the donor i
and with g axis along the r, „direction. Then Eq.
(2.2) becomes

where

1 rs/2~ -2v )j/a
(I e 8z,f)- (2.3) D. Formal expression for the average

hopping transition rate

1 E, 2e 1 ga
(2 4)

B w p,c'8 Sk,a' n 4[a8/I)' —1]

Here, p0 and c are the density and speed of sound

in the crystal, EI is the relevant deformation-po-
tential constant, a and 5 are the transverse and

longitudinal radii of the donor wave function, and

r, f is the distance separating donors i and j. (In

the past (d„has often been taken to be U, j with r,.j
set equal to the average donor separation and ~,j
presumably determined by fitting to a few data
points. )

Combining Eqs. (2.1) through (2.3)-(2.7), (BS),
and (B4), one obtains

12vN
d

E'„e &e~/e)'[I, l)+I, (E)]
" B(1-Z), E4 I +e8i' &.)-

where

(2.8)

e /aoe 6f nG(n)r7/ae 2/ae-
~-8~ 1+ —8(a-~-g~&

I

(2 8)

B, Electron statistics

The distribution of electrons and vacancies on

donors is embodied in the f, function. By consid. -
ering the detailed balance equation, Miller" found

fa 40
n, G (a )r &/2 e -2e /a

2( ) ~ (I e-86)(I +e-8(e-6-ga))

(2.10)
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Equation (2.8) represents the formal expression
for the average transition rate obtained by consid-
ering ground-state hopping in the Miller and Ab-
rahams model.

Equation (2.8) may be solved by various approxi-
mations or by numerical techniques. Since most of
the data has been taken in the low-compensation
region, ' "a low-K approximation of this equation
is developed below.

R~"63.6a
(2.11)

With this low-K approximation, one obtains by
integrating over g and r

„=D, a,rf aE
0

(2.12)

where D =4v(a/2)~~2I'(9/2)/B. (A small term in-
side the integral proportional to I'(9/2, e'/z~)
I'(9/2) has been dropped. ) Analytical approxima
tions to solve Eq. (2.12) are presented below.
(Numerical solutions of Eq. (2.12) do indeed justi-
fy the use of these approximations. "}

2. Low-temperature and high-temperature
approximations for io~-E

For low T, the product of the electron distribu-
tion functions in the integrand of Eq. (2.12) is
sharply peaked at E = g . Thus, evaluating E(E) at
&~, integrating over E, and inserting the low tem-
perature g, given by Eq. (A.2) yields

E. Low-compensation approximation fer
the average hopping transition rate

1. Lo~-E approximation va)id for
all temperatures

Consider the integrations over r and & in Eq.
(2.8). It can be shown that the integral f, (E) domi-
nates "W.hen the length of the interval (g —A, }
is smaller than ksT, then the A/(I -e s~) function
is slowly varying in the range ~, &Q~Q] and is
approximately ksT. The criterion for (a' —A )
«k~T is3'

which is valid if" T «T, -E„/(10.6ks[-ln(1 -K)]+').
For high temperatures, the product of the two-

electron distribution functions may be considered
slowly varying when T» T,'=0.66 E„/ks. Then,
E(E) is sharply peaked at E, = (3/4)'~'E„, and the
other function of E can be removed from the inte-
gral and evaluated at E Eo If the high tempera-
ture g from Eq. (A5) is used, the result is

(o„=DN„(ksT ) . (2.14)

III. COMPARISON OF THEORY AND EXISTING DATA

A. Hopping as the only narrowing mechanism

Combining Eqs. (1.1), (C3}, and substituting the
low-T, low-K approximation for ~„as given by
Eq. (2.13), one obtains for the theoretical linewidth

Note that the temperature is high in the sense
that the product distribution is not sharply peaked
at E =g . However, it is low in the sense that most
electrons are still in the donor ground states.

F. Physical interpretation of results

For low compensation, ~„depends on tempera-
ture and impurity concentrations as given in the
important Eqs. (2.13) and (2.14). A review of the
derivation of these equations shows that the ND,

N„, and T dependences were primarily determined
by three features discussed below.

The phonon involvement [term in large paren-
thesis in Eq. (2.3)], along with the transition ma-
trix element, leads to a linear temperature de-
pendence, i.e., a k~T factor, in both the low- and
high-temperature cases. This occurs because the
integration over the impurity distribution function
[Eq. (2.7)] restricts the vacant donor to be near
the occupied donor and far from the acceptor when
the compensation is low, i.e., the integralI, can
be neglected in Eq. (2.8). In the I, integration, a
"high-temperature" phonon approximation is valid
and yieMs a k~T factor.

In the low-temperature approximation, the tran-
sition rate is limited by the number of available
initial states since only those electrons in an energy
interval of k~T at the Fermi energy can hop. To
first order, the density of available occupied do-
nors is NoEQ, ,}ksT, which is equal to SN„ksT/Ec
by Eq. (A2) and (2.7). This result, when combined
with the phonon involvement, yields the dependence
shown in Eq. (2.1S).

In the high-temperature approximation, the tran-
sition rate is limited by the number of available
final states, i.e., the N„vacant donors. This re-
sult, when combined with the phonon involvement,
yields the dependence shown in Eq. (2.14).

a =3D&~ (k~T )'

D
(2.13) 8ve'gg„[~ +~I(I + I )H', ] N~&~

(3 I)
9DWSg N„gr T)
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1. Donor concentration dependence

If the acceptor concentration is assumed to be

nearly constant, as one would expect for samples
with no deliberate acceptor doping, the theory pre-
dicts that Md, ~1/Re. The data in Refs. 1, 2,

and 4 show that the observed linewidth (~,„,) in-

creases exponentially with R~ for lightly doped

samples. Thus, the theory of hopping does not

predict the proper donor dependence.

constant
~exp

(3.2)

The constant is derived for different donors from
the information in Table I of Appendix C.

A conversion of the data in Refs. 2 and 4 has
been done and results are plotted in Figs. 1 and 2.
Each data curve shows that e„ is nearly linear in
T for these data. However, since the samples

2. Temperature dependence

For temperature-dependence comparisons, it is
convenient to convert the ~,„~ data to frequency
values „, where ~~ is defined as the experimen-
tally observed narrowing frequency and obtained

from experimental data as

(2/~&) gg, [~',+~f(f+1)H',]
N bBexp

were not compensated, T «T, and Eq. (2.13) pre-
dicts that ~„should be quadratic in T. In addition,
the positive T =0 intercept for ~„ is inconsistent
with the theory.

3. Acceptor concentration dependence

For low K, ~ should have a N„' dependence.
Since previous forms for ~ did not really consid-
er the influence of acceptor concentration, virtual-
ly no data exists. However, consistency of results
from different laboratories suggest no strong N„
dependence for low K.

B. Combined exchange and motiona1 narrowing

From the previous remarks it is clear that if
hopping is contributing to the narrowing, it cannot
be the only narrowing mechanism. Some other
mechanism must be present. Furthermore, the
second mechanism must be dominating the hopping
mechanism since the data clearly show a donor
dependence, temperature dependence, T =0 inter-
cept and apparently lacks an acceptor concentra-
tion dependence for low K.

Other authors" '" have investigated the prob-
lem of donor ESR spectral narrowing by assuming
that exchange is the narrowing mechanism. Since
the exchange mechanism could cause many of the
observed features, ""'"combined exchange and
motional narrowing have been considered.

Appendix D shows that if exchange was the domi-
nant mechanism, then the total predicted narrow-
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cg,~ xtA

02 T
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FIG. 1. Plot of ~z vs temperature for arsenic-doped
germanium. Data are calculated from Ref. 4, where
the donor concentrations were given as {1)3.4x 10 6

cm 3; (2) 4.6x 10 ~ cm ~ (3} 7.0x 10 ~ cm 3; and (4)

1.8x10~~ cm 3.

0
0 4

T('K)

FIG. 2. Plot of ~z vs temperature for phosphorus-
doped germanium. Data are from Ref. 2 with &D
=Sx10"cm '.
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ing frequency would be

(3 3)4)~ =4) +(d g y

where v, =J/if is the exchange frequency. Without

precisely calculating J', some conclusions can be
drawn concerning this result by supposing that the
T =0 intercept of an &„vs T curve is ~, . Substi-
tution of ~„(T=0) values for &u, and the low-T,
low-K expressions for &o~ [Eq. (2.13)] yields

&ur =~~ (T =0)+CN„T'/Nn ', (3 4)

where C is a constant.
Upon comparison of ~~ with the ~~ data in Figs.

I and 2, it appears unlikely that hopping is causing
even the temperature-dependent part of &~ since
the temperature-dependent data does not appear to
be quadratic in T. Even if an attempt to fit Eq.
(3.4) to the data in Fig. 1 is made, the unlikely as-
sumption that N„ increases with N~" is necessary.

Also, a combination of exchange and hopping
narrowing does not predict the effect observed in
a compensated sample. Data' on an N~ = 1.2 ~ 10"
cm ' and K =0.4 sample showed that narrowing de-
creases with increasing N„and constant N~ and T.
This data is compatible with exchange narrowing.
However, it is not compatible with the fact that
hopping should increase with increasing N„and
should eventually dominate the exchange narrow-
ing. [Using Eq. (1.1), the parameters for Ge(As)
as given above and in Table I, and computer cal-
culations for co„without the low-K approximation, "
one finds that, at T =I'K, ~„=6.7&IO'sec ', while
at T =2'K, co~=4.9X IO' sec '. This means that
significant narrowing should have been observed
at all but the lowest of temperatures. ]

IV. DISCUSSION AND CONCLUSIONS

This work was initiated because several non-
rigorous theoretical treatments have been invoked

C. Best conditions for observing

motional narrowing effects

There seems no reason for believing that hopping
is not a valid physical process. Indeed, it has
been used to explain the resistivity of semiconduc-
tors at low donor concentrations. " Furthermore,
the change of hyperfine state that accompanies
hopping could affect the ESR spectrum. Our re-
sults indicate that the influence of hopping should
be sought in samples with low donor concentration,
at low temperature, and with moderate compensa-
tion (fr=0.5). The low Nn ensures validity of the
Miller and Abrahams hopping process. The low T
keeps most donor electrons in the ground states.
Moderate compensation is needed to obtain an ap-
preciable value for (d„.

to "determine" if hopping was producing line nar-
rowing in doped semiconductors. Most previous
workers, "~"believed that the averaged hopping
transition rate was

~,=&„(R„a)= R,—' e ~~', , (4.l)

which is actually an unaveraged transition rate be-
tween one particular pair of donors separated by
an average distance Rn [see Eq. (2.3)]. The quan-
tity b, (actually 6,&) was referred to as the "acti-
vation energy for hopping. " (Once, "b, was re-
placed by the activation energy for impurity con-
duction. ) Also, we note that, in effect, a high
compensation ratio is tacitly assumed. In addi-
tion, when the above &u„was used in Eq. (1.1},
values other than the precise Aff and (H'),„were
used. (See Appendix C.)

Equation (4.1) seems to agree with the data be-
cause of (i} its almost exponential dependence on
Rn, (ii) a value of 6=0.34-0.54 meV fits a range
of the data, ' and (iii) a & 0 yields an &u„o0 at T =0.
However, there are numerous reasons why the
theoretical basis for Eq. (4.1) is not very satisfac-
tory. First, an ensemble average was not taken.
Second, there is no Ã„dependence since the dis-
tribution of electrons was not used. Third, the
distribution of impurities was not used. Fourth,
only excitation due to phonons at one frequency is
involved. A more detailed critique of Eq. (4.1)
has been given elsewhere. "

Recently, ' rather extensive data in Ge(As) has
been taken. It was concluded that electron motion,
which would include phonon-induced tunneling, is
not an effective narrowing mechanism. This con-
clusion, however, was based on the belief that +„
should be proportional to an exponential function
containing an activation energy. As we have not-
ed, neither Eq. (2.13) or Eq. (2.14) predict an ac-
tivation-energy dependence.

In summary, the motional narrowing frequency
due to hopping has been calculated [Eq. (2.8)].
For low compensation ratios, this frequency can
be reasonably approximated by the low-tempera-
ture result [Eq. (2.13)] or the high-temperature
result [Eq. (2.14}]. These latter two equations ex-
plicitly show the dependence on donor concentra-
tion, acceptor concentration, and temperature.
The origin of these dependences has been discussed
and is now well understood. For many years, all
three of these dependences were presumed to be
entirely different.

Vfith our new understanding, we have been able
to conclude that: (i) hopping is not the only mech-
anism causing the line narrowing; (ii} hopping in
combination with exchange does not agree well with
the existing data; (iii) at this time there is no good
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evidence that hopping is influencing the spectrum
at all; (iv) to search for hopping effects in ESR
spectra one should look at low temperatures in
samples with low donor concentrations and moder-
ate compensation ratios.
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APPENDIX A: CALCULATION OF THE
GROUND-STATE FERMI ENERGY

Equation (2.5) is used to define the Fermi energy
in terms of N„, ND, and T or, equivalently, in
terms of E„,K, and T. The defining equation may
be written as"

The criterion for validity of this procedure is"

T» ' " (1-K) T='c.
0.66K„

k~

For N„=10'" cm ' and NO=10" cm ', T, =300 'K
and T,'=5 'K.

APPENDIX B: CALCULATION OF THE 6
ENERGY DISTRIBUTION FUNCTION

The purpose of this appendix is to find a G(b, ,&)

such that the special integration over 8 discussed
with Eq. (2.6) will be converted to one over 2G(a„)
dh, &. Here G((22, &) is a normalized distribution of
values of ground-state-energy differences ~,&

if
the separation of donors i andj is r, &

and the
ground-state energy of donor i is Z, =e'/x, r,„.
Now the relation for this variable change may be
written as

E(E)dZ
1 - &(&-cg) &

+() +e
G(h, &}=-, sin8 =-—,0&8&v.

d8 1 d(cos8)
d~~ 2 d z) (Bl)

where E(E}is the density of states given by Eq.
(2.7). Equation (Al) may be solved numerically if
a numeric solution of Eq. (2.6) is needed. " How-
ever, it may also be solved analytically, using
certain approximations which are also used in the
evaluation of ~„ in Sec. IIE.

In the analytical calculation, two approximations
may be made. The first is the low-temperature
approximation as considered by Miller and Abra-
hams. " They integrated Eq. (Al) once by parts
and considered the resulting product of electron
distribution functions, [[I+e t&&][I+e i ~&&]]

to be sharply peaked at E =g, . Their results were

[- ln(1 -K)]2

Thus, if a relation between cos8 and ~,~
can be

found, G(b, ,~) may be calculated.
Although G(a,&}=G(a,j, r, &, Z, ), in the present

calculation r, &
and E, can be considered as fixed

constants. The fixing of these parameters fixes
the two sides (r, ~ and r, „)of a triangle formed by
i,j, and the nearest acceptor A. A relation be-
tween ~,&

and 8 may then be written as

'1 1

r,„(rr',~-2v', ,„„r,~2222}' ')'.
by use of the law of cosines. Hence, with Eq. (Bl)
and the value for 8 from Eq. (B2), one may write,
dropping the subscripts,

It can be shown" that the first equality in Eq. (A.2)
is valid for all K if

e'
G(A) =

2 Z2 [I ( /Z)]32 (BS)

10.6ks[-ln(1 -K)) i'

The second equality of Eq. (A2) is valid in the low-
T limit if the compensation is low.

In the higher-temperature limit, the [1+e 8' ~~&]

function can be removed from the integral in Eq.
(A1) and evaluated at Z, = (2/4)'~'Z„ if E(E) is con-
sidered sharply peaked at Z, Integrati. ng E(Z),
one then obtains

where ~ corresponds to 8 =0 and ~' corresponds
to 8 =v. If 0&r&e'/z, Z, then

-Zr Zr
[(e'/x, Z) r] ' ' [(e-'/~, Z) +r] ' (B4a)

If e'/zoZ &r&~, then

-Z[2e'/K, Z ) r], -Zr
r e'/aoZ '— ' [(e'/v, Z )+ r] ' (B4b)

1
1 +e-@04-&g) '

Thus,

g =E, +k~T ln
(1 -K)

(A4)

5)

APPENDIX C: CALCULATION OF THE MEAN-SQUARE

BREADTH OF A NON-NARROWED SPECTRUM

The (H'),„quantity may be calculated by using a
normalized probability distribution, P(F}, which
describes the shape of the non-narrowed spec-
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TABLE I. Data on the non-narrowed ESR spectra of
various donor impurities.

APPENDIX D: LINEWIDTHS IN THE PRESENCE

OF EXCHANGE AND NOTIONAL NARROWING

Doping
element As

Germanium ~

Bi

The width ~~ in frequency units of a narrowed
line in the theory of Anderson and gneiss" and
Anderson" is the coefficient of 7 in the expression

(H2),„(Oe ) 1.63x 10 9.05x 10 1.35x 10

Computed from data in Ref. 1. The data for Ge(Sb)
are complicated by strain effects (Refs. 1, 2, 34, 35).

-(ff -mH, )2

(m odd)

trum. " The n =2I+1 donor lines are assumed to
be equal in strength and of the same Gaussian
shape with a mean-square spread of ~„and reg-
ular interval spacing of 20, . Hence, a normalized
distribution for this spectrum can be written as

7

—,'(X'),„=(&u'),„(7—t)p~„(i)dt .
0

Here, (e'),„ is the average square spread of the
non-narrowed frequency spectrum and P~ (t) is
the correlation function of the random modulation.
If exchange narrowing and motional narrowing are
independent effects and hence additive,

(f) e($rN@t -ltlgk) 2)

where to, J/8'is the exchange frequency and &u„ is
the motional frequency. For —,

' e,rv ~» I, then

—,'(X'),„=A+ ~'" e ~ ~' erf(&up~, em),

where H is measured relative to the center of the
spectrum. Thus

(H') =J H'Pill„)dH

where A. is independent of 7. Thus, in magnetic
field units,

""e'&~ "~"erf(~g&u, Wm) .
g~e +~e

N j.
= (~.)'+— nz Ho. (C2)

m=1 3 5

Performing the summation over m with n = 2I+1,
one obtains

(H'),„=(off,)2+ & I(I +I)H', .

Table I shows values of (H')., for isolated donor
ESR spectra computed from Eq. (CS). In most
cases the (M, )' term can be neglected except when
I=—12 ~

When exchange narrowing dominates, i.e.,
(d|/(d 1/7I'(( I,

gp, (H'),„
a(~, + ~gv)'

gPB (&')av
8 (&u„+s(u,'/(u„)

' 6)

while, when motional narrowing is dominant, i.e.,
(ug(o, Wm» I,
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