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ANALOGY BETWEEN SPINODAL DECOMPOSITION AND MARTENSITIC 
TRANSFORMATION* 

TETSURO SUZUKIt and M. WUTTIG$$ 

The trensletion of the theory developed for the spinodal decomposition of 8 supercooled alloy to the 
language appropriate for the martensitic transformstion is c8rried out. In the spinodal theory. the 
stability of the alloy with respect to the composition fluct,uation is examined, while in the present theory 
the stability of the crystel with respect to the sheer displacement fluctu8tion, the transverse phonon, is 
studied. The analogy to the spinodel theory requires the revival of the strain gradient energy term or 
the couple stress term, the presence of which has been 8 subject of controversies for 8 long time since 
L8V81. 

A simple model lattice with the bond bending and stretching interaction is const,ructed 8s an instrument 
to study numerically the stability of the lattice with respect to the she8r displ8oement 5uctuation. The 
results of the numermal investigation indicate that the simultaneous presence of the anharmonic strain 
energy term 8nd the strain gradient energy term is required to trigger the mertensitic transformation. 

ANALOGIES ENTRE LA DECOMPOSITION SPINODALE ET LA TRANSFORMATIOS 

MARTENSITIQUE 

On 8 treduit la theorie de la decomposition spinodsle d’un alliage surfondu en des termes adapt& 8 la 
trensform8tion m8rtensitique. D8ns la theorie de 18 decomposition spinodale, on Btudie 18 smbilite de 
l’alliage per rapport 8ux fluctuations de composition, slors que dans oette theorie, on Btudie la stabilite 
du cristal par rapport aux fluctuations de 18 cission, c’est 8 dire aux phonons tmnsverses. L’analogie 
evec la theorie de la decomposition spinodele implique que l’on reprenne en compte le terme du gradient 
de deformation ou de 18 contra&e couplb dans l’energie, terme dont 18 presence avait fait I’objet de nom- 
breuses controverses depuis Laval. 

On construit un modele simple de r&au avec des liaisons de flerion et de tension pour Studier numeri- 
quement la stebilite du r&au par rapport 8w fluctuations de c&ion. Les I$sultclts des e8lculs numeri- 
ques montrent que la presence simultsnee dans I’energie des tennesde de formation 8nh8rmonique et 
de gmdient de deformation est neoesssire pour declencher la transformation martensitique. 

ANALOGIE ZWISCHEN SPINODALER ENTMISCHUNG UND MARTENSITISCHER 

UMWANDLUNG 

Die fur die spinodale Entmischung unterkiihlter Legierungen entwiakelte Theorie wird auf die merten- 
sitisohe Umwendlung tibertnrgen. In der Spinodalentheorie wird die StabilitBt der Legierung in Bezug 
auf Kompositionsfluktuetionen untersucht; in der vorliegenden Theorie wird d8gegen die StcLbilit&t des 
Kristslls in Bezug auf die Schenmgs5uktutationen. n&r&h die transveraelen Phononen, betrachtet. 
Die Anelogie zur spinodelen Theorie erfordert die Wiederbelebung des Energieterms des Dehnungs- 
gradienten oder Paerspannungsterms, dessen Existenz seit Level Gegenstend van Kontroversen ist. 

Es wird ein einf8ches Modellgitter mit Biege- und Dehnungnwechselwirkung konstruiert, urn die 
Stabilit&t des Gitters in Bezug auf die Schenmgsfluktuetionen numerisch untersuchen zu konnen. Die 
Ergebnisse der numerischen Untersuchung zeigen, da5 die gleichzeitige Gegenwart des anhsrmonischen 
Dehmmgsenergieterms und des Energieterms des Dehnungsgradienten erforderlich ist, urn die merten- 
sitische Umwendlung euszulosen. 

1. INTRODUCTION 

The purpose of the present paper is to present the 
t,ranslation of the theory developed for the spinodal 
decomposition of a supercooled alloy to the language 
appropriate for the martensitic transformation. The 
theory developed by HillerG and Cahn(e) aims at 
establishing a relationship between the two modes 
of t,he decomposition process of binary alloy, i.e. the 
fluct.uation mechanism and the nucleation and growth 
mechanism. The present model is based on the analogy 
between the spinodal decomposition and the marten- 
sit,ic transformation and is developed to serve the 
same purpose for the relationship between the two 
mechanism of the martensitic transformation, i.e. the 

soft phonon mechanism(s-B) and the nucleation and 
growth mechanism.(7) 

* Received May 4, 1974; revised February 14, 1975. 
t Department of Physics, Yokohama City University, 

Yokohama 236, Japan. 

As shown by the work of Hillert and Cahn, the 
spinodal decomposition can be understood as the 
phenomenon associated with the instability of com- 
position fluctuation in supercooled alloys. The 
martensitic transformation can be described as the 
phenomenon associated with the instability of the 
parent lattice with respect to a finite deformation in 
supercooled metals and alloys. In this paper, the 
authors wish to draw attention to the close analogy 
between the spinodal decomposition and a certain 
feature of the martensitic transformation. The 
qualification ‘a oertain feature’ has to come in because 
of t,he following situation. The treatment of the 
spinodal decomposition by Hillert and Cahn is 
essentially macroscopic in the sense t’hat the free 
energy density is defined in terms of the thermo- 
dynamical variables, the local concentration of the 
component’ and its gradient,, without reference to the 

$ Department of Met8llurgical Engineering. University of 
Missouri at Rolla, Rolla, Missouri 66401, U.S.A. 

5 Supported by the American Iron and Steel Institute, 
Project No. 62-261. 
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atomic structure of the alloy. If we wish to develop 
a close analogy between the spinodal decomposition 
and the martensitic transformation, we have to 
restrict our discussion to the features of the martensitic 
transformation which can be defined by a macroscopic 
quantity, i.e. the deformation parameter which 
describes the deformation of the unit cell. In short, 
the present treatment is limited to the examination 
of the stability of the acoustic branches of the phonons. 

2. ANALOGY BETWEEN SPINODAL DECOM- 
POSITION AND MARTENSITIC TRANS- 

FORMATION 

2.1 Deformation parameter 

In this section, a parameter E, which describes the 
progress of the deformation process of the parent 
phase during the martensitic transformation, is 
defined. The Kurdjumov-Sachs(a) or Nishiyama’@ 
relationship between the lattice vectors bl, b2, 4 of the 
martensitic phase arid the lattice vectors q, aa, a, of 
the parent phase suggests the linear transformation T, 

bj = Tai (i = 1, 2, 3), (1) 

between h, aa, a, and bl, bz, b3. This transformation 
becomes unique if the assumption of the smallest 
distortion proposed by Jaswon and Wheeler(lO~ is made. 
They show that the linear transformation thus 
determined is very favourable in explaining~ the 
observed habit plane in iron-carbon alloys. More 
elaborate and accurate procedures to determine the 
linear transformation are described by Wayman, 
Christian(u) and others. It is assumed here that the 
linear transformation T is already given by one of 
these procedures. 

We now introduce a scalar parameter describing 
the progress of the transformation process as follows: 

b: = a, + e(Tai - a,) (i = 1, 2, 3). (2) 

When E = 0, the three vectors br’, ba’, bx’ represent 
the original undeformed unit cell. When E = 1, these 
three vectors represent the unit cell of the marten&tic 
phase. It should be noted that there is no a priori 
reason that the intermediate phase described by 
br’, ba’, ha’ of equation (2) should give the actual 
crystal structure during the transformation process. 
For example, the martensitic transformation of 
sodium starts as a pure shear deformation in the ( 110) 
plane in the [ITO] direction of the body centered cubic 
phase.ua) The linear transformation as defined by 
equation (1) does not represent this shear deformation. 
It is thus necessary to take into account the functional 
dependence of T on E 

b:(e) = a, + e{T(e)ai - ai} (i = 1, 2, 3). (3) 

In the limit of E = 1, T(e) should be equal to T in 
equation (1). On the other hand, in the limit of E = 0, 
T(E) should represent the pure shear deformation in 
the (110) plane in the [ITO] direction for the marten- 
sitic transformation in sodium. Theoretical investiga- 
tions of the functional dependence of T(E) on E may 
be carried out by finding the minimum free energy 
path between the parent and martensitic phases. In 
this paper, T(E) is assumed to be known at least in 
the limit of E = 0. Then, thk Gibbs free energy per 
unit undeformed volume of the crystal g(e) can be 
written down for the hypothetical uniform deforma- 
tion, which is specified by the parameter e as follows: 

g(e) = C.# + &&a + C,&4 + . * . . (4) 

As the parameter E specifies the uniform deformation 
of the crystal, the expansion coefficients C,, C, and C, 
are given in terms of the linear combination of the 
second order elastic constants, second and third order 
elastic constants, and second, third and fourth order 
elastic constants, respectively. The free energy density 
g(e) given by equation (4) should have two minima, 
one corresponding to the undeformed lattice (E = 0, 
parent lattice) and another one corresponding to the 
deformed lattice (E = 1, martensitic lattice). The 
latter minimum should be deeper than the former at 
the starting temperature of the martensitic transfor- 
mation M,. 

2.2 Exprekcm for free energy 

The free energy G of a system which undergoes the 
phase transition is expanded in terms of a proper 
order parameter 7, in the vicinity of the transition 
point, as follows 9) 

G = Atf + Bq= + $14 f . . . t (5) 

where the expansion coefhcients A, B and C are 
functions of the thermodynamical variables such as 
pressure and temperature. However, in the vicinity 
of the transition point, the variation of A is most 
important in determining the overall characteristics 
of the dependence of the free energy G. As..uming B 
and C remain constant, the variation of G against the 
order parameter q is plotted in Fig. 1. If the cubic 
coefficient B is zero, the value of the order parameter 
which corresponds to the minimum of the free energy 
Q will change continuously, as the sign of A changes 
from plus to minus, as shown in Fig. l(a). If the 
coefficient B is not zero, the free energy G poaeesses 
two minima and the discontinuous transition from 
one value of the order parameter (17 = 0) to another 
(q = ql) occurs at a certain value of the thermo- 
dynamical variables, as shown in Fig. l(b). The 
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FIG. 1. The free energy Gas a functionof the orderparam- 
erer w shown for different values of the second order ex- 
pansion coefficient A, keeping B and C constant. (a) In 
the wwntl order Dhase transformation IB = 01. the value ,. 
of the order para-meter q, which corresponds t,o the mini- 
mum of t,he free energy G, changes continuously with ‘the 
dcweaxe of -2. (b) In the first order phase transformation 
(B # I)). it jumps over discontinu&sly from one value 

(71 = 0) to a finite value (7 = Q). 

coexistence of two differgnt, phases, the transformed 
phase (q = ~7~) and the untransformed phase (17 = 0), 
is another important characteristic of the first order 
phase transition. The first order transition is charac- 
t,erizad by (1) t,he discontinuity of the change of the 
value of t’he order parameter (and 2) the non-uniform- 
it,p of t,he progress of the transition process in the 
system 

An expression which explicitly takes into account 
the dependence of the order parameter on the position 
has already been developed by Cahn, in his systematic 
study of the spinodal decomposition of a binary 
alloy. Here, the relevant order parameter is the 
composition c of the alloy. Cahn(a) writes down the 
Helmholtz free energy of an alloy in terms of the 
Helmholt,z free energy per unit volumef(c) and of the 
term am, which expresses the incipient surface 
energy due to the introduction of the composition 
fluctuation, a8 follows : 

F = 
s 

[f(c) + #C)2] dV. (6) 

The free energy G of a system which undergoes the 
first, order phase transition is expected to be described 
by an analogus expression, 

G = Edrl) + yPy)“l df’ s (7) 

in&ead of equation (5), which is valid only for the 
second order phase transition (B = 0). Here, g(q) is 
the density of the free energy instead of the total free 
energy of the system. 

We seek to find out the literal translation of the 
above expression equation (6) applicable to the 
martensitic transformation or the proper interpreta- 

tion of the general expression equation (7) suitable to 
the martensitic transformation. The translation of 
the composition c to the deformat.ion parameter E 
looks self-evident. The Gibbs free energy per unit 
volume of the undeformed crystal is already given by 
equation (4) in terms of the elastic constants and the 
deformation parameter E. Then, we are confronted 
with the problem of finding the meaning of t.he term 
which is given in terms of the gradient, of the deforma- 
tion or strain parameter. The standard elasticity 
theory does not include the strain gradient energy 
term, although the presence of such term has been a 
subject of controversies for a long time since Laval(15’ 
brought up the issue in 1951. TruesdelP) has insisted 
that there is no rational reason to reject the presence 
of such a t,erm, which implies the presence of the 
couple stress besides the ordinary stress in the crystal. 
The importance of such a term in the problems of the 
molecular crystal and of the crystal surface was 
pointed out by Krumhansl,c171 Toupin and Gazis,(18’ 
respectively. 

In the martensitic transformation, which accompany 
the appreciable deformation of the unit cell of the 
crystal, the transformation process is known to proceed 
with the propagation of the distinct interface between 
the deformed (marteneitic) phase and the undeformed 
(parent) phase. Accordingly, the introduction of the 
incipient surface energy seems to be permissible and 
at the 8ame time mandatory. Thus, the literal 
translation of equation (6) or (7) to the expression 
applicable for the total Gibbs free energy G of the 
crystal, which will undergo the martensitic trrtnsfor- 
mation, may be given as follows: 

G = IME) + y(V~)~l dV s (8) 

where g(E) is already given by equation (4). 

3. MODEL 

3.1 A model lattice with strain gradient energy 

A model of the bond stretching and bond bending 
used by KrumhansP) for a moleular crystal is 
adopted here for the study of the martensitic transfor- 
mation, because this model seems to be the simplest 
possible model which provides an expression for the 
free energy containing the usual strain energy term 
a8 well as the strain gradient energy term. 

The atoms in this model crystal are considered to 
have two kinds of interactions with their neighbors, 
one being the interaction dependent solely on the 
distance between them (bond stretching interaction), 
and the other one the interaction dependent solely 
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FIG. 2. A simple atomio model of the orystal, in which 
atoms have two kinds of interactions: (1) the bond 
stretchinn interaction with the nearest neighbors and (2) 
the bond bending interaction with the next&a&t neigh: 
bors. The martensitio transformation in this model 
orystal is accomplished by a planar shear deformation. 

on the angle between two bonds connecting opposite 
neighbors of a particular atom (bond bending inter- 
action). It is assumed that the two body interaction 
(bond stretching interaction) with nearest neighbors 
in the model crystal represents the strong interaction 
between neighboring atomic cores in metals and the 
three body interaction (bond bending interaction) 
with next nearest neighbors represents the non-central 
interaction in metals. The atoms are arranged .in a 
simple cubic lattice with the lattice parameter a as 
depected in Fig. 2. The increase of the interaction 
energy is calculated for the planar shear deformation 
as indicated by the arrows in Fig. 2. 

The increase of the sum of the two body interaction 
energy of an atom in the nth atomic plane with its 
nearest neighbor atoms in the (n + 1)th atomic plane 
is expanded in terms of the shear displacements 

where p, b and c represent harmonic, third order and 
fourth order anharmonic force contants, respectively. 
The leading term in the increase of the three body 
interaction energy of the same atom with its two next 
nearest neighbors is given by 

J7’3’ = J! (u 
n 

2 
n+2 + %I-2 - %J29 (10) 

where q represents a force constant associated with the 
bond bending interaction between next nearest 

neighbors. Equations (9) and (10) yield the total 
increase of the energy V of the crystal due to the 
planar shear deformation, 

v = 2 (Vf’ + v;‘), (11) 
n 

where the summation is carried over all atoms in the 
unit undeformed volume. When the deformation is 
very gradual, i.e. in the limit of the long wave-length, 
the differences of the displacement in equations (9) 
and (10) can be approximated in terms of the strain 
and its gradient as follows: 

U n+l - U,H $a+ g$P+... 

=Sd+;gd2+.... (12) 

(13) 

Here, d represents the distance between the neigh- 

boring atomic planes, i.e. d = a/%%. Hence, in the 
long wave-length limit, equation (11) reduces to 

It is assumed here that the dependence of the 
increase of the Gibbs free energy of the model crystal 
due to shear deformation on the temperature can be 
incorporated by supposing a proper temperature 
dependence of the force constants p, b, c and q, a 

simplified quasi-harmonic approximation.(lg) Then, 
it can be seen that the expression for the interaction 
energy of the atomic model given by equation (11) is 
formally equal to the expression for the free energy 
given by equation (8) derived from the analogy with 
the spinodal decomposition in the limit of long wave- 
length. As it is understood that the martensitic 
transformation in the model crystal is accomplished 
by a planar shear deformation depicted in Fig. 2, the 
strain S in equation (14) is proportional to the defor- 
mation parameter E in equation (8). For the choice of 
parameters b/p = 2.5 and c/p = 1.0, the free energy 
of this model crystal has two minima, one correspond- 
ing to the undeformed state and the other corre- 
sponding to the. deformed (martensitic) state. 
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3.2 Stability with respect to displacement jluctuations 

The stabilit,y of the model crystal described in the 
previous section-i is studied numerically with respect 
to t.he fluctuation of the displacement of various 
wave-length in the same way as in the discussions of 
the spinodal decomposition by Cahn. The fluctuation 
of the shear displacement in the present model is 
expressed by a normal mode transverse wave 

. u,, = A sin (cot - knd). (15) 

The equation of mot,ion for the transverse vibration 
of an atom in t,he nt,h atomic plane in Fig. 2 is given 
by: 

x 
[ 
1 + b (%+I - %__l) + ,’ ((%,I - %I2 

P 

. i- (%I+1 - %Jt%l - %I-I) + (u, - ~,-I)‘} 
1 

- q(Un+a - 4~,+~ + 6s - 4~~ + un4L (16) 
where m is the mass of an atom in the model crystal. 
Inserting the displacement given by equation (15) 
into (16) and negleoting the anharmonic term, we 
obtain the relationship between the frequency and the 
wave-vector of the phonon 

rno’ = 4p sin2 y + 16q sin’ k - d. (17) 

This expression gives the phonon dispersion curve 
for the small amplitude transverse vibration in the 
model crystal depicted in Fig. 2.$ The small amplitude 
dispersion relationship of equation (17) is plotted in 
Fig. 3 for the values of the ratio q/p used in the 
numerical investigation of the following section. As 
far as o in Fig. 3 is real, the model crystal is stable 
with respect to small amplitude vibrations. The 

t In the more reelietic model for the martensitic trens- 
formation than the present one, the deformation panrmeter E 
should depend on a plener she8r 8s well 8s diletationel de- 
fornnxtion persmeters. At the s8me time, equetion ( 16) should 
also include the enh8rmonio coupling term between the ehser 
deformstion 8nd dihxtationel deformetions. The present model 
represented by equation (16) 88 it stands is only the simplest 
one to study the signifiaenoe of the simult8neous presence of 
the 8nharmonio strain energy 8nd the strain gradient energy. 

z The phonon dispersion curve in Fig. 3 is for the shear 
weve propagating in the [ 1 lo] direction of the model cry&81 
in Fig. 2. For the shear w8ve in other directions of propsg8- 
tion, the dip in the dispersion ourve due to negative velue of 
2 appears in 8 different 8rea of the Brillouin zone. However, 
the dip elweys sppeers in some are8 away from the center of 
the Brillouin zone (k = 0), because the strain gmdient energy 
comes in only when there is 8 non-uniformity (k # 0) of the 
strain. 

IO 

I 
05 
k&m 

I 
IO 

Fm. 3. The small emplitude dispersion relationship for 
the transverse phonons in the model crystal shown in 
Fig. 2 is shown for the values of the ratio q/p wed in the 

numeric81 investigation shown in Fig. 4. 

condition that the right hand side of ‘equation (17) is 
positive can be interpreted as the martensitic equiv- 
alent of the stability criterion of a binary alloy, 
which is given by: 

9 + 2Xk2 > 0 

for the small amplitude composition fluctuation 

c-c s = A CO8 kz. (19) 

However, the assumption of the small amplitude is 
not necessarily adequate for the displacement fluctu- 
ation in the lattices. The average kinetic energy of the 
lattice vibration associated with a normal mode of the 
lattice vibration given by equation (15) is estimated 
by: 

ii&m - z = 2m.e A2 * cd * N. (20) 

Here, N is the number of atoms involved in the normal 
mode vibration. Because the average kinetic energy 
of an oscillator is equal to the total energy of an 
oscillator, which is given by the Bose-Einstein 
statistics, 

am - A2 . 
wo w2. N = - . 

1 

2 exp (Rw/kT) - 1 ’ 
(21) 

Especially for the lower frequency mode, it can be 
assumed that &_I < kT. With this approximation, 
the amplitude of a normal mode is estimated as 

(22) 

It is seen here that the amplitude of a normal mode 
of the lattice vibration is proportional to the inverse 
square root of the number of atoms N involved in the 
normal mode. Accordingly, the amplitude of the 
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normal mode which extends throughout the entire 
crystal is appreciably smaller compared with that of 
the localized normal mode of the same frequency. 
The spatial extent of some of normal modes in the 
actual crystal is inevitably confined because of the 
presence of various kinds of lattice defects, such as 
crystal surfaces, grain boundaries, dislocations and 
various point defects. 

The amplitude of the normal mode for N = 1022 
and w = 29~ x lO’/sec is estimated to be the order of 
lo-14 cm at room temperature. If N is limited to 
lOlo due to the presence of some defects, the amplitude 
will be enhanced to 10SB cm for the same angular 
frequency of the normal mode. Hence, it is expected 
that the amplitude of normal mode vibration is not 
uniform throughout the crystal, but is enhanced near 
the defects in the crystal. This expectation seems to 
be supported, at least for crystal surfaces, by the 
results of experimental and theoretical@‘) investiga- 
tions. Accordingly, the stability of the lattice must 
be studied with respect to the finite amplitude vibra- 
tion, retaining the third and fourth order anharmonic 
terms in equation (16). The study of the stability of 
the lat,tice with respect to a special finite amplitude 
vibration as to produce omega phase has recently 
been carried out by Cook.(*“*23) 

3.3 Triggering of m&en&tic twmformtion 

The temporal evolution of the initialiy sin&&da1 
lattice vibration in the model lattice specified by 
equat,ion (16) is studied numerically by use of an 
integration subroutine program for simultaneous 
differential equations available by the code RKGNI 
at the Tokyo University Computer Center. Although 
the details of the computation will be published 
elsewhere, the relevant results of the computation are 
summarized in Fig. 4. In each map in Fig. 4, the 
horizontal direction corresponds to the coordinates of 
atoms, i.e. the atomic plane numbers in Fig. 2, while 
the vertical direction indicates the shear displacement 
of atoms in each atomic plane. The computation is 
carried out for the model lattice consisting of 63 
atomic planes with the periodic boundary condition. 
Accordingly, the atom at the left end of each map in 
Fig. 4 is actually the same atom at the right end of 
the map. The amplitude used in the computational 
resu1t.s shown in Fig. 4 corresponds to the maximum 
displacement equal to two interatomic spacings. The 
time separation between the consecutive maps 
corresponds approximately to 1.3 x lo-l2 sec. 

The role of the anharmonic strain energy term in 
breaking up a sinusoidal wave form is clearly seen in 
Fig. 4(b). But it does not trigger the martensitic 

1 ‘2 I 
(b) $‘%5 $4.0 $.o 

Fm. 4. The evolution of the initiallv sinusoidal lattice 
wave is shown for (a) a dispersive (i/p =-0.1) nearly 
harmonic (b/p = 0) lattice, (b) a weakly dispersive 
(p/p = 0) anharmonic (b/p = 2.5) lattioe and (c) a dis- 
persive (q/p = -0.1) anharmonic (b/p = 2.5) lattice. 
The time separation between consecutive vaps is At = 

1.3 x lo-“sec. 

transformation. On the other hand, Fig. 4(a) shows 
,that the contribution from the strain gradient energy 
term without the third order anharmonic strain energy 
term does not induce any appreciable change in the 
initial sinusoidal wave form. Figure 4(c) shows that the 
triggering of the martensitic transformation is possible 
only when the anharmonic strain energy term and the 
strain gradient energy term are simultaneously 
present. Because the martensitic transformation in the 
present model is assumed to be accomplished through 
a finite simple shear deformation, the group of atoms 
displaced along the tilted line in Fig. 4(c) represents 
an embryo of the martensitic phase. 

Furthermore, with a half of the amplitude used in 
the computation shown in Fig. 4, no evolution of the 
wave form into the martensitic embryo is observed 
for the same values of the anharmonic and strain 
gradient energy terms as in Fig. 4(c) during the time 
interval up to ten times of that shown in the same 
figure. This indicates that the triggering mechanism 
is critically dependent on the amplitude of the normal 
mode vibration, which is expected to be dependent, 
on the distribution of defects in the crystal as dis- 
cussed in the previous section. Thus, it is proposed 
that the ‘heterogeneous’ nucleation of the martensite 
is correlated with the non-uniformity of the atomic 
vibration amplitude in the crystal. 

4. DISCUSSION 

By means of the computational study of the lattice 
model, it has been shown that the simultaneous 
presence of the two energy terms, the anharmonic 
strain energy(24) and the strain gradient energy,(25) 
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which have already been discussed separat,ely by 
different aut,hors, is essential in providing t’he trig- 
gering mechanism for the martensitic transformation. 
JJ-hile the presence of the anharmonicity can be 
understood as t,he inherent nature of the atomic 
binding interaction, ~27) the presence of the strain 
gradient energy term is inferred from the analogy with 
the spinodal decomposition in the present paper. The 
experimental data, which suggest the presence of the 
strain gradient energy term, ale discussed in the 
followings. 

The presnece of the st,rain gradient energy intro- 
duces an anomaly in the small amplitude phonon 
dispersion curve of the model lattice as shown in 
Fig. 3. The group led by YamadatB6 has studied, by 
means of the neutron inelastic scattering, the disper- 
sion relationship of the transverse phonon propagating 
in [ 1 lo] direction with the polarization direction [ liO] 
in a single crystal of CuAuZn, alloy, which is known 
to transform martensitically near 270 K. Their data 
show a small but distinct dip qualitatively similar to 
that shown in Fig. 3 at 298 K. 

Another interesting observation results from the 
features of the phonon dispersion curve of Zn at room 
t)emperature measured by Maliszewski et uZ.(ss) 
Although Zn does not transform martensitically, it 
is known that it has tendency to deform plastically 
by twinning besides by dislocation slip mechanism. 
As known, the twinning can be considered as a special 
martensitic transformation to a crystallographically 
equivalent structure under the influence of an applied 
stress. The dispersion curve of the transverse phonon 
propagating in the [OlIO) direction with the polariza- 
tion perpendicular to the basal plane shows an appre- 
ciable dip for the wave-vector 0.11 x lO*/cm. 

In contrast to these observation of the anomaly in 
the phonon dispersion curves, Dolling et CL?.(~~) have 
observed neither any anomaly nor any anomalous 
temperature dependence in the phonon dispersion 
curve obtained from the neutron inelastic scattering 
from sodium single crystals, down to M,. Here, it is 
to be noted that the sound velocity estimated by 
extrapolating the neutron data to the small wave- 
vector region agrees within 2% with the velocity 
obtained directly from the ultrasonic pulse echo 
method on sodium single crystals by Diederich and 
Trivisonno,(sl) except for the shear wave propagating 
in [llO] direction with the polarization [lIO] direction. 
The velocity of this shear wave obtained directly from 
the ultrasonic experiment is approximately 10% less 
than the one estimated from the neutron data. 

In a similar vein, Hallman and Brockbouse(ss) have 
not observed any anomalous temperature dependence 

in the phonon dispersion curve obtained from the 
neutron inelastic scattering of a Fe-Ni 30% alloy 
single crystal. However, Salama and Ale&s*) have 
observed a remarkable decrease of the ultrasonic 
velocity of a shear wave propagating [llO] direction 
with polarization [lIO] direction with the decrease of 
the temperature. 

It is proposed here that these inconsistencies 
between the neutron data (large k) and the ultrasonic 
data (small k) of a shear wave can be understood as 
the indirect indication of the presence of the anom- 
alous dispersion in the intermediate wave-vector 
region which has not yet directly investigated either 
by the neutron or ultrasonic experiment. On the 
other hand, the anomalous dispersion is predicted in 
the large wave-vector region by the atomic bond 
model for the strain gradient energy used in the 
numerical investigation of the present paper. For 
the crystal which shows the anomalous phonon dis- 
persion in the intermediate wave-vector region, the 
atomic bond model used in the present study should 
be understood as an instrument to recognize the 
significance of the simultaneous presence of the strain 
gradient energy and the anharmonic strain energy in 
triggering the martensitic transformation, while the 
physical origin of the strain gradient energy term is 
still left for further investigation. 
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