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ANALOGY BETWEEN SPINODAL DECOMPOSITION AND MARTENSITIC
TRANSFORMATION*

TETSURO SUZUKIt and M. WUTTIG!§

The translation of the theory developed for the spinodal decomposition of a supercooled alloy to the
language appropriate for the martensitic transformation is carried out. In the spinodal theory, the
stability of the alloy with respect to the composition fluetuation is examined, while in the present theory
the stability of the erystal with respect to the shear displacement fluctuation, the transverse phonon, is
studied. The anealogy to the spinodal theory requires the revival of the strain gradient energy term or
the couple stress term, the presence of which has been a subject of controversies for a long time since
Laval.

A simple model lattice with the bond bending and stretching interaction is constructed as an instrument
to study numerically the stability of the lattice with respect to the shear displacement fluctuation. The
results of the numerical investigation indicate that the simultaneous presence of the anharmonic strain
energy term and the strain gradient energy term is required to trigger the martensitic transformation.

ANALOGIES ENTRE LA DECOMPOSITION SPINODALE ET LA TRANSFORMATION
MARTENSITIQUE

On 8 traduit la théorie de la décomposition spinodale d’un alliage surfondu en des termes adaptés a la
transformation martensitique. Dans la théorie de la décomposition spinodale, on étudie la stabilité de
I'alliage par rapport asux fluctuations de composition, alors que dans cette théorie, on étudie la stabilité
du cristal par rapport aux fluctuations de la cission, c¢’est & dire aux phonons transverses. L’analogie
avec la théorie de la décomposition spinodale implique que I’on reprenne en compte le terme du gradient
de déformation ou de la contrainte couplée dans I'énergie, terme dont la présence avait fait I'objet de nom-
breuses controverses depuis Laval.

On construit un modéle simple de réseau avec des liaisons de flexion et de tension pour étudier numéri-
quement la stabilité du réseau par rapport aux fluctuations de cission. Les résultats des calculs numeéri-
ques montrent que la présence simultanée dans I'énergie des termesde dé formation anharmonique et
de gradient de déformation est nécessaire pour déclencher la transformation martensitique.

ANALOGIE ZWISCHEN SPINODALER ENTMISCHUNG UND MARTENSITISCHER
UMWANDLUNG

Die fiir die spinodale Entmischung unterkiihlter Legierungen entwickelte Theorie wird auf die marten-
sitische Umwandlung iibertragen. In der Spinodalentheorie wird die Stabilitat der Legierung in Bezug
auf Kompositionsfluktuationen untersucht; in der vorliegenden Theorie wird dagegen die Stabilitat des
Kristalls in Bezug auf die Scherungsfluktutationen, namlich die transversalen Phononen, betrachtet.
Die Analogie zur spinodalen Theorie erfordert die Wiederbelebung des Energieterms des Dehnungs-
gradienten oder Paarspannungsterms, dessen Existenz seit Laval Gegenstand von Kontroversen ist.

Es wird ein einfaches Modellgitter mit Biege- und Dehnungswechselwirkung konstruiert, um die
Stabilitét des Gitters in Bezug auf die Scherungsfluktuationen numerisch untersuchen zu konnen. Die
Ergebnisse der numerischen Untersuchung zeigen, da8 die gleichzeitige Gegenwart des anharmonischen
Dehn nergieterms und des Energieterms des Dehnungsgradienten erforderlich ist, um die marten-

sitische Umwandlung auszulosen.

1. INTRODUCTION

The purpose of the present paper is to present the
translation of the theory developed for the spinodal
decomposition of a supercooled alloy to the language
appropriate for the martensitic transformation. The
theory developed by Hillert and Cahn'® aims at
establishing a relationship between the two modes
of the decomposition process of binary alloy, i.e. the
fluctuation mechanism and the nucleation and growth
mechanism. The present model is based on the analogy
between the spinodal decomposition and the marten-
sitic transformation and is developed to serve the
same purpose for the relationship between the two
mechanism of the martensitic transformation, i.e. the
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soft phonon mechanism®-% and the nucleation and
growth mechanism.(?

As shown by the work of Hillert and Cahn, the
spinodal decomposition can be understood as the
phenomenon associated with the instability of com-
position fluctuation in supercooled alloys. The
martensitic transformation can be described as the
phenomenon associated with the instability of the
parent lattice with respect to a finite deformation in
supercooled metals and alloys. In this paper, the
authors wish to draw attention to the close analogy
between the spinodal decomposition and a certain
feature of the martensitic transformation. The
qualification ‘a certain feature’ has to come in because
of the following situation. The treatment of the
spinodal decomposition by Hillert and Cahn is
essentially macroscopic in the sense that the free
energy density is defined in terms of the thermo-
dynamical variables, the local concentration of the
component and its gradient, without reference to the
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atomic structure of the alloy. If we wish to develop
a close analogy between the spinodal decomposition
and the martensitic transformation, we have to
restrict our discussion to the features of the martensitic
transformation which can be defined by a macroscopic
quantity, i.e. the deformation parameter which
describes the deformation of the unit cell. In short,
the present treatment is limited to the examination
of the stability of the acoustic branches of the phonons.

2. ANALOGY BETWEEN SPINODAL DECOM-
POSITION AND MARTENSITIC TRANS-
FORMATION

2.1 Deformation parameter

In this section, a parameter ¢, which describes the
progress of the deformation process of the parent
phase during the martensitic transformation, is
defined. The Kurdjumov-Sachs® or Nishiyama(®
relationship between the lattice vectors by, b, by of the
martensitic phase and the lattice vectors a,, a,, a5 of
the parent phase suggests the linear transformation 7',

bi b Tai (i = l’ 2, 3)7 (l)

between 8a,, 8,, 83 and b;, by, b,. This transformation
becomes unique if the assumption of the smallest
distortion proposed by Jaswon and Wheeler(1?! is made.
They show that the linear transformation thus
determined is very favourable in explaining: the
observed habit plane in iron—carbon alloys. More
elaborate and accurate procedures to determine the
linear transformation are described by Wayman,1
Christian''® and others. It is assumed here that the
linear transformation 7' is already given by one of
these procedures.

We now introduce a scalar parameter describing
the progress of the transformation process as follows:

b/ =8, +Ta,—8) (=123). (2

When ¢ = 0, the three vectors b, b,’, by’ represent
the original undeformed unit cell. When ¢ = 1, these
three vectors represent the unit cell of the martensitic
phase. It should be noted that there is no a priori
reason that the intermediate phase described by
b,’, by, by’ of equation (2) should give the actual
crystal structure during the transformation process.
For example, the martensitic transformation of
sodium starts as a pure shear deformation in the (110)
plane in the [110] direction of the body centered cubic
phase.®® The linear transformation as defined by
equation (1) does not represent this shear deformation.
It is thus necessary to take into account the functional
dependence of 7" on ¢

b/(e) = 8, + &{T(c)a, —a;} (=1,23). (3)
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In the limit of ¢ = 1, T'(e) should be equal to T in
equation (1). On the other hand, in the limit of ¢ = 0,
T'(¢) should represent the pure shear deformation in
the (110) plane in the [110] direction for the marten-
sitic transformation in sodium. Theoretical investiga-
tions of the functional dependence of T'(¢) on ¢ may
be carried out by finding the minimum free energy
path between the parent and martensitic phases. In
this paper, T'(¢) is assumed to be known at least in
the limit of ¢ = 0. Then, the Gibbs free energy per
unit undeformed volume of the crystal g(¢) can be
written down for the hypothetical uniform deforma-
tion, which is specified by the parameter ¢ as follows:

gle) = Coe® + Cae® + O + . . .. (4)

As the parameter ¢ specifies the uniform deformation
of the crystal, the expansion coefficients C,, C, and C,
are given in terms of the linear combination of the
second order elastic constants, second and third order
elastic constants, and second, third and fourth order
elastioc constants, respectively. Thefree energy density
g(¢) given by equation (4) should have two minima,
one corresponding to the undeformed lattice (& = 0,
parent lattice) and another one corresponding to the
deformed lattice (¢ = 1, martensitic lattice). The
latter minimum should be deeper than the former at
the starting temperature of the martensitic transfor-
mation M.

2.2 Expression for free energy

The free energy G of a system which undergoes the
phase transition is expanded in terms of a proper
order parameter 7, in the vicinity of the transition
point, as follows:(14)

G=Ant+ B + Ot + ..., (5)

where the expansion coefficients 4, B and C are
functions of the thermodynamical variables such as
pressure and temperature. However, in the vicinity
of the transition point, the variation of 4 is most
important in determining the overall characteristics
of the dependence of the free energy @. Assuming B
and C remain constant, the variation of G against the
order parameter 7 is plotted in Fig. 1. If the cubic
coefficient B is zero, the value of the order parameter
which corresponds to the minimum of the free energy
G will change continuously, as the sign of 4 changes
from plus to minus, as shown in Fig. 1(a). If the
coefficient B is not zero, the free energy G possesses
two minima and the discontinuous transition from
one value of the order parameter (y = 0) to another
(n = m,) occurs at a certain value of the thermo-
dynamical variables, as shown in Fig. I(b). The



STZUKI axp WUTTIG:

84%0

(a) 6]

Fic. 1. The free energy G as a funetion of the order param-
eter = shown for different values of the second order ex-
papsion coefficient 4, keeping B and C constant. (a) In
the socond order phase transformation (B = 0), the value
of the order parameter 3, which corresponds to the mini-
mur of the free energy G, changes continuously with ‘the
deerease of 4. (b) In the first order phase transformation
(B # 0), it jumps over discontinuously from one value
(1 = 0) to a finite value ( = #»,).

coexistence of two different phases, the transformed
phase (5 = ;) and the untransformed phase ( = 0),
is another important characteristic of the first order
phase transition. The first order transition is charac-
terized by (1) the discontinuity of the change of the
value of the order parameter (and 2) the non-uniform-
ity of the progress of the transition process in the
system

An expression which explicitly takes into account
the dependence of the order parameter on the position
has already been developed by Cahn, in his systematic
study of the spinodal decomposition of a binary
allov. Here, the relevant order parameter is the
composition ¢ of the alloy. Cahn® writes down the
Helmholtz free energy of an alloy in terms of the
Helmholtz free energy per unit volume f(c) and of the
term yx(Vc)?, which expresses the incipient surface
energy due to the introduction of the composition
fluctuation, as follows:

F {10 + xvopav. ®)
The free energy G of a system which undergoes the
first order phase transition is expected to be described
by an agalogus expression,

G = f fg(n) + »(Vp)R]1aV (7)
instead of equation (5), which is valid only for the
second order phase transition (B = 0). Here, g(5) is
the density of the free energy instead of the total free
energy of the system.

We sgeek to find out the literal translation of the
above expression equation (6) applicable to the
martensitic transformation or the proper interpreta-
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tion of the general expression equation (7) suitable to
the martensitic transformation. The translation of
the composition ¢ to the deformation parameter ¢
looks self-evident. The Gibbs free energy per unit
volume of the undeformed crystal is already given by
equation (4) in terms of the elastic constants and the
deformation parameter e. Then, we are confronted
with the problem of finding the meaning of the term
which is given in terms of the gradient of the deforma-
tion or strain parameter. The standard elasticity
theory does not include the strain gradient energy
term, although the presence of such term has been a
subject of controversies for a long time since Laval 1%
brought up thé issue in 1951. Truesdell*® has insisted
that there is no rational reason to reject the presence
of such a term, which implies the presence of the
couple stress besides the ordinary stress in the crystal.
The importance of such a term in the problems of the
molecular crystal and of the crystal surface was
pointed out by Krumhansl,®” Toupin and Gazis,18)
respectively.

In the martensitic transformation, which accompany
the appreciable deformation of the unit cell of the
crystal, the transformation processis known to proceed
with-the propagation of the distinct interface between
the deformed (martensitic) phase and the undeformed
(parent) phase. Accordingly, the introduction of the
incipient surface energy seems to be permissible and
at the same time mandatory. Thus, the literal
translation of equation (6) or (7) to the expression
applicable for the total Gibbs free energy G of the
crystal, which will undergo the martensitic transfor-
mation, may be given as follows:

¢ = f () + y(Vey]dv (8)

where g(¢) is already given by equation (4).

3. MODEL

3.1 A model lattice with strain gradient energy

A model of the bond stretching and bond bending
used by Krumhansl®” for a moleular crystal is
adopted here for the study of the martensitic transfor-
mation, because this model seems to be the simplest
possible model which provides an expression for the
free energy containing the usual strain energy term
as well as the strain gradient energy term.

The atoms in this model crystal are considered to
have two kinds of interactions with their neighbors,
one being the interaction dependent solely on the
distance between them (bond stretching interaction),
and the other one the interaction dependent solely
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Fie. 2. A simple atomic model of the erystal, in which
atoms have two kinds of interactions: (1) the bond
stretching interaction with the nearest neighbors and (2)
the bond bending interaction with the next nearest neigh-
bors. The martensitic transformation in this model
crystal is accomplished by a planar shear deformation.

on the angle between two bonds connecting opposite
neighbors of a particular atom (bond bending inter-
action). It is assumed that the two body interaction
(bond stretching interaction) with nearest neighbors
in the model erystal represents the strong interaction
between neighboring atomic cores in metals and the
three body interaction (bond bending interaction)
with next nearest neighbors represents the non-central
interaction in metals. The atoms are arranged in a
simple cubic lattice with the lattice parameter a as
depected in Fig. 2. The increase of the interaction
energy is calculated for the planar shear deformation
as indicated by the arrows in Fig. 2.

The increase of the sum of the two body interaction
energy of an atom in the nth atomic plane with its
nearest neighbor atoms in the (n + 1)th atomic plane
is expanded in terms of the shear displacements

Vilz) = g(urﬁl - un)z

b

+ = (un+1 - un)s + 'c' (u'n+1 - un)4’ (9
3 4

where p, b and ¢ represent harmonic, third order and

fourth order anharmonic force contants, respectively.

The leading term in the increase of the three body

interaction energy of the same atom with its two next

nearest neighbors is given by

7e = ‘3’(un+2 + u, o — 2u,)% (10)

where ¢ represents a force constant associated with the
bond bending interaction between next nearest
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neighbors. Equations (9) and (10) yield the total
increase of the energy V of the crystal due to the
planar shear deformation,

V=232 +V (11)
where the summation is carried over all atoms in the
unit undeformed volume. When the deformation is
very gradual, i.e. in the limit of the long wave-length,
the differences of the displacement in equations (9)
and (10) can be approximated in terms of the strain
and its gradient as follows:

Zar..., (12)

=494 (13)
X

0

Here, d represents the distance between the neigh-

boring atomic planes, i.e. d = a/\/2-. Hence, in the
long wave-length limit, equation (11) reduces to

b c
Vel 242 8842488
JEs+so+
d(p oSy
(2 L1eg) () av. (4
+5(E+180)(5) ] o o

It is assumed here that the dependence of the
increase of the Gibbs free energy of the model crystal
due to shear deformation on the temperature can be
incorporated by supposing a proper temperature
dependence of the force constants p, b, ¢ and g, a
simplified quasi-harmonic approximation.®? Then,
it can be seen that the expression for the interaction
energy of the atomic model given by equation (11) is
formally equal to the expression for the free energy
given by equation (8) derived from the analogy with
the spinodal decomposition in the limit of long wave-
length. As it is understood that the martensitic
transformation in the model crystal is accomplished
by a planar shear deformation depicted in Fig. 2, the
strain S in equation (14) is proportional to the defor-
mation parameter ¢ in equation (8). For the choice of
parameters b/p = 2.5 and ¢/p = 1.0, the free energy
of this model crystal has two minima, one correspond-
ing to the undeformed state and the other corre-
sponding to the deformed (martensitic) state.
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3.2 Stability with respect to displacement fluctuations

The stability of the model crystal described in the
previous sectiont is studied numerically with respect
to the fluctuation of the displacement of various
wave-length in the same way as in the discussions of
the spinodal decomposition by Cahn. The fluctuation
of the shear displacement in the present model is
expressed by a normal mode transverse wave

u, = A sin (wt — knd).

The equation of motion for the transverse vibration
of an atom in the »nth atomic plane in Fig. 2 is given
by:

du,

ot

= p(un+1 - 2un + un-—l)

m

b .
. [1 e — )+ fugy — )
P Pr

-+ (un+1 - un)(un - u'n—l) + (un - un—-l)z}]

—q(uy g — du, o+ 6u, —du,_, + u, ,), (16)

where m is the mass of an atom in the model crystal.
Inserting the displacement given by equation (15)
into (16) and neglecting the anharmonic term, we
obtain the relationship between the frequency and the
wave-vector of the phonon

mo? = 4p sin’ EEQ + 16gsin* k- d. (17

This expression gives the phonon dispersion curve
for the small amplitude transverse vibration in the
model crystal depicted in Fig. 2.1 The small amplitude
dispersion relationship of equation (17) is plotted in
Fig. 3 for the values of the ratio ¢/p used in the
numerical investigation of the following section. As
far as w in Fig. 3 is real, the model crystal is stable
with respect to small amplitude vibrations. The

1 In the more realistic model for the martensitic trans-
formation than the present one, the deformation parameter ¢
should depend on a planar shear as well as dilatational de-
formation parameters. At the same time, equation (16) should
also include the anharmonioc coupling term between the shear
deformation and dilatational deformations. The present model
represented by equation (16) as it stands is only the simplest
one to study the significance of the simultaneous presence of
the anharmonic strain energy and the strain gradient energy.

% The phonon dispersion curve in Fig. 3 is for the shear
wave propagating in the [110] direction of the model crystal
in Fig. 2. For the shear wave in other directions of propaga-
tion, the dip in the dispersion curve due to negative value of
g appears in a different area of the Brillouin zone. However,
the dip always appears in some area away from the center of
the Brillouin zone (& = 0), because the strain gradient energy
comes in only when there is 8 non-uniformity (& % 0) of the
strain.
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F1e. 3. The small amplitude dispersion relationship for

the transverse phonons in the model crystal shown in

Fig. 2 is shown for the values of the ratio ¢/p used in the
numerical investigation shown in Fig. 4.

condition that the right hand side of equation (17) is
positive can be interpreted as the martensitic equiv-
alent of the stability criterion of a binary alloy,
which is given by:

2
9-{ + 27k > 0 (18)
oc
for the small amplitude composition fluctuation
" ¢ — ¢y = 4 cos kx. (19)

However, the assumption of the small amplitude is
not necessarily adequate for the displacement fluetu-
ation in the lattices. The average kinetic energy of the
lattice vibration associated with a normal mode of the
lattice vibration given by equation (15) is estimated
by:

N _
Sim-i,?=4}m- A2 0 N.

n=1

(20)

Here, N is the number of atoms involved in the normal
mode vibration. Because the average kinetic energy
of an oscillator is equal to the total energy of an
oscillator, which is given by the Bose-Einstein
statistics,

ho 1
2 exp (ho/kT) — 1
Especially for the lower frequency mode, it can be

assumed that fiw < kT. With this approximation,
the amplitude of a normal mode is estimated as

1/2
A=( 2rT )
m-@:- N

It is seen here that the amplitude of a normal mode
of the lattice vibration is proportional to the inverse
square root of the number of atoms N involved in the
normal mode. Accordingly, the amplitude of the

Im- A 0 N = (21)

(22)
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normal mode which extends throughout the entire
crystal is appreciably smaller compared with that of
the localized normal mode of the same frequency.
The spatial extent of some of normal modes in the
actual crystal is inevitably confined because of the
presence of various kinds of lattice defects, such as
crystal surfaces, grain boundaries, dislocations and
various point defects.

The amplitude of the normal mode for N == 1022
and w = 27 X 108/sec is estimated to be the order of
10-% cm at room temperature. If N is limited to
10¢ due to the presence of some defects, the amplitude
will be enhanced to 108 cm for the same angular
frequency of the normal mode. Hence, it is expected
that the amplitude of normal mode vibration is not
uniform throughout the crystal, but is enhanced near
the defects in the crystal. This expectation seems to
be supported, at least for crystal surfaces, by the
results of experimental®® and theoretical®" investiga-
tions. Accordingly, the stability of the lattice must
be studied with respect to the finite amplitude vibra-
tion, retaining the third and fourth order anharmonic
terms in equation (16). The study of the stability of
the lattice with respect to a special finite amplitude
vibration as to produce omega phase has recently
been carried out by Cook.!22:23)

3.3 Triggering of martensitic transformation

The temporal evolution of the initially sinusoidal
lattice vibration in the model lattice specified by
equation (168) is studied numerically by use of an
integration subroutine program for simultaneous
differential equations available by the code RKGNI
at the Tokyo University Computer Center. Although
the details of the computation will be published
elsewhere, the relevant results of the computation are
summarized in Fig. 4. In each map in Fig. 4, the
horizontal direction corresponds to the coordinates of
atoms, i.e. the atomic plane numbers in Fig. 2, while
the vertical direction indicates the shear displacement
of atoms in each atomic plane. The computation is
carried out for the model lattice consisting of 63
atomic planes with the periodic boundary condition.
Accordingly, the atom at the left end of each map in
Fig. 4 is actually the same atom at the right end of
the map. The amplitude used in the computational
results shown in Fig. 4 corresponds to the maximum
displacement equal to two interatomic spacings. The
time separation between the consecutive maps
corresponds approximately to 1.3 x 10-12 sec.

The role of the anharmonic strain energy term in
breaking up a sinusoidal wave form is clearly seen in
Fig. 4(b). But it does not trigger the martensitic
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F1e. 4. The evolution of the initially sinusoidal lattice
wave is shown for (a) a dispersive (g/p = —0.1) nearly
harmonic (b/p = 0) lattice, (b) a weakly dispersive
(g/p = 0) anharmonic (b/p = 2.5) lattice and (c) a dis-
persive (¢/p = —0.1) anharmonic (b/p = 2.5) lattice.

The time separation between consecutive vaps is At =
1.3 x 10-12 sec.

transformation. On the other hand, Fig. 4(a) shows

that the contribution from the strain gradient energy

term without the third order anharmonic strain energy
term does not induce any appreciable change in the
initial sinusoidal wave form. Figure 4(c) shows that the
triggering of the martensitic transformation is possible
only when the anharmonic strain energy term and the
strain gradient energy term are simultaneously
present. Because the martensitic transformation in the
present model is assumed to be accomplished through
a finite simple shear deformation, the group of atoms
displaced along the tilted line in Fig. 4(c) represents
an embryo of the martensitic phase.

Furthermore, with a half of the amplitude used in
the computation shown in Fig. 4, no evolution of the
wave form into the martensitic embryo is observed
for the same values of the anharmonic and strain
gradient energy terms as in Fig. 4(c) during the time
interval up to ten times of that shown in the same
figure. This indicates that the triggering mechanism
is critically dependent on the amplitude of the normal
mode vibration, which is expected to be dependent
on the distribution of defects in the crystal as dis-
cussed in the previous section. Thus, it is proposed
that the ‘heterogeneous’ nucleation of the martensite
is correlated with the non.uniformity of the atomic
vibration amplitude in the crystal.

4. DISCUSSION
By means of the computational study of the lattice
model, it has been shown that the simultaneous
presence of the two energy terms, the anharmonic
strain energy®¥ and the strain gradient energy,(?®
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which have already been discussed separately by
different authors, is essential in providing the trig-
gering mechanism for the martensitic transformation.
While the presence of the anharmonicity can be
understood as the inherent nature of the atomic
binding interaction,(26:27) the presence of the strain
gradient energy term is inferred from the analogy with
the spinodal decomposition in the present paper. The
experimental data, which suggest the presence of the
strain gradient energy term, are discussed in the
followings.

The presnece of the strain gradient energy intro-
duces an anomaly in the small amplitude phonon
dispersion curve of the model lattice as shown in
Fig. 3. The group led by Yamada‘®® has studied, by
means of the neutron inelastic scattering, the disper-
sion relationship of the transverse phonon propagating
in [110] direction with the polarization direction [110]
in a single crystal of CuAuZn, alloy, which is known
to transform martensitically near 270 K. Their data
show a small but distinct dip qualitatively similar to
that shown in Fig. 3 at 208 K.

Another interesting observation results from the
features of the phonon dispersion curve of Zn at room
temperature measured by Maliszewski ef al.!*%
Although Zn does not transform martensitically, it
is known that it has tendency to deform plastically
by twinning besides by dislocation slip mechanism.
As known, the twinning can be considered as a special
martensitic transformation to a crystallographically
equivalent structure under the influence of an applied
stress. The dispersion curve of the transverse phonon
propagating in the [0170} direction with the polariza-
tion perpendicular to the basal plane shows an appre-
ciable dip for the wave-vector 0.11 X 108/cm.

In contrast to these observation of the anomaly in
the phonon dispersion curves, Dolling et al.3 have
observed neither any anomaly nor any anomalous
temperature dependence in the phonon dispersion
curve obtained from the neutron inelastic scattering
from sodium single crystals, down to M,. Here, it is
to be noted that the sound velocity estimated by
extrapolating the neutron data to the small wave-
vector region agrees within 29, with the velocity
obtained directly from the ultrasonic pulse echo
method on sodium single crystals by Diederich and
Trivisonno,®V except for the shear wave propagating
in [110] direction with the polarization [110] direction.
The velocity of this shear wave obtained directly from
the ultrasonic experiment is approximately 109/ less
than the one estimated from the neutron data.

In a similar vein, Hallman and Brockhouse®2 have
not observed any anomalous temperature dependence
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in the phonon dispersion curve obtained from the
neutron inelastic scattering of a Fe-Ni 309 alloy
single crystal. However, Salama and Alers(3®) have
observed a remarkable decrease of the ultrasonic
velocity of a shear wave propagating [110] direction
with polarization [110] direction with the decrease of
the temperature.

It is proposed here that these inconsistencies
between the neutron data (large k) and the ultrasonic
data (small k) of a shear wave can be understood as
the indirect indication of the presence of the anom-
alous dispersion in the intermediate wave-vector
region which has not yet directly investigated either
by the neutron or ultrasonic experiment. On the
other hand, the anomalous dispersion is predicted in
the large wave-vector region by the atomic bond
mode] for the strain gradient energy used in the
numerical investigation of the present paper. For
the crystal which shows the anomalous phonon dis-
persion in the intermediate wave-vector region, the
atomic bond model used in the present study should
be understood as an instrument to recognize the
significance of the simultaneous presence of the strain
gradient energy and the anharmonic strain energy in
triggering the martensitic transformation, while the
physical origin of the strain gradient energy term is
still left for further investigation.
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