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Vibration Characteristics of Free Thin 
Cylindrical Shells 
This paper considers the flexural vibrations of free thin circular cylinders. A fre
quency equation is derived using free-free characteristic beam functions to represent the 
variation of mid-surface shell displacement components, u, v and w, with respect to the 
axial direction. Timoshenko strain-displacement relations for thin cylinders are used 
to determine elastic vibratory strain energy. Energy methods are applied to obtain the 
frequency equation and associated amplitude ratios for each of its roots. This energy 
solution is checked experimentally using a vibration exciter and numerically using the 
SABOR IV finite element program. With minor modification, the frequency equation 
conforms to the one obtained in a similar way by Arnold and Warburton for cylinders 
with clamped ends and simply supported ends. Thus the proposed form of frequency 
equation, by accommodating a greater variety of boundary conditions, simplifies the task 
of determining cylinder vibration characteristics. 

Introduction 

L I HE modal vibration characteristics of thin circular 
cylindrical shells are needed in the design and evaluation of many 
structures and machines. An exact method for determining 
characteristics was outlined by Fliigge [ l ]1 in which the solution 
of his differential equations of motion requires the evaluation of a 
third order determinant. Furthermore, analysis of homogeneous 
end boundary conditions leads to an eighth order eigenvalue 
problem that is coupled to the third order determinant. Papers 
by Forsberg [2] using numerical iteration and Warburton [3] 
using other techniques give practical results for this lengthy 
method. 

Shorter approximate methods for determining modal, charac
teristics are also available. Arnold and Warburton [4] derive 
frequency equations for cylinders with simply supported ends 
and clamped ends using the corresponding characteristic beam 
functions to represent the variation of mid-surface shell displace
ment components with respect to the axial direction. They use 
Timoshenko strain-displacement relations for cylinders and the 
Rayleigh-Ritz energy method to obtain a cubic frequency equa
tion. Parameters for the equation are given to account for 
simply supported ends and clamped ends. 

Another paper by Warburton [3] presents a frequency deter-

1 Numbers in brackets designate References at end of paper. 
Contributed by the Vibration and Sound Committee of the Design 

Engineering Division of THE AMERICAN SOCIETY OF MECHANICAL 
ENGINEERS and presented at the Design Engineering Technical 
Conference, Cincinnati, Ohio, September 9-12, 1973. Manuscript 
received at ASME Headquarters June 11, 1973. Paper No. 73-
DET-141. 

minant based on Fliigge strain-displacement relations, and the 
characteristic beam functions and energy methods used in his 
earlier work. He applies this formulation to cylinders with 
clamped ends and free ends and notes frequency root errors of less 
than 10 percent. For free ends, the exact solution in the error 
calculation was based on the shear stress resultant Nx$ = 0 at 
the ends. In a recent communication, he provides small correc
tions to the published exact solution values to account for effective 
shear stress resultant Tx = 0 (instead of Nx^,) at free ends. War
burton and Higgs [5] discuss free end conditions further and give 
results for cantilevered cylinders. 

The objective of the work herein is to provide an accurate and 
easy-to-use frequency equation for free thin cylinders by apply
ing the approximate energy method of Arnold.and Warburton 
[4] to the free-free case.. Formulation of the free cylinder 
problem with Timoshenko strain-displacement relations should 
result in a frequency equation that is similar to previously pub
lished equations representing clamped ends and simply supported 
ends. Identification of the similarities should lead to a general 
form of frequency equation that accommodates all of these end 
conditions. 

The theoretical expressions to be developed pertain to m > 1 
and n > 2. When there are no wave variations in shell motion 
with respect to the axial direction (in = 0), Love's [6] frequency 
equation applies. When the cylindrical shell has axisymmetric 
(n = 0) motion and beam-type (n — 1) motion, Forsberg [7] 
shows that behavior can be adequately predicted by considering 
the cylinder as a ring for n = 0 modes and as a compact beam for 
n = 1 modes. Since minimum natural frequency is usually asso
ciated with a mode having two or more circumferential waves 
(n > 2), the following energy solution is relevant to typical 
cylindrical shell vibration problems. 
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Fig. 2 Mode shape comparison, radial motion component, Lfa = 20,
n = 2
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Fig. 1 Free.free cylinder mounted on vibration exciter

Energy Solution
Free Cylinders. In determining the strain energy needed for the

free cylinder solution, the following mid-surface displacement
functions are used in Timoshenko [8] strain displacement rela
tions

U·(a) dFm(x) ... -I..
U = - --- cosn'l'

fJ,m dx

v = VFm(x)sinneJ>

w = WFm(x) cos neJ>

(la)

(lb)

(Ie)

Oa = 1 + (_I)m(6a sin!!:... L + k2)
,uL a

cosh!!.- L - cos!!.- L
k = a .:.:-a_

sinh !!-. L - sin !!:... L
a a

(3c)

(3d)

(3e)

Assuming harmonic motion and performing a standard Ray
leigh-Ritz analysis, the frequency equation and associated ampli
tude ratio expressions are found:

(4)

(5b)

(5a)

Ya = Z2

- [xa - (G - ;10a)(J - M,)/z,]

Ya - Yl(J - ;10,)/z,
(V/U)

Neglecting rotatory inertia, the total kinetic energy is

;1a - R2;12 + R,;1 - Ro = 0

where R = 1/(0,20a)

R2 R(J(J,Oa + HO,Oa + GO,2)

R, R(GjO, + GHO, - HJOa - YaZ20a -y,X20, -Xaz,O,)

Ro R(X2YaZl ...., Xay,Z2 - GYaZ2 - YIX2J - xaz1H + GHJ)

G ,u20, + '/2(1 - v)n20a

H {n20, + '/2(1 - v),u20a + (3[n20, + 2(1...., zi)fJ, 20aJ)
J {O, + (3[fJ, 40, + n4{), + 2V,u2n202 + 2(1 - v),u2n20aJ}

Yl - [v,un02 + '/2(1 - v),unOal-

z, V,u02

Z2 - {nO, + (3[naO, + VfJ,2n02 + 2(1 - v)fJ,2nOa])

(3b)

(3a)

where values of ,u are given by the frequency equation for free-
fJ, ,u

free beams, cosh - L cos - L = 1, and
a a

7rEhL
S = . {fJ, 20,U2 + (3fJ, 40,W2

4a(1 - v2 )

+ O,[(nV - W)2 + (3(nV - n2W)2J

+ 2V02[ - ,unUV + ,uUW + (3(,u2n2W2 - ,u2nVW)]

+ '/2(1 - V)Oa[n2U2 +,u2V2 - 2,unUV + 4(3(,u2V2

+ fJ,2n2W2 - 2fJ,2nVW)]} (2)

where U, V, and Ware functions of time only and Fm(X) is the
mth (m = 1, 2, 3 ... ) characteristic function for a vibrating uni
form free-free Bernoulli-Euler beam whose length is that of t1).e
cylinder. In the assumed displacement functions u ('J ow/ox
which gives zero normal strains, au/ox, at the ends of the cylinder
and maxima normal strains, au/ox, near all other radial motion
antinodes. The sinusoidal variations of shell displacement com
ponents with respect to the cU'cumferential du'ection, eJ>, are exact
in the sense that they satisfy Fltigge [9] differential equations of
motion.

Using the foregoing formulation and integrating the strain
energy over the volume of elastic shell material, the total strain
energy is

---,Nomenclature---------------------------
q, mean radius of cylinder
h thickness of cylinder wall
L length of cylinder
t time
x = axial coordinate

eJ> circumferential coordinate
z = radial coordinate

u, v, w components of displacement at
the shell mid-surface in the

axial, tangential, and radial
directions

m axial half-wave number

n = number of circumferential
waves

E Young's modulus of elasticity

,u/a +oots of cosh!!. L cos!!. L = 1
a a

v
pig

W

Wo

W/Wo

s
T

Poisson's ratio
mass density of shell material
circular frequency
lowest extensional natural fre

quency of a ring in plane
strain = [Eg/pa2(1 - p2)]'f,

frequency factor
total strain energy of shell
total kinetic energy of shell
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(W/U) = - — fa + yi(V/U)] (5c) 

Application to Cylinders With Clamped Ends and Simply Supported 
Ends. I t may be noted that the frequency equations developed 
by Arnold and Warburton [4] for fixed-fixed and simply supported 
thin cylinders are special cases of the frequency equation de
veloped for free-free cylinders. If equations (5) remain the 
same, and equation (3c) is changed such that 

( 2a a \ 

— sin — L - kl) 
iiL a J 

the results apply to the case of a fixed-fixed cylinder. If equa
tions (5) remain the same and equations (3) are changed such that 
di = 02 = 63 = 1 and — L = mir, the results now apply to the case 

a 
of a simply supported cylinder. Frequencies calculated in this 
way for the fixed-fixed and simply supported cases agree exactly 
with those obtained from the expressions of Arnold and Warbur
ton [4]. 

Methods of Verification 
Experimental. For experimental verification of the energy solu

tion, thin cylinders were mounted in the free-free condition to a 
3500 pound-force MB C25HHA vibration exciter by continuous 
ring contacts at axial nodal locations as shown in Fig. 1. A 
0.063-diameter-wire snap ring provided continuous contact 
around the circumference at the axial nodal locations for the 
tangential and radial components of motion. The nodal locations 
were determined from finite element program output for each 
nodal mode to be investigated. The desired distance between 
normal supports was obtained by two adjustments. First the 
aluminum fixtures could be attached at one-inch intervals to the 
base plate through a predrilled hole pattern. Second, the fixture 
inserts containing the wire snap ring supports could be located 
within the fixtures anywhere within the one-inch intervals by 
means of the four adjusting screws. Thus, any location along the 
cylinder, within the limits (16-in. maximum) of the base plate, 
could be obtained in order to support the cylinder at nodal loca
tions. The cylinders were lengths of cold-drawn seamless steel 
tubing having a 4.0-in. OD and a 0.065-in. wall thickness. 

A combination of experimental techniques were used to deter
mine particular modal characteristics. Natural frequencies were 
determined during scanning of the frequency spectrum by watch
ing the 180-deg phase reversals of two accelerometers mounted 
on the wall of the cylinder, by noting the maximum levels on the 
^-meters, and by observing the maximum sand activity inside the 
cylinder. Mode shapes were determined by observing the sand 
distribution inside the cylinder and by a tracing method using a 
phonograph cartridge as a vibration pickup. In the tracing 
method, the signal from an accelerometer mounted on the base 
plate was fed to one plate of a cathode-ray tube and the signal 
from the vibration pickup was fed to the other plate. Nodal 

Fig. 3 Mode shape comparison, tangential motion component, L/a = 
20 , n = 2 

lines were readily identified by the change in the phase ellipse as 
the pickup passed through them. 

Finite Element. The SABORIV-DYNAL program was also used 
to verify the energy solution. The program makes use of two 
existing computer programs, SABOR IV and ICES-DYNAL, 
which have been integrated by McDonnell'Douglas Automation 
Company to provide natural frequencies and mode shapes of axi-
symmetric shells. The SABOR IV program generates a stiffness 
matrix and a consistent mass matrix, harmonic by harmonic, from 
a finite element representation of a general axisymmetric elastic 
shell. SABOR IV uses a meridionally curved shell element with 
eight degrees of freedom having strain displacement relationships 
derived by Novozhilov [10]. Axial and tangential displacements 
are allowed to vary linearly over the element length, while radial 
displacement is allowed to take on a cubic variation over the ele
ment length. Both slope, dW/dx, and displacement com
patibility exist at the boundaries between elements. The DY-
NAL program subsequently uses the mass and stiffness matrices 
to generate the corresponding frequencies and mode shapes for 
each harmonic provided by SABOR IV {n = 2 and n = 3 are the 
harmonics which were investigated.) The program is extensively 
documented in reference [11]. 

The number of axial half-waves handled accurately de
pended upon the number of elements used in our model. For 
each L/a ratio, two finite element models were used in order to 
determine the effect of element length on accuracy of results. 
First eight and then 32 cylindrical elements were used. Com
paring the eight and 32 element models, differences in the pre
dicted natural frequencies indicated an increase in accuracy as 
element length was decreased. While the differences for long 
shells, L/a > 10, were large, the differences for short shells, Ij/a < 
5, were small and, therefore, the 32 element model was chosen as 
being satisfactory for this investigation. 

The program's output consisted of frequency in Hertz and 
normalized mode shapes. The mode shapes were used to 
identify the different axial modes and to locate the nodes for the 
experimental work. 

Results 
Frequency Comparison. Table 1 presents natural frequencies ob

tained by each of the three methods used: energy, experimental, 
and finite element with 32 elements. These frequencies corre
spond to the predominately radial modes of vibration. In cal
culating energy and finite element frequencies, the material 
properties assumed for the steel cylinders are: Poisson's ratio, 
v = 0.3; elastic modulus, E = 30,000 ksi; and specific weight, 
p = 0.283 lb/in3. To facilitate application of results to cylinders 
with other material properties, the nondimensional frequency 
factor, w/wo, which does not depend on the values of E and p, is 
also presented for the energy solution. Percent deviations with 
respect to the energy method results are presented. 

The experimental natural frequencies deviate by less than 8 
percent from the corresponding energy method frequencies with a 

Fig. 4 Mode shape comparison, axial motion component, L/a = 20 , 
n = 2 
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Table 1 Frequency comparison for free-free cylinders, a/h — 30.3 
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tendency to be higher when n = 3 and lower when n — 2. Since 
energy frequencies are theoretically higher than true values, ex
perimental error, such as constraint by the fixtures, is responsible 
for the positive deviations noted. 

Finite element frequencies deviate from energy frequencies 
more when L/a is small (L/a < 10). This is to be expected, 
since the displacement functions used in the energy methods do 
not satisfy the end boundary conditions and, therefore, give 
poorer approximations when end influences become more domi
nant. Finite element deviations are negative except when L/a 
> 15. The small positive deviations for long cylinders would 
probably be eliminated by using more than 32 elements in the 
finite element model. However, the finite element results are 
believed to be very accurate, particularly for m < 3, since the 32 
element model possesses 132 degrees of freedom (33 nodes X 4 
d.f. per node). 

Mode Shape Comparison. Typical mode shapes from the eight 
finite element model and the energy solution are shown in Figs. 2, 
3, and 4. The radial motion component of mode shape is shown 
in Fig. 2, the tangential motion component in Fig. 3, and the axial 
motion component in Fig. 4. In presenting the finite element re
sults, the normalized mode shape data obtained from the com
puter output are plotted as points at the stations between finite 
elements. These points are then connected with a dashed line 
giving attention to the particular form of variation over the ele
ment length that applies to the motion component being charted. 
The solid lines show the beam function displacements assumed in 
the energy solution. These functions are normalized to W = 1 
which establishes numerical values for U and V given by the 
amplitude ratio expressions, equations (56) and (5c). 

Mode shapes from the 32 element model are not shown because 
they nearly coincide with those of the energy solution. When 
ro = 1, the 32 element model gives antinode (maxima) values for 
u, v, and w that deviate less than 3 percent from energy solution 
values. The nodal location for w deviate by less than 0.002L and 
similarly for v. When m = 5, the 32 element results deviate from 
the energy solution as follows: 

1 Antinode (maxima) values of w are 2 to 5 percent higher 
with the percentage increasing toward the center of the cylinder. 
Absolute deviations for u and v are similar, but percentages are 
3 to 15 percent. 

2 The outer radial motion nodes are 0.0047/ closer to the ends 
of the cylinder, while the more central nodes are 0.01 L closer to 
the center of the cylinder. Outer u and v nodes are 0.015// 
closer to the ends, while the inner nodes are 0.01L closer to the 
center. 

Conclusions 
The approximate energy method of Arnold and Warburton [4] 

has been applied to cylinders with free ends. A frequency equa
tion was derived and presented in a form that also accommodates 
cylinders with clamped ends and simply supported ends. Fre
quencies from this solution compare closely with experimental 
and finite element results for free cylinders. Deviations are 
greater for short cylinders (L/a < 10) vibrating in a mode having 
more than one axial half-wave (m > 1), but otherwise appear to 
be less than 8 percent. Good agreement also exists between the 
assumed displacement functions of the energy solution and the 
mode shapes predicted by the finite element model. 

The energy solution provides frequencies that are higher than 
the true frequencies of the modes whose shapes are being approxi
mated with beam functions. This is of little practical importance 
for the lower m modes of long cylinders, since the error is small. 
However, for short cylinders, frequencies from the energy solu
tion can be reduced a few percent to more closely estimate true 
natural frequencies. I t is also important to remember that in 
free cylinder problems two lower frequency modes, Rayleigh and 
Love modes, also exist. Since they have no wave variations of 
displacement components with respect to the axial direction, they 
are not accounted for in this energy solution. 
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