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Transient Thermal Stresses in a
Sphere by Local Heating

The problem of transient thermal stresses in a solid, elastic, homogeneous, and isotropic
sphere is solved for uniform and nonuniform, local surface heating. The temperature so-
lutions are obtained by using separation of variables and integral transformation. The
corresponding thermal stresses are derived by superposing a particular displacement po-

tential function on Boussinesq solutions. Numerical solutions for two particular cases of
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localized heating of a typical brittle spherical solid have been obtained and presented.

The results indicate a tensile stress concentration in the interior of the solid below the
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Safety Administration,
Washington, D. C.

heated zone.

Introduction

A knowledge of thermal stresses caused by heating of brit-
tle solids is important to understand thermal fracture and frag-
mentation processes. This study was carried out to understand
and evaluate a method of breaking rocks and related brittle solids
by surface heating. Theoretical analyses were made to obtain
stress distributions during localized heating of simple spherical
solids to help select optimum heating conditions for fragmenta-
tion. Sternberg, et al. [1],! Sharma [2], and Holden {3] have con-
sidered thermal stress problems in solid spheres with steady-state
heating conditions. Warren [4] has studied the transient thermal
stresses on the surface of a sphere for an assumed surface temper-
ature distribution. This study presents the transient temperature
and stress distributions in a sphere when locally heated on its sur-
face with uniform and nonuniform heating conditions.

Analysis

Temperature Solution. Consider a homogeneous, isotropic,
and elastic sphere which is initially at zero temperature. At
time t 2 0, part of its surface 0 < § < 8¢ is exposed to heat flux of
various intensities F(f) where 6 is the angle measured from the

1 Numbers in brackets designate References at end of paper.

Contributed by the Applied Mechanics Division and presented at the
Winter Annual Meeting, New York, N. Y., November 17-22, 1974, of THE
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axis of symmetry and the rest of the surface is assumed to be in-
sulated. The radial coordinate r is measured from the center of
the sphere. The temperature field T'(r, u, t) is governed by the
mathematical system

14T
VT = ot

Kg=F(#)atr=ro,#osusLtzo

=0 atr=r,—1Su<up,t=0 1)
T(ru0)y=0forallrand patt <0
where .
T (“ai,) + ey [ﬂ - w%] @
and
= cos f, o = cos B, 3)

In the equations, K is the thermal conductivity of the material; «
= K/pcp is the thermal diffusivity, p and ¢, being density and
specific heat at constant pressure, respectively; and rq is the radi-
us of the sphere. F(u) is a specified function for a certain range of
worf.

The solution to the system (1) can be written as

T(rut) = Uty + Trp) + T (rut) CY

where the steady temperature solution Ts(r, u) satisfies the sys-
tem

ap o 1dQ
VTS_K dt.
‘ (5
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T,

=ro b <p =l

or ‘ )
=0 atr =re, 1 S u <y, (Cont.)
1 o
T 2 =
f—h j; Toridrdu =0
ana T1(r, i, t), the difference temperature, satisfies
ap = 1 9T
T P
K%‘]’jl=0a‘cr=ro,—1§usl,t20

(®)

T\(rw0) = =T{ru)att <0

The solution () represents the difference between the average
temperature at time ¢ and the initial average temperature and is

given by [5]
Q1) = g2y ﬁ ' I: ﬁ IF(,u)du:Idt @

where v = (%)7ro3 is the volume of the sphere. It is evident that
T approaches zero as ¢t approaches infinity.

When the surface heat flux F(u) is specified, Q(t) can be readi-
ly evaluated. With Q(t) known, the steady temperature Ts can
then be determined. This gives

2n + 1
T, = 10 =71y’ r + rdz (r0>

x{ f NE R O ORC

1 dQ
kdt

where

9

and Pp(u) is Legendre function of degree n of the first kind. The
solution for Th can be derived by integral transform and has the
form

\('",#J) = _Kg

r
= Z": n + 1 <7' )1/2 Jn+u,: (ﬂnmr_o>

=0 m=1 ﬁ 2 — n(n + 1) Jn-‘-uz(ﬁllm)
x| [ 'P.(yFGdn |PuGe™ =" 10
[ J. P b ]Pature (10)

where the eigenvalues 8,m are the positive roots of

+1
Tl Bum) = ”ﬂ J

il Bam) an

and J, is the Bessel function of the first kind of fractional order ».

The sum of Q(t), Ts(r, p), and T4(r, u, t) then gives the complete
temperature solution 7'(r, u, t) for a specified function F(u).

The Stress Solution. In this section, the thermoelastic stress
problem will, be formulated. Using tensor notations, the linear
thermoelastic equilibrium equations expressed in terms of the
displacement are’

Upp T (= 20)uy, = 20(1 + )T, (12)
=‘G‘[ it + 2 o R 2§1._+2:)Q1T5U:l 13y

where u; denotes the components of the displacement vector, G is
the shear modulus, » is Poisson’s ratio, « is the coefficient of ther-
mal expansion, and é;; is the Kronecker delta. Equations (12) and
(13) are to be solved subject to the stress-free boundary condi-
tions
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on; =0 atr=r, (14)
where n; are the scalar components of the unit normal vector to
the surface at r = ro.

The solution of the system consisting of (12)-(14) can be repre-
sented as the sum of a particular solution of the nonhomogeneous
system of equations and the complementary solution of the homo-
geneous system. The particular solution of (12) can be derived by

introducing the displacement potential ¢ in the form
u; =, (15)

Substituting u; from (15) into (11) yields

V2P = T (18)
where
1+
I=1—, an

A particular solution of (16) has the form

P=0q + P (18)
where
P, = laxﬁtTl(r,u,t)dt 1
and @, satisfies
Vi, = laT — V¥, (20)

The particular solution ®; can be readily obtained by substi-
tuting Ty from (10 into (19) and carrying out the integration. ®2
can be then determined from (20) with the known ®; and T solu-
tions from (19) and (4). '

Once the solution for & is found, the stress components corre-
sponding to this function are obtained from the expressions (6]

= i
Opp = Q(W - T)
1 aﬂ&»)

R2 du R OROu

QR

~ [
1 0% PP 1 b
" 2(§ﬁ+§3(1—u2)a# -j@u*gﬁ—ﬂ‘) @

=~ 199 1 b _ g
= 7)

with i = (1 — 42)1/2, The dimensionless variables are

LA J S ) F=—2 LK
Rh?o' T—M, Uij_Gl‘Ioroa’ q)_l%’".oaa’ TTrd (22)
K K K

The complete solution [d;;] to the thermoelastic equilibrium
problem governed by (1), (12), and (13) subject to the traction-
free boundary condition (14) may be represented in the form

[6i]= (51 +[5,] @

where {#,] is a particular solution of the field equations generéted
by & and [#;,] is the solution of a residual problem. The latter so-
lution satisfies the homogeneous system, equations (12) and (13)
without the temperature terms and counteracts the surface trac-
tién induced by [#;;]. The solution for &; is obtained from the
spherical harmonic stress functions x and ¥ in the form

X(r:#) = rnPn(:u')’ ‘I’(Y‘,ﬂ) = 'r"PIli(l'l’) (24)

DECEMBER 1974 / 931

€20z aunp 2z uo Jasn ABojouyoa ] @ 9ousl0S Jo Asianiun LNossIN Aq Jpd L~ 0€6/6919/8S/0€6/1/1 /4pd-ajo1e/solueyoswpaiidde/Bio-swse uonos|joojeybipawse//:dipy woly papeojumoq



as introduced by Sternberg, et al. [1}. The stress solutions [Cj]
and [F.] corresponding, respectlvely, to x and ¥ are comblned in
‘the form [2]

L EI=@aHUF,) = (=340 Co] ()
y The stresses associated with [C,,] are

Tre™ = n{n — R"P, (u)

<9

w* = —(n — DRR""P, ()
Gt =Rl /(=) (26)
Gt = R'P (1) — 1P, ()]
Eém* =0t =0

and those associated with [En] are

Ope?* =[n¥n — 3)— 2un]R" 1P ‘l(/.z)
Gy = (2 — n*—2m)uR"" IPn (1)

Gw** = ((n+ 4= )P, () — n(n’+2n =1 + 2v>P.,_1(u)]R"‘1
T = [—(n + 4 — )P, (1)
+n(n—3—4dvn + 2)P, _(1)|R"

ok = ()

~ ek~
Oy " = Opy

(27)
In the foregoing equations, P ’(p.) = dPn(p.) /dli The solution [64)]
canbeputmtotheform B .
1= FelCl+ ;d,,[EHJ ']<2'8>
Wherem the coefflments cn and dn are. evaluated by i 1mposmg the

stress-free conditions at r = rq, equation (14), For the case under
consideration, §rr = Fry = 0 at R = 1. This gives

_p[3n+ 24 2 — nd + 20n] + 5,;[2 = (n 4 12 — W]
a 2An. — DRt A4 n+.1 4000 + 1)]
’ n=234... (29

d, &, + g,

T AT a1 E w0 £ D] BT OB 30

where £, and 75, are evaluated from Grr and Grp at r = ro as

O LysT) = Zog"(T)P (1), Um(l,ﬂﬁ)—ﬂz?i (T)P () (3D

With these values of ¢, and d,, equations (23), (21), (26)-(28)
constitute the complete solution ofthe therimoelastic problem; It
should be pointed out, however, that the expressions for £, and 7,
are dependent on ¢ and T solutions which in turn depend on the
nature of surface heating.

Application for Uniform and Nonuniform Surface Heating.
In the following sections, the special cases of uniform and nonuni-
form ‘Surface heatmg are presented because these two' cases are
very representatwe of most surface heating. Uniform heating is
represented by F(u) = go Where go is a constant. For nonuniform
heating, the case of cosine flux variation is considered.

.- "Case 1—Uniform Surface Heat Flux. When the surface heat
flux is a constant qg for go < ¢ < 1, the temperature solution is

¢—3Ar—”ZOZRIBmD LnalBonF) ,,<n>[e‘”"m’~1] )
where '

A—~<1 ) o , (33)

D, = L P(wydp . S (34)
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n+1 ’ -
[/3”,,,2 —n(n T W o) @35)

B

and Bnm are the positive roots of (11), By employing (16), the dis-
placement potential ® can be obtained as

PRSI Y ) B D _ zr.
R2+ZZ Lamtin n+ul(i8nmR)P (#)[3 Brm —1]

~ 1
P = §AT L 6,,,,.2 RV?
; (36)

The stresses corresponding to ¢ and 7 are then evaluated from
(21).

"The residual stresses are given by (28). The corresponding [Cx],
[E.], ¢n, and dp are expressed by (26}, (27), (29), and (30). The
expressions for £, and n, appearing in (29) and (30) are found to
ba : : )

n{n +1)

£AT) = 23 BonD, " 5 s B Kt =1) @D

and

m=1

1) = 23" B, D, th(—ﬂ—"—"‘l[e‘ﬁ 1] (38)

~ The total stresses in dimensionless form are, from (23)

ERR =2"Z=;'};

I Bon )
% [” B.E_ R”

+ ("L + 1)(” + 2) Jn+m(ﬁnmtR)]1Pn(”)

BanRZ ’ R
X [e—/fnm —_ 1] + Zn(n - l)R"_2CnPn(u')

n=%

+ Z (n+D[(n +1(n — 2)— WIR"d, P, (1) (39)

~ EMH

UR(?‘Z
x5,

n—n nmR + 2 J". 172 6’1"’. ) 2,
—%@-—’ Fo e i

X [e—ﬁnm-f 1] =53 = )R*2c, P,/ ()
n=2
+ ﬁi[z — (n+ 17 — )R, P/(1) (40)

~ 2 & 1 il Bom B
U€5=22 Zlgann {ﬁnmR —'—R;gE-Q)P( )

H ",
1"3#{]‘35) P () — ﬂnmzRZP (#)+5" sz ?(#)]

LussclBanfOb bt — 114 IR [P () ~ 1B, (1))

+ SIR{(n + 5 ~ dp)uP, () — (n+ D[(n + 12 +
n=\
S 2Ant+ D1+ Zy]Pn(g)} (41

& 172 "mR
=255 g, (g L=tlPp )

=0 m=1 E E
n+1 ", I Bikil)
+ [:(1 _Ignmsz)Pn(li) - ﬁnmszpn (/4):' X +R(llz

X [e B — 1]+ 22 ¢, B nP (w) — kP, (W]

+ > d, R ¥ —(n + 5 — 40P/ (1)
n=1
+(n+Dn—2—2A2n + w]P, (W)} (42)
Thy =0y, =0 #3)
For the stresses given by (39)-(43) to be independent of u as R -~
0, the n = 2 terms appearing in all the séries have to be excluded.
The temperature ‘and stresses at the center of the sphere can be

obtained by letting the “dimensionless radius R approach ‘zero.
Thus :
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Fig. 1 Temperature distributions in a sphere
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(45)
Gro(OeT) =0 (46)

When the entire surface of the sphere is heated under constant
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Fig. 3 Radial siress distributions in a spﬁefe

flux, the expresSmns for aij s1mphfy conmderably The resultmg
expressions are

~ 8 < 1 sin ﬁo,n
O—RRL‘0=’1 RZmZ:l 601113 sin 6 [ o8 ‘BOMR + /80”1 :]

; o ‘ X [e bt ~1] (47)
Top |m>=‘1 Tov luo=~1 Z ,30,,,3 sin Bon [CO-S Bonll

(ﬁOmZRZ 1) Sll’l IB mRE —, “m27 —_
e ] (et —1] (48)

”R(i‘\yﬂ:ﬂ T %R \,40=71 =0 . : . (49)

Equations (47)-(49)  are the. familiar results for stresses in a
sphere due to uniform heat flux over its entire surface.

Case 2—Nonuniform Surface Heal Flux. When the surface
heat flux is given by F(u) = gou for po < u < 1, equations (32)
and (86)-(46) still apply except that for this heating condition, A
and D, are replaced, respectively, by

1
A =20~ ") (50)
and

D, = fuﬂluP,f(u)du | 1)

Results and Discussion

The analytical solutions are programmed and an example of
the dimensionless temperature and stress distributions for heat-
ing angle 8¢ = 45 deg (uo = 0.707) are presented in Figs. 1-5 for
both cases of heating for a typical brittle solid having Poisson’s
ratio of 0.25. Fig. 1 shows the dimensionless temperature T, Fig. 2
shows the dimensionless tangential stress &j9, and Fig. 3 shows
the radial stress rz as a function of the radial distance R for di-
mensionless heating times of 7 = 0.03 and 7 = 0.05 for both the
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Fig. 4 Tangential stress distributions in a sphere for various angles ¢

uniform and nonuniform heating conditions at # = 2 deg. The re-
sults indicate a tensile stress concentration within the heated
zone in the interior of the solid. For similar localized heating ge-
ometry, the magnitude of stresses for uniform heating exceeds the
stress magnitudes induced by nonuniform heating. Fig. 4 shows
dimensionless tangential stress &gy against radial .distance R for
various angles 0 at 7 = 0.03. Fig. 5 shows the reversal of the tan-
gential stress due to uniform heating. The results indicate that
the tensile stress concentrations induced in the interior of the
spherical solid decrease with increasing angle 6 from the heated
zone. The stresses are reversed in zones directly beneath the
heated portion of the sphere. -

Acknowledgments

The results presented in this paper stem from a thermal rock
breaker cooperative study jointly sponsored by the U. S. Bureau
of Mines and the U. S. Army Mobility Equipment Research and
Development Center (MERDC).

934 / DECEMBER 1974

8, =45°
T =003

—— ~—— Positive (fensile) maximum
—————— Negative (compressive) maximum

Fig. 5 Tangeritial stress reversal in a sphere
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