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Transient Thermal Stresses in a 
Sphere by Local Heating 
The problem of transient thermal stresses in a solid, elastic, homogeneous, and isotropic 
sphere is solved for uniform and nonuniform, local surface heating. The temperature so
lutions are obtained by using separation of variables and integral transformation. The 
corresponding thermal stresses are derived by superposing a particular displacement po
tential function on Boussinesq solutions. Numerical solutions for two particular cases of 
localized heating of a typical brittle spherical solid have been obtained and presented. 
The results indicate a tensile stress concentration in the interior of the solid below the 
heated zone. 

Introduct ion 

A knowledge of thermal stresses caused by heating of brit
tle solids is important to understand thermal fracture and frag
mentation processes. This study was carried out to understand 
and evaluate a method of breaking rocks and related brittle solids 
by surface heating. Theoretical analyses were made to obtain 
stress distributions during localized heating of simple spherical 
solids to help select optimum heating conditions for fragmenta
tion. Sternberg, et al. [I],1 Sharma [2], and Holden [3] have con
sidered thermal stress problems in solid spheres with steady-state 
heating conditions. Warren [4] has studied the transient thermal 
stresses on the surface of a sphere for an assumed surface temper
ature distribution. This study presents the transient temperature 
and stress distributions in a sphere when locally heated on its sur
face with uniform and nonuniform heating conditions. 

Analysis 
Temperature Solution. Consider a homogeneous, isotropic, 

and elastic sphere which is initially at zero temperature. At 
time t > 0, part of its surface 0 < 6 < 0o is exposed to heat flux of 
various intensities F(d) where 6 is the angle measured from the 

axis of symmetry and the rest of the surface is assumed to be in
sulated. The radial coordinate r is measured from the center of 
the sphere. The temperature field T(r, n, t) is governed by the 
mathematical system 

V i
 K dt 

K-^r = F{ii) at r = r0, Mo < H < 1, t > 0 

= 0 at r = r0, - 1 < n < na t > 0 

T(r,M,0) = 0 for all r and ii a t t < 0 

where 

and 

v r2 dr {>•£) + H [o- ~ ̂ h] 

Ii = COS I Mo = cos 80 

(1) 

(2) 

(3) 

In the equations, K is the thermal conductivity of the material; K 
= K/pCp is the thermal diffusivity, p and cp being density and 
specific heat at constant pressure, respectively; and ro is the radi
us of the sphere. Fin) is a specified function for a certain range of 
MOrS. 

The solution to the system (1) can be written as 

1 Numbers in brackets designate References at end of paper. 
Contributed by the Applied Mechanics Division and presented at the 

Winter Annual Meeting, New York, N. Y., November 17-22, 1974, of THE 
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Discussion on this paper should be addressed to the Editorial Depart
ment, ASME, United Engineering Center, 345 East 47th Street, New York, 
N. Y. 10017, and will be accepted until February 15, 1975. Discussion re
ceived after this date will be returned. Manuscript received by ASME Ap
plied Mechanics Division, February, 1973. Paper No. 74-WA/APM-9. 

T(r,ii,t) = Q(t) + Ts(r,ii) + T.ir^t) (4) 

where the steady temperature solution Ts(r, n) satisfies the sys
tem 

V27\ - 1 dQ 
K dt. 

(5) 
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K^T = F(ji) at r = r0, Mo < M < 1 

= 0 

at r = r0 (14) 

at r = r0, -|1 < n < n„ 

and Ti(r, M, t), the difference temperature, satisfies 

V ' ' « « 

# y r = 0 at r = r0, - 1 < fj. < 1, i > 0 

T1(r,ftO) = - r s ( r , / i ) a t f < 0 

(5) 
(Cont.) 

(6) 

The solution Sif'iJ represents the difference between the average 
temperature at time t and the initial average temperature and is 
given by [5] 

Q(t) = j^L-Kr^V f J* ^ (M^ld i (7) 

where v = (%)xr0
3 is the volume of the sphere. It is evident that 

Ti approaches zero as t approaches infinity. 
When the surface heat flux F(pi) is specified, il(t) can be readi

ly evaluated. With Q(t) known, the steady temperature Ts can 
then be determined. This gives 

Ts]p„dM}p„(M) (8) 

where 

c = lrfQ 
1c dt (9) 

and Pn(f-) is Legendre function of degree n of the first kind. The 
solution for Ti can be derived by integral transform and has the 
form 

A^lSillSJ-^ + l) W Jn+,„W„m) 

X [ / ^ . ( ^ ( M ^ . t M J e •"-'!Vr' 

where the eigenvalues /?„m are the positive roots of 

=/„-,«(/?„„) = 2BL 1J„+ l„(/?„ J 

(10) 

(11) 

and t/„ is the Bessel function of the first kind of fractional order v. 
The sum of il(t), Ts(r, n), and Tt(r, /j., t) then gives the complete 

temperature solution T(r, n, t) for a specified function F(n). 
The Stress Solution. In this section, the thermoelastic stress 

problem will, be formulated. Using tensor notations, the linear 
thermoelastic equilibrium equations expressed in terms of the 
displacement are 

ukM + (1 - 2v)uiM = 2a(l + v)TH (12) 

<r„ = ' a [ B i j . + uu + p r ^ u * A - ^ I ^ ? " ^ . ; ] (13) 

where Ui denotes the components of the displacement vector, G is 
the shear modulus, v is Poisson's ratio, a is the coefficient of ther
mal expansion, and <5y is the Kronecker delta. Equations (12) and 
(13) are to be solved subject to the stress-free boundary condi
tions 

where nj are the scalar components of the unit normal vector to 
the surface at r = ro-

The solution of the system consisting of (12)-(14) can be repre
sented as the sum of a particular solution of the nonhomogeneous 
system of equations and the complementary solution of the homo
geneous system. The particular solution of (12) can be derived by 
introducing the displacement potential $ in the form 

Substituting u* from (15) into (11) yields 

V2* - alT 
where 

1 = 
l + v 
1-v 

A particular solution of (16) has the form 

$ = $i + $2 
where 

and $2 satisfies 

Jo 

V2*2 = laT - V2*! 

(15) 

(10) 

(17) 

(18) 

(19) 

(20) 

The particular solution $ j can be readily obtained by substi
tuting T\ from (10 into (19) and carrying out the integration. $2 
can be then determined from (20) with the known $1 and T solu
tions from (19) and (4). 

Once the solution for $ is found, the stress components corre
sponding to this function are obtained from the expressions [6] 

aRR Z\gR2 l J 

~ _ - /_L d$ 1 d2l> \ 
°R0 - 2V\R2 ^ R dRdfl) 

- _ /1 a$ 1 2,d
2i _L »_«0 \ , 9 n 

{R dR g^dn i J 

JRV
 =aSr

 = 0 

with/i = (1 - M 2 ) 1 / 2 . The dimensionless variables are 

i? = — T = -
'"o Q£o_ 

K 
oi- K 

$ = 
K 

Kt 

>0 S (22) 

The complete solution [ffy] to the thermoelastic equilibrium 
problem governed by (1), (12), and (13) subject to the traction-
free boundary condition (14) may be represented in the form 

0,j] = [°VJ ± fail (23) 

where [ffy] is a particular solution of the field equations generated 
by <S> and [Sy] is the solution of a residual problem. The latter so
lution satisfies the homogeneous system, equations (12) and (13) 
without the temperature terms and counteracts the surface trac
tion induced by [Stj]. The solution for <fy is obtained from the 
spherical harmonic stress functions x and * in the form 

X(r,M) = r"Pn(/x), *(V)-/P^) (24) 

Journal of Applied Mechanics DECEMBER 1974 / 931 

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/appliedm

echanics/article-pdf/41/4/930/5876469/930_1.pdf by M
issouri U

niversity of Science & Technology user on 27 June 2023



as introduced by Sternberg, et al. [1]. The stress solutions [Cn] 
and [Fn] corresponding, respectively, to x and * are combined in 
the form [2] 

. : [JB„]:=(2« + l ) [ F „ ] - ( « - 3 + 4r tC„+ 1] (25) 

The stresses associated with [C„] are 

am*=n(n-l)R«^P^) 
.*• = — In — 1 \77T>n~2V 'I 

B„m = 
2/i + l 

[J3nj - n{n + l)]J„+JP„m) (35) 

and (Sum are the positive roots of (11), By employing (16), the dis
placement potential $ can be obtained as 

BnmD„ Jn^,ll3nmR), 
.$ = \A,m + £ E ^ ^ ^ f ^ p „ ( M ) [ ^ » v - 1 ] 

(36) 

Zm* = R"-XnP„'(M)-n2PM] (26) 

* = ; ; * = 0 

and those associated with [En] are 

oRR** = [n
2(n - 3) - 2ra]ff'-1P„_1(A() 

ff„**-(2-n«-2i»)Mff-1i>„l1'(/1) 

?„** = [(n + 4 - 4e)HP„_1V) - «(re
2 + 2re - 1 + 2v)P„_1(M)]7J"-1 

5 :
W** = [ K « + 4 - 4 ! / ) M P „ _ 1 ' ( M ) 

+ n(n - 3 - 4vn + 2v)P^1(fi)'\R-1 

(27) 

The stresses corresponding to $ and T are then evaluated from 
(21). 

The residual stresses are given by (28). The corresponding [Cn], 
[En], c„, and dn are expressed by (26), (27), (29), and (30). The 
expressions for £n and i]n appearing in (29) and (30) are found to 
be 

and 
Ur) = Z l B - f l . ^ C f L r " ' ' - 1] (37) 

m=l Hum 

Ur) = 2 £ BnmDj^f^- ie-^ _ y (38) 

3^** = OR** = ° 

The total stresses in dimensionless form are, from (23) 

^ = 2 E E / L » A i 

In the foregoing equations, Pn'(fi) = dPn(ji)Jdti. The solution [<ry] 
can be put into the form 

[-E 
2 J„-,,,(|g„MJ?) , (» + 1X« + 2) J„+„A/3nmR) 

- + ]Pj :(M) 

[^] = E,c«tc»] + Ed»K.+J (28) 

wherein the coefficients c„ and d« are evaluated by imposing the 
stress-free conditions at r = r0, equation (14). For the case under 
consideration, ORR = BRD = 0 at R = 1. This gives 

= q„[3n + 2 + 2i> - re3 + 2 w ] + £„[2 - (re + I)2 - 2i/] 
C » 2(n - l)[re2,+ re + 1 +;K2ra + 1)] 

n = 2,3,4... (29) 

£,, + nr/„ 

„,R R1'* 0nJR2 Ru 

. x [e~^h -1] + I > ( n - D«"" 2 ^A(M) 
n-2 

+ E > + D l > + D(« - 2) - 2v]R"dnP„(n) (39) 

J-„.(fl, 
L /?„mi? > « ' 0, 

El 4- " + 2 ^.+.-.(ft,mff)]p ,( 
+ |8 2.R2 P1 / 2 , J " 

'(/") 

rf„ = n = 0,1,2,3.. (3,0) 
2[(rt2 -•+ n + l + v{2n + 1)]' 

where £n and jjn are evaluated from SRR and SRO at ;• = ro as 

^ ( W ) - E!^(r)PB l(/i), ^ ( l , / ( , r ) = M E ^ ( T ) P „ ' ( M ) (31) 

With these values of c„ and d„, equations (23), (21), (26)-(28) 
constitute the Complete solution of the thermoelastic problem. It 
should be pointed out, however, that the expressions for £n and i)n 

are dependent on $ and T solutions which in turn depend on the 
nature of surface heating. 

Application for Uniform and Nonuniform Surface Heating. 
In the following sections, the special cases of uniform and nonuni
form surface heating are presented because these two cases are 
very representative of most surface heating. Uniform heating is 
represented by P(M) = go where go is a constant. For nonuniform 
heating, the case of cosine flux variation is considered. 
. Case 1—Uniform Surface Heat Flux. When the surface heat 
flux is a constant go for^o S fi < 1, the temperature solution is 

X \e-t>^ - 1] - M £ ( n - l)fl"-2c„P„'(M) 
71-2 

± M E [ 2 - ( r c + l ) 2 -2* ] f l "d„P„V) (40) 

4 = 2EE&.mA.{fln J„_,,,(/3„™«) 
fl1' PM 

+ - ^ — ^ V ( M ) ] 

f - 3Ar - E t.BnmB^f^P,^\e-^ ~ 1] (32) 
.. » - 0 m - l "• 

where 

A = ^(1 —/*«) (33) 

(34) 

[A1 ~ Jjw)PM ' ft^R2P"'(M) + KJWP" 

x J^d^ElJ [e-A.v _ y + gK»"2
 C„[̂ P„(/,) - B ^ ) ] 

+ Efl"d„|(re + 5 - 4v)pPn'(ji) -(n + l)[(ra + l)2 + 

. 2Cn + l ) - l + 2i-]P„(M)| (41) 

ff« = 2 L l &.m A, 1 g—B — u m — p n W 

+ L\ 1 _ /? n m
2W p" ( / i ) ft„I

2fl2P"(^Jx ff'2 

X [e-"™2- ~ 1] + E c„fl"^2[ftP„(M) - MP„V)] 
n-2 

+ E|rfnfl""2i(-(i + & - 4iOMiY(/i) 

+ (n + l)[n - 2 - 2<2ra + 1)I/]P„(M)I (42) 

S W - G * - 0 (43) 

For the stresses given by (39)-(43) to be independent of n as R ^* 
0, the h = 2 terms appearing in all the series have to be excluded. 
The temperature and stresses a t the center of the sphere can be 
obtained by letting the dimensionless radius R approach zero. 
Thus 
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Fig. 3 Radial stress distributions in a sphere 

flux,1 the expressions for ay simplify considerably. The resulting 
expressions are 

~ , 8 y 1 [" •'„ sin /3,jmRl 
" H o - i ~ J P & 0Om» sin 0 L C 0 P P°"H Po„,R X 

X [ e - A » 2 - - l ] ( 4 7 ) 

Pom-R J 

<% 

< J ™ k - i ' (49) 

Equations (47)-(49) are the familiar results for stresses in a 
sphere due to uniform heat flux over its entire surface. 

Case 2—Nonuniform Surface Heat Flux. When the surface 
heat flux is given by F(n) = <?0M for ft < /1 < 1, equations (32) 
and (36)-(46) still apply except that for this heating condition, A 
and Dn are replaced, respectively, by 

1, 

and 

A - ? ( 1 - n<?) 

Dn= f'uP^dn 

(50) 

(51) 

^T)"44^"l^Srifefc)] C 4 4 ) R e s u l t s and D i s c u s s i o n 
The analytical solutions are programmed and an example of 

j . the dimensionless temperature and stress distributions for heat-
ifiom3 lJi/i(fiom) inff anele fjn = 45 ( j e g (Mo = 0.707) are presented in Figs. 1-5 for 

aRR(0,H,T) = ffM(0,M,T) = oJPjif) = gh / j j A Z 
mg angle U0 

(45) both cases of heating for a typical brittle solid having Poisson's 
ratio of 0.25. Fig. 1 shows the dimensionless temperature T, Fig. 2 
shows the dimensionless tangential stress aoo, and Fig. 3 shows 
the radial stress SRR as a function of the radial distance R for di-

When the entire surface of the sphere is heated under constant mensionless heating times of T = 0.03 and r = 0.05 for both the 

^RI(P,H,T) = 0 (46) 
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0.06i 1 1 1 1 < r 

0 0.2 0.4 0.6 0.8 1.0 

RADIUS. R 
Fig. 4 Tangential stress distributions in a sphere for various angles II 

uniform and nonuniform heating conditions at 0 = 2 deg. The re
sults indicate a tensile stress concentration within the heated 
zone in the interior of the solid. For similar localized heating ge
ometry, the magnitude of stresses for uniform heating exceeds the 
stress magnitudes induced by nonuniform heating. Fig. 4 shows 
dimensionless tangential stress dee against radial .distance R for 
various angles 8 at r = 0.03. Fig. 5 shows the reversal of the tan
gential stress due to uniform heating. The results indicate that 
the tensile stress concentrations induced in the interior of the 
spherical solid decrease with increasing angle 8 from the heated 
zone. The stresses are reversed in zones directly beneath the 
heated portion of the sphere. 
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