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Fig. 4 Dimensionless velocity profiles, highest heat flux 

and Chang, et al., observed a "crossing over" of their profiles, i.e., 
the Grashof number resulting in highest peak velocity yielded the 
lowest velocity far from the heated wall. Some evidence of this ten­
dency is observable in these figures, particularly at Gvx* = 3 X 106. 

In each figure velocities adjacent to cylindrical surfaces are 
below those for a plane wall, the difference being less for increased 
values of Grx*. 

Experimental profiles display similar trends but do not coincide 
as would be true if the similarity parameters, i) and / ' , were suffi­
cient to describe the flow behavior. Definite variation is apparent 
with the amount of curvature and with Grashof number, variations 
with Grx* due principally to a varying heat flux level. Since all 
measurements were accomplished in mercury no Prandtl number 
effect was investigated; the Prandtl number of mercury (Pr = 
0.023) is representative of the liquid metals. 

Conclusions that may be reached regarding natural convection 
in low Prandtl number fluids adjacent to heated vertical cylinders 
are the following: 

1 Velocities adjacent to curved surfaces are below analytical 
results for flat plates, LID = 0. 

2 Velocity data, when reduced to / ' versus -q form, do not ex­
hibit similarity. Differences are present both with heat flux level 
and with cylinder diameter. 

3 Velocity profiles indicate the hydrodynamic boundary layer 
thickness to be only slightly affected by heat flux level or cylinder 
diameter. 

4 The principal effect of heat flux and cylinder diameter is on 
magnitude and location of the velocity peak. 

5 With increased heat flux the peak velocity increases and oc­
curs nearer to the heated surface. 

6 With decreasing diameter the peak velocity decreases in 
magnitude and occurs further away from the heated surface. 

Indications from this work are that, with a given cylindrical sur­
face oriented vertically, an increase in wall heat flux causes flow 
rates to increase in the near vicinity of the surface without appre­
ciable effect on the extent of the flow field. This region is also 

where higher fluid temperatures exist. Thus, an increase in wall 
heat flux causes a significant increase in flow rate with an increase 
in energy concentration in the near-surface fluid layers. 
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A Closed-Form Solution for the 
Radiosity at the Edge of a 
Rectangular Cavity 

A. L. Crosbie1 

Recently, Crosbie and Sawheny [1, 2]2 have applied Ambarzu-
mian's method to the following integral equation describing the ra­
diosity in a rectangular cavity: 

1 Thermal Radiative Transfer Group, Department of Mechanical and 
Aerospace Engineering, University of Missouri-Rolla, Mo. 

2 Numbers in brackets designate References at end of technical note. 
Contributed by the Heat Transfer Division of THE AMERICAN SOCI­

ETY OF MECHANICAL ENGINEERS. Manuscript received by the Heat 
Transfer Division July 24,1975. 
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B(x, m) = e-" 

with kernel 

K(x)= C 
Jo 

• ("°B(y,m)K(\x-y\)dy (1) 
i • - ' 0 

ne-"xJi(n)dn = (1 + x2)~3/2 (2) 

where Ji(ra) is the Bessel function of order one. The depth into the 
cavity is denoted by x. p = 1 corresponds to a cavity subject to ex­
ponentially decaying wall heat flux, i.e., qw(x) = go exp(-mx) [1], 
while p < 1 corresponds to a cavity subject to an exponentially 
decaying wall emissive power, i.e., oTw

4(x) = CTTO4 exp(—mx) [2]. 
The radiosity at the edge of the cavity satisfies either of the fol­
lowing two nonlinear integral equations: 

B(0, m) 1+-B(0,m) 
2 

2 

X 
s; 

- nJi(n)B(0,n) 

n + m 

mJi{n)B{0,n) 

dn 

dn 

(3) 

(4) 

(5) 

B(0,m) ' 2 ^ o n + m 

Inspection of equation (4) reveals that for m = 0 

B(0, 0) = (1 - p)"1 / 2 

In the study of noncoherent scattering [3, p. 205] in a semiinfin-
ite medium, the following integral equation for the source function 
arises: 

A 
S(j,z) = e-r'z + A j . -

2 Jo 
S(t,z)#i(k-i|)<i£ 

with kernel 

KI(T) -s: e~r'*'G(z')dz'/z' 

(6) 

(7) 

where T is optical depth into the medium and A is the albedo. The 
source function at the boundary, 5(0, z) = H(z) satisfies the fol­
lowing nonlinear integral equation [3, p. 212]: 

H(z) = l+-zH(z) C 
2 Jo 

•H(z')G(z') 

z + z' 

This equation can be solved [3, p. 216], i.e., 

ln[l - \V(u)] 

dz' 

H(z) = exp 
2 /""» 

ir Jo 1 + Z2U2 
du 

where 

V( 
G(z) , f - G(z 

J o 1 + u 
-dz 

(8) 

(9) 

(10) 

Comparison of equations (l)-(3) with (6)-(8) reveals that A = p 
z = 1/m, G{z) = Ji(l/z)/z2, and .8(0, m) = H(l/m). Thus, 

Ji(l/z) dz ("° m2Ji(m) 
V(u) 

f- Ji(Vz) dz r-mViim) 
I T~>—71^ = I ~~T~t—-dm = uK1(u) Jo 1 + uLzl zl Jo m1 + u% (11) 

where K\(u) is the modified Bessel function of order one. The last 
integral was obtained from reference [4]; therefore, the radiosity at 
the edge of the cavity is given by 

ln[l - puKriu)] 
B(0, TO) = exp m r° 

7F J o 
-du (12) 

m2 + u2 

This closed-form expression was evaluated numerically for a wide 
range of m and p values. The results agreed with the previous cal­
culated values [1, 2] which were obtained from equation (4) by it­
eration. 

Equation (12) is more suitable than equation (4) for investigat­
ing the nature of the edge singularity in the wall heat flux case (p = 
1, m —>• 0). When m is small, the main contribution to the integral 
in equation (12) occurs at small u. For small u 

uKi(u) •• 

with 7 = 0.5772156649 . 
equation (12) yields 

1 + - u 2 I n - + - u 2 ( 2 7 
2 2 4 

1) (13) 

Substitution of this approximation into 

B(0, TO) ^ exp j - — f" In (1 - p) 

- - pu2 In pu2 2 7 - 1 
2 2 4 \m2 + u2 

(14) 

When p < 1 only the first term in equation (13) is required to yield 
equation (5). However, for the special case of p = 1, the next term 
is important. For this case the transformation x = u/m yields 

1 \ film r 1 
B(0, m) ^ e x p - - I In - - T O 2 X 2 In mx 

2 

m2x2(27 - 1 ) 1 - ^ -
J l + i 

(15) 

B(0, m) =* exp { - - P "" 2 In x + I n / - A m 2 ) 

/1 I" x\ "I dx 
+ \ "~ A / J l + x2 (16) 

with 

A = ln(2/m) - - (2y - 1) 

, *.* _ I « s _ 

Utilization of expansion 

l n ( l - • ( ) •• 

2 3 

in the integrand of equation (16) gives 

• , [ 2 r2lm m x 
B(0, TO) r~ exp I I -dx 

I 7T J o 1 + X2 

1 , / l „ \ C2lm dx 
- - l n ( - m 2 A ) I 

w \2 / J o l + x 2 

1 r2,m Inx 1 r2/m(lnx)2 

+ — I '„ d* + i -
wA Jo 1 + x2 2TTA2 J O 1 

(17) 

+ x2 
dx + (18) 

Letting m become very small and introducing the following inte­
grals: 

J'™ lnx /"" dx IT , (""(lax) 
-dx = 0, - = - , a n d -

0 1 + x2 J o 1 + x2 2 J o 1 + x 
dx • 

(19) 
into equation (18) yields 

B(0 ,TO)^e X p[ - i ln ( iTO 2 A) + I ^] (20) 

B(0, TO) ^ 
V2 

exp (TT2/16A2) (21) 

Table 1 Comparison of various approximations of 
B(0,m) with exact results for p = 1 

V2 

m 

1.0 
0.5 
0.2 
0.1 
0.01 
0 .001 
0 .0001 
0 .00001 

B(0,m) 
2.03112 
2.94387 
5.38909 
9 .07591 
63 .7895 
522 .220 
4542 .95 
40786 .7 

'm\f~A 

( "*\ expw/ 
9 .16015 
3 .54314 
5 .36883 
« . 89990 
63 .3084 
521 .233 
4 5 4 0 . 4 1 
40778 .0 

N / 2 

m-jA 
1.80198 
2 .47208 
4 .74006 
8.27816 
61 .8919 
515.584 
4511.50 
40607 .4 

N / 2 

mVln(2/m) 
1.69864 
2 .40224 
4 .65991 
8 .17078 
61 .4393 
512 .959 
4493 .87 
40478 .7 
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When m is very small, A = ln(2/m) and equation (21) becomes 

fl(0, m) = V 2 l[m Vln(2/m)] (22) 

Physically, equation (22) means the temperature at the edge of the 
cavity is inversely proportional to [m ln(2/m)]1 '4. This behavior is 
somewhat unexpected since the overall heat transfer from the cavi­
ty is inversely proportional to m. 

Approximations (21) and (22) are compared to the exact numer­
ical results in Table 1. These approximations yield imaginary 
numbers when m > 2 and thus are not included. This behavior is 
due to the truncation of the series for uKi(u) to three terms. In­
spection of Table 1 reveals that equation (21) is a more accurate 
approximation than equation (22) except when m > 0.5. For the 
range of m values reported in Table 1, approximation (22) under­
estimates the radiosity. 

References 
1 Crosbie, A. L., and Sawheny, T. R., "Application of Ambarzumian's 

Method to Radiant Interchange in a Rectangular Cavity," JOURNAL OF 
HEAT TRANSFER, TRANS. ASME, Series C, Vol. 96, 1974, pp. 191-196. 

2 Crosbie, A. L., and Sawheny, T. R., "Radiant Interchange in a Noniso-
thermal Rectangular Cavity," AIAA Journal, Vol. 14,1975, pp. 425-431. 

3 Ivanov, V. V., Transfer of Radiation in Spectral Lines, National Bu­
reau of Standards Special Publication 385, U. S. Government Printing Of­
fice, Washington, 1973. 

4 Abromowitz, M., and Stegun, I. A., Handbook of Mathematical 
Factions, National Bureau of Standards, Applied Math. Series, 55, U. S. 
Government Printing Office, Washington, 1966, p. 488. 

Critical Thickness of Insulation 
Accounting for Variable 
Convection Coefficient and 
Radiation Loss 

L. D. Simmons1 

N o m e n c l a t u r e 
F = shape factor, fraction of energy leaving the outside surface of 

the insulation which is incident on the portion of the environ­
ment having temperature T„ 

h = mean convection heat transfer coefficient for the outside sur­
face 

K = coefficient in the expression for variable convection heat 
transfer coefficient 

k = thermal conductivity of the insulation 
m = exponent of ro in the expression for variable convection heat 

transfer coefficient 
n = exponent of (To — T„) in the expression for variable convec­

tion heat transfer coefficient 
q' = heat transfer rate per unit length of tube, wire, or cable 
r = radius of cylindrical insulation; 77 and TQ are inside radius and 

outside radius, respectively; rocril is the outside radius which 
maximizes q' 

T = absolute temperature; T;, To, and T„ are inside surface tem­
perature, outside surface temperature, and temperature of the 
environment, respectively 

t = total hemispherical emissivity of the outside surface of the in­
sulation 

a = Stefan-Boltzmann constant 

1 Department of Mechanical Engineering, University of Utah, Salt Lake 
City, Utah. 

Contributed by the Heat Transfer Division of THE AMERICAN SOCI­
ETY OF MECHANICAL ENGINEERS. Manuscript received by the Heat 
Transfer Division September 12,1975. 
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I n t r o d u c t i o n 
If the outside surface of a small diameter tube, wire, or cable has 

approximately constant temperature, there is a critical thickness 
of insulation which maximizes energy loss by heat transfer. This 
critical thickness of coating can be utilized when it is desired to 
cool the cylindrical tube, wire, or cable as effectively as possible. It 
is easily shown [l]2 that, if the insulation (with thermal conductivi­
ty k) around a long, slender cylinder has its inside radius r; and its 
inside surface temperature T; fixed, has an outside convection 
coefficient k which can be considered constant, and has negligible 
energy loss to its environment by radiation, the energy loss rate-
per-unit length q' will be maximum when 

k 
rQ = - (1) 

h 

This maximizing radius is usually referred to as the critical radius 
rocril

 a n d ('"Oca ~ ri) is referred to as the critical thickness of insula­
tion. McAdams has shown [2] that if radiation is included in lin­
earized form such that the radiation from the surface is given by 
hrA(To — T„), then the critical radius is given by 

k 

However, both h (for convection) and hr (for radiation) were con­
sidered constant, not varying with rQ or To. Sparrow has shown [3] 
that if the variation of h with ro and outside surface temperature 
To is considered in the form 

h = K(TQ-T„)n/r0
m (2) 

and radiation neglected, then the critical radius is given by 

/ l - m\ k 

^=( l77k (3) 

Note, however, that now h on the right-hand side of equation (3) is 
a function of ro and To, which itself is a function of ro, and so the 
value of rocrit must be found by a trial-and-error or iterative proce­
dure. In all three cases given in the foregoing the resulting expres­
sions for ro„i, are simple in form (although not necessarily easily 
solved). However, none of the three could be expected to correctly 
predict the true critical radius because of simplifying assumptions. 
The purpose here is to develop an expression for rocrit for insulation 
of cylinders with the variation of radiation and h with ro and To 
accounted. 

Analysis 
The energy loss by conduction through the insulation is given by 

, 2-KHTJ - Tp) 
q = , . . .— = IVo, To(ro)] (4) 

In (ro/n) 

and the loss rate by convection and radiation from the surface is 
given by 

q' = 2-xh r0(TQ - T„) + 2irr0e.Fff(T0
4 - TJ) (5) 

where h is given by equation (2). At steady state the energy loss 
rates will be equal so that 

k{?\ ~,n) = hr0(T0 - T . ) + / W M T o " - TJ) (6) 
In (r0/r,) 

Now if dq'/dro is found from equations (2), (4), and (6) by using 
chain rule and the result set to zero, the critical radius is found to 
be 

fe[fe(l-m)(T0-T„) + eFaW - TJ)} 
r°"il \(n + \)h + 4zFo-T0

3}[h(To ~ T„) + eFa(T0
4 - TJ)} 

2 Numbers in brackets designate References at end of technical note. 
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