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A CLASS OF FUNCTIONAL EQUATIONS AND

MIELNIK PROBABILITY SPACES

S. J. GUCCIONE, JR. AND C. V. STANOJEVIC

Abstract. Let S be the unit sphere of a normed real linear space N and let

(S,p) be a Mielnik space of dimension two. For p(x,y) = /(||jc + >>||), x, y

E S, where / is a continuous, strictly increasing function from [0,2] onto [0,

1], it has been shown that (S,p) being two dimensional is equivalent to N

being an inner product space.

In some polarization problems modeled on the unit sphere of an inner

product space, the transition probability p(x,y) may not be as well behaved

nsp(x,y) = f(\\x + y\\). In order to provide a more suitable setting, we have

constructed wide classes of two-dimensional transitional probability spaces

(S,p), all having the same set of bases 9J, with/; = <|> o /where <J> is a solution

of a certain functional equation. In particular, for p(x,y) = \\x + y\\ /4, we

answer a question due to B. Mielnik.

1. Introduction. In [1], transitional probability spaces, in the sense of Mielnik

[2], were utilized to obtain a new characterization of real inner product spaces.

Let f = {/|/: [0,2] onto [0,1], /, continuous and strictly increasing} and let

@ = {g\g'- [0>2] onto [0,2],g, continuous and strictly decreasing}. Considering

those / E ¥ and g G § that satisfy the functional equation f + f ° g = 1

where (/ ° g)(t) = f(g(t)) and 1 is the identity function on [0,2], the following

result is given in [1]: Let N be a normed real linear space, S its unit sphere,

and let p(x,y) = f(\\x + y\\), where f G 'A. Then N is an inner product space

if and only if, for some / G % (S,p) is a Mielnik probability space of

dimension 2.

This result provides an adequate model for some polarization problems.

However, there are polarizations of particles other than photons modeled on

the unit sphere 5 of a real inner product space N for which transitional

probabilities/;(;e,>>) of the form p(x,y) = /(||x + y\\) are not adequate.

The above remark motivates an effort to study two-dimensional transitional

probability spaces that will provide a more suitable setting for this kind of

polarization phenomena.

In order to construct those more suitable transitional probability spaces, we

need to consider functions satisfying the following functional equation:

(*) </>« + <t>(\~t)=l, t G [0, 1].
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The size of the class <&0 of all functions <f> from [0,1] onto [0,1] and satisfying

(*) is too wide for our purposes, as the following proposition indicates.

Proposition 1. Every 4, E $0 is of the form

<p(t) = tff - J) + i, IE [0, 1],

where \p is an odd function on [— j,j].

Any of the following subclasses of <I>0 can be used in the construction of

more general transitional probabilities:

$, = {<b\<j> E %,<b(t) = 0»f = 0},

$2 = {^>j<j> E ^>0,<|), strictly increasing},

$3 = {<b\<j> e $0,(j>, strictly increasing and continuous}.

It is plain that $3 C $2 C $, C $0. Even the smallest subclass <D3 can

exhibit very pathological behavior as is shown by Ganguli [3]; for instance, $3

contains Cantor's singular function.

In general, polarization does not have to be a mapping T: x r-» — x where x

is a unit vector in N. It can be modeled by a corresponding Mielnik two-

dimensional probability space with an automorphism T: S —* S where 51 is

any set of states.

The following proposition makes the above remark even more transparent.

Proposition 2 [1]. Let {S,p) be a two-dimensional Mielnik space. Then there

is an involution T: S —> 5" such that every basis B of iS,p) is of the form

B = {x, Tx), x E S.

In particular, if S is the unit sphere of a normed real linear space N, then

Tx = —x as shown in [1].

2. Construction of two-dimensional transitional probability spaces. We are

now in the position to exhibit the existence of a wide class of two-dimensional

probability spaces in a very general setting utilizing the class $,.

Theorem. Let {S,p) be a Mielnik probability space of dimension 2. Then for

every <f> E <frx, (S, <b ° p) is a transitional probability space of dimension 2, where

<$> ° P = <t>(p)-

Proof. Since <f> is a self-map of [0,1] and 0 < p(x,y) < 1, 0 < <b(p(x,y))

<  1 for all x,y E S.

If (b(p(x,y)) = 1, then from (*) we obtain <J>(1 - p(x,y)) = 0. Since <p(r)

= 0 if and only if t = 0, this implies that p(x,y) = 1. Since p(x,y) is a

probability function, this forces x = y.

If x = y, then p(x,x) = 1 and, hence, <p(p(x,x)) = <b(l) = 1 by definition

of the class $,. Therefore, (b(p(x,y)) = 1 if and only if x = y. The symmetry

of <b(p(x,y)) follows from the symmetry of p(x,y). Now, <$>(p(x, Tx)) — <J>(0)
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= 0, since (S,p) is two dimensional with all bases of the form B = {x, Tx}, x

G S, and <£(0) = 0. Moreover, if <$>(p(x,y)) = 0, then p(x,y) = 0. Since (S,p)

is a two-dimensional Mielnik space, this forces y = Tx.

Therefore, all bases <® of (S, <b ° p) are of the form B = {x, Tx), x G S.

Since <f> is a solution of (*) and p(x,y) satisfies Axiom C in [2], we have, for

any x G S and basis B = {y, Ty), y G S,

<b(p(x,y)) + <b(p(x, Ty)) = <b(p(x,y)) + <b(] - p(x,y)) = 1,

i.e., <p ° p satisfies Axiom C. Hence, (S,<p ° p) is a two-dimensional transitional

probability space.

By taking S to be the unit sphere of a normed real linear space and

p(x,y) = f(\\x + y\\) to be any function of \\x + y\\ satisfying the generaliza-

tion of the parallelogram law given in [1], we obtain the following corollary.

Corollary 1. Let N be a real inner product space, S its unit sphere, and f be

as above. Then (S, (<b ° f)(\\x + y\\)) is a two-dimensional transitional probability

space for every <p G <I>3.

It is clear that using the subclasses <I>2 and <D3, we can obtain important

special cases of the above theorem.

Our next corollary answers a question due to Mielnik1 concerning necessary

and sufficient conditions for the existence of a particular type of two-

dimensional probability space in the setting of normed real linear spaces.

Corollary 2. Let N be a normed real linear space, S its unit sphere, and let

p(x,y) = <b(\\x + y\\ /4) where <b G $0. Then (S,p) is a two-dimensional transi-

tional probability space if and only if N is an inner product space and <b G d>3 .

The proof follows from the observation that if / e f and <b e <J>3, then

iji»/£f, and the fact ihatf(t) = (t/2)2 is in f.

Corollary 2 allows us to construct fairly bizarre two-dimensional transition-

al probability structures even in a real inner product space. Although

/(ll* + .HI) and, in particular, ||x + _y|| /4, are very well-behaved functions of

ll* + j>||, one can take <J> G <1>3 to be a Cantor singular function or any other

solution of the functional equation <]>(t) + <p(\ — t) = 1, constructed by the

method of Ganguli [3]. This shows that if the model (S,p) is not adequate for

the polarization states S, one can construct more suitable models (S, <f> ° p) due

to the variety of functions in <E>3, or even in $,. In the case where we have so-

called "partial" or "incomplete" polarization, the representation space for

reasonable transition probabilities must be a uniformly convex normed real

linear space as is shown in [4].

1 In a private communication to the second author.
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