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Generalized Feedback Shift Register Pseudorandom 

Number Algorithm 

T. G. LEWIS 

Unirersity of Missoum at Rolla, Rolla, M~ssoum 

AND 

W. H. PAYNE 

Washington State University, Pullman, Washington 

ABSTRACT. The generahzed feedback shift register pseudorandom number algollthm has several 
advantages over all other pseudorandom number generators These advantages are (1) it produces 
multidimensional pseudorandom numbers; (2) it has an arbitrarily long period independent of the 
word size of the computer on which it is implemented, (3) it is faster than other pseudorandom num- 
ber generators, (4) the "same" floating-point pseudorandom number sequence is obtained on any 
machine, that is, the high order mantissa bits of each pseudorandom number agree on all machines-- 
examples are given for IBM 360, Sperry-Rand-Univac 1108, Control Data 6000, and Hewlett-Packard 
2100 series computers; (5) it can be coded in compiler languages (it is portable), (6) the algomthm is 
easily implemented in microcode and has been programmed for an Interdata computer 

KEY WORDS AND PHRASES pseudorandom numbers, Lehmer, Tausworthe, feedback shift register, 
linear recurrence mod 2, primitive polynomial, GF(2), tests of randomness, lattice, wave properties, 
Fourier analysis, Kendall's algomthm 

CR CATEGORIES: 3.15, 5.5, 8.1 

The Lehmer congruential multiplicative pseudorandom number  generator has been shown 
to have n-space nonuniformity [1, 5]. This shortcoming is particularly severe for small 
word machines. As an alternative, the feedback shift register (FSR) pseudorandom 
number generator (RNG) is claimed to be uniform in n-space if p-bit  words are deci- 
mated into n subwords [7]. Figures 1 and 2 give examples of nonuniformity of Lehmer 
RNG's  for 9-bit words in two- and three-space. FSR generators with primitive generating 
function, X p ~ X q W 1, small q or q near (p - -1) /2 ,  should be avoided because of bad 
runs properties [8]. However, careful selection of p, q provides satisfactory random 
numbers in low-dimensional space [10]. 

Perhaps FSR sequences offer the best prospects for n-space improvement.  Kendall 's  
algorithm is moderately fast on most machines, but  the period is fixed by the word size 
and it is difficult to implement in multiprecision [10]. Moreover, decimation in order to 
gain n-space uniformity further shortens cycle length and resolution. This problem is 
intrinsic to periodic sequences. A cyclic sequence of ~ numbers, when taken in pairs, 
locates only m of m 2 points in a two-dimensional m by m grid. In  general, m ~ -- m grid 
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Continued growth of "crystals" in X,+~ ~ 17X, - 1 (mod 512), (a) 384 points in 2-space, (b) 

512 points in 2-space, (c) plot m 3-space of 256 successive triplets 

points will never be located in n-space by n-tuples taken from an m-periodic sequence, 
i.e. most cross products are missing. This sparseness in n-space underlies nonuniformity of 
all periodic RNG's.  Apparently, what is needed is an RNG which allows repeated numbers 
within a full period sequence. Such repeated numbers could fill in m ~ points, for some n. 

The purpose of this paper is to present a new, completely general FSR algorithm for 
generating arbitrarily long sequences of random numbers possessing desirable n-space 
properties on any word size machine, and to demonstrate the feasibility of micropro- 
gramming a single instruction with high speed/cost ratio, which produces a random 
number  each time it is executed. 

1. UeJ~eralized Feedback Shift Register Algorithm ( GFSR) 

Define @ to be the EXCLUSIVe-OR operator which is equivalent to addition modulo 2. 
Kendall 's  algorithm is used to select successive n-tuples from the basic sequence {al}, 
where ak = ak-v+q ~ ak-p, k = p, p + 1, • • • , given av-1, • • • , ao and feedback shift reg- 



4 5 8  T . G .  LEWIS  AND W, H.  PAYNE 

E|oO ° [] o o cI rl 
° o OO 0 0 O o 0  [] ° 

:! Q O O O O O O 0 O [] 0 oO 
[] 0 [] [] O ° O OO QQO ° ° O  

QQ QQ 0 o O o O o •  Q Q Q Q 

QQQO Q °  OQ QQOQ• [] 0 Q QQ 

Q O 0 Q Q 0 0 
Q Q ° QQ Q QO [] 

Q Q °  Q [] Q 0 0  0 IO 0 O O 0 O°  [ ] 0 • O o O  
[] 

o ° 0 0 ° ° [] 
[] 0 0  [] ~= io O •  [ ]  O 0 O ° ° o O 

,~-~ , 00  [] % 0 O  O 0 QQOQ O 0 0 O •  [] X 
;00 0 0 0  [] [ ]00  ° 000 [] O 

[] 0 [] O QQOOQ ~ 0  0 
° 0 O O 0 0 0 0  °C 

OoO•[ ]  QQQ Q O[] [] [] Q [] 0 c 
[] 0 0 O 0  • O  O •  [] 0 [] [] [] 

[] [] [] [] [] 0 0 0 [] O, 0 ° ° O  , I O 0 0  

( 

( 
o o 

° O  ° 0 0 0 0  O0 0 0 0 0 0 0  ° O °  O 

%:° 
° OO 0 ~ o..JO_O ° O ° o O 0  O 

0 2 0 0 ° 0 0 0 ° 0 0 0 0  [] ~ - -00  " 0 '  
0 O O O O O [] O ~ 0  O 0 0  

|r.~Q~ Q Q Q Q Q Q Q Q Q O Q O o •  Q •  0 [] 

i ~ °~oOoOo o • O ° o  ° ° O O[ ]  o ~ Q ° 
o o o o •  o o O o ° o o Q u 

[] - 0  0 0 o O O 0 ~O O 
,Q 0 - - 0  0 Q 0 [] [] Q Q Q Q O Q O ~ o Q o  0 
° • Q O • O  0 OO•  Q Q QQ ~:~ 0 ° 

0 0 0 [ ]  [] [] [] ° Q Q Q r L  Q ~ • ~  0 0  
0 0 0 0 0 ° O [] L u.~- d"~ff ' '  
[] 0 [] 0 0 0 [] ~aO0 [] [] O0 00 

O [] 0 [] 0 0 0 ° 0 0 [] 0 O 0 
[] [] Q Q [] 0 0 0 0 [] O 0 O 0 0 Q O o Q • O  O o  O O o  [] [] 0 [] 

OoO0[]  0 [ ] 0 0 0 0  0 0 0  ° 0 [ ] 0  [] OO[] • [ ]O 

oo o.~o 0.40 0.60 o.oo I.oo %:oo o.~o 0.40 0'.60 oleo t.oo 
X ( l )  X ( l }  

(a) (b) 

° o ° o o  ° o o [ ] o ° ° ° o ° o °  o [] o / 

I,.l ~ ° ~ O 0 [ ]  O ° [ ]  0 ° O ° O 0 I O 0  0 rm ~ I --r3" 
o~ ° ° 0 0--°--[]--0--00 [] [] ° ° ° [] ° ca[ ~ ~ ~'-JQ " I ago 

9 0  ° ~ ° , J - ' o  o - [ ] - Q  ° o [] o _ [ ] _ [ ] [ ] U o  / ~ - °  ~ [ . ~ : ,  ° U l - 

_ °o[]o%  2[]2[]oOo o k °, °_ , O.o 
~'~[][][] [] [] []_a [] a 0°o°°o°0 ° ° ° ° .~Voo o° c " % ~ c ~ ~  
, ~ ,~  o~[] []~[] u [] o o [] o [] ° ° ° ° o'i" o * ~r~"O-,..t.d-.t4_ 

q~ o o o [ ] o  o o o [] [] ° ° ° o [] o o I + / ~ O.-.m O 0 ~ = ~  
~ o  o ° o ° ° ° o 0  ° [] ° ° [ ]  o [] 01 ~ / o ' --0'- % ~  ~ 
?_o__ 0o o 0_  ~ ° o ° o ~ o o ° o ° 0 ° o l  X o /  o [] ~ o  ~ °  u I o ~ o ~ , ~  

° ~ o o o  o • •  o [ ]  ° o o •  [] o [] [] OoO o J  / ~ . 0 ~ o ~  o •  I"  o2O Oo•[]•Zo o:[]o[]oOoo°o Oo%oOo°On I s o I 
o [] [] O O O ••°•°OOOOO °LJ° [] 0 [] 
@ o ;  o o [] , , , '100:1,..- , , 
¢b.oo 0.20 0.40 0.60 o.Bo I .  ~ oo o.qo o.oo 1.20 1 M 

X [ l l  X (I) 

(c) (d) 
FiG. 2. R i G  FSR:  X ~ + X ~ -1- 1, (a) 127, (b) 255, (c) 511 points  p lo t ted  (successive pairs) ln2-spaee,  

(d) 255 succesmve 3-tuples plot ted inn 3-space 

Ao 1 1 1 1 1  Alo 0 1 0 0 0  A2o 1 0 1 1 0  
A1 1 1 0 0 0  All 1 1 0 1 0  A~  0 1 0 1 1  
As 0 1 1 1 0  Ax2 1 1 1 0 0  A~2 0 0 0 0 1  
A3 0 0 1 0 1  Ax3 0 0 0 1 1  A ,  0 1 0 0 1  
A4 0 0 1 0 0  At,  1 1 0 1 1  A~4 1 0 0 1 1  
A5 0 1 1 0 1  A,s 1 0 1 0 1  A~5 0 1 1 1 1  
As 1 1 1 1 0  Ax6 1 0 0 0 0  A~e 0 1 1 0 0  
A7 1 0 0 0 1  Ai~ 1 0 1 0 0  A~ 1 0 1 1 1  
A8 1 1 1 0 1  A18 1 1 0 0 1  Ass 0 0 0 1 0  
Ag 0 1 0 1 0  A,g 0 0 1 1 1  A~9 1 0 0 1 0  

As0 0 0 1 1 0  
F i G  3 "Kendal l  sequence" for the polynomial ~ -4- x 2 + 1 

i s t e r  b a s e d  o n  p r i m i t i v e  p o l y n o m i a l  x ~ .4_ x q .q- 1 ( 1 0 ) .  F o r  e x a m p l e ,  x 5 q-  x 2 -q- 1 

a n d  a0 = al  = a2 = a3 = a4 = 1 y i e ld s  {a,}] ° = {1111100011011101010000100101100}.  

S e l e c t i n g  5 - tup le s ,  A , ,  b y  K e n d a l l ' s  a l g o r i t h m  p r o d u c e s  t h e  r a n d o m  n u m b e r s  s e e n  in  
F i g u r e  3. 
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FIG. 4. 

Wo r 1 1 0 1 0  ] W,o 0 1 1 0 0 1  W,o 0 0 1 1 1 1 1  

w, ', 1 0 0 0 1  ', w,,  l O ~ O O  w,, o 1 1 1 1 1  
B'= t 1 1 0 1 1  i W~, 1 0 1 1 1 0  W,= 1 0 0 1 0  
B', i 1 1 1 0 0  : B',, 1 0 1 1 0 0  W,, 0 1 1 0 0  

i 1 1 0 0 1 1  I 0 1 1 1 1 0  Ws, 0 0 1 0 1  H'4 L-- 
W~5 1 1111 1 Wss 1 0 1 0 1 

B', 0 1 1 1 0 1  w,. 001100 W .  O O O l l  
w, o llO o o w~, 11 oo~o w~, 1 o 1 1 1  
B', 1 1 1 1 0 1  W,, 0 1 0 1 1 1  W.. 1 1 0 0  
1V, 1 l l l  10  W,, 0 1 0 1 1 0  W,, 0 0 1 1 0  

Wzo 0 0 0 1 0  

GFSR sequence for polynomial # + x ~ + 1 with delay - 6  (=25) between each column 

I t  is impor tant  to observe tha t  each A,  (with the exception of 0) occurs once and only 
once in the full period of a Tausworthe pseudorandom sequence ( the "Kendall sequence" 
is one specific "Tausworthe sequence") [7]. 

The idea behind the generalized feedback shift register pseudorandom number algo- 
r i thm (GFSR)  is tha t  the basic shift register sequence {a,} based on primit ive tr inomial  
x p + x q + i is set i n t o j  columns, j < p, with a judiciously selected delay between columns. 
An example will make the basic G F S R  algorithm clear. Again choose primit ive tr inomial  
x 5 + x 2 + 1. The basic sequence of {at} is copied in the first column of Figure 4. For  this 
part icular  polynomial  the second column was formed by  delaying the first columns by 
25 (25 --  31 = - 6 ,  depending on the orientation of the "circle" of bits) bi t  positions; 
the third column was obtained by  delaying the second column by another - -6  bit  positions; 
and so on until  all five columns have been filled. 

Since each column obeys the recurrence ak = ak--~+q (~ ak--~, each word must  also obey 
Wk = W~_p+~ (9 Wk-~. 

Carefully observe tha t  each W, occurred once and only once in the full period of 
25 - 1 = 31 numbers. 

Do arb i t ra ry  delays between the columns ensure tha t  each number between I and 2 ~ - 1 
occurs once and only once in each period? No, but  any  "s tar t ing matr ix"  
(W0,  W1, W : ,  W3, W4 for x 5 + x 2 + 1) can be checked to see if this desirable proper ty  
holds and, second, the number of different sequences with this proper ty  can be analyt ical ly 
computed.  

For  clari ty we will proceed using the example in Figure 4. The companion matrix for 
polynomial  x 5 + x 2 + 1 is 

SO 
Wo B'~ W2 Wa W4 

0 1 1 0 
0 0 1 0 
0 1 0 1 
1 1 0 1 

0 o o 
c =  l O O  

o 1 o 
0 O l  

W1 w2 w3 W, Ws 

[i°°°il [i 1 1° 0 0 0  1 1 o o 
l O O  = 1 o o 
0 1 0  ~ 1 0 
0 0 1  l 0 1 1 

or in matrix nota t ion W0C = Wi • After  25 - 1 = 31 applic 5ons of this matr ix recurrence 
WoE 3t = W0 or C 3t is congruent modulo 2 to the ident i ty  matrix.  Clearly C, C 2, C 3, • • • , 
and C 3° are all different by  vir tue of the period of the shift register sequence. Thus for all 
W0C k, 1 < k < 30, to be different, i t  is only necessary tha t  W0 have linearly independent 
rows. This is easily checked. 

The number of different sequences which can be produced by  the G F S R  algori thm is 
equal to the number of ways different Wo matrices with linearly independent  rows can be 
selected. 
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Let r l ,  r2, r3, r4, and r5 denote the five rows of matrix W0. Row r~ can be selected to 
be any of the 2 ~ - 1 = 31 nonzero binary vectors. Row r~ can be any of the 
2 ~ -- 1 - 1 = 30 binary vectors which excludes rl and the zero vector. Row r3 can be 
any of the 2 ~ - 1 - 3 = 28 binary vectors which excludes the zero vector and any linear 
combination of r] and r2 • Row r4 can be any of the 2 ~ - 1 - 7 = 24 binary vectors ex- 
cluding the zero vector and linear combinations of r l ,  r2, r3 • The same argument can be 
extended to selection of r~. Thus with the GFSR algorithm it is possible to produce 
(25-- 1 ) ( 2 5 -  2) ( 2 5 - 4 ) ( 2 5 -  8 ) ( 2 5 -  16) = (31) (30) (28) (24) (16) = 9,999,360 
different sequences based on primitive polynomial x 5 W x 2 ~ 1. 

The GFSR algorithm is, 

GFSR: 0. I f k ~ 0 ,  go to 2 (k mitially zero ) 
1 Init]ahze, W0 , . . . ,  Wp-1 using a delayed basic sequence, {a,} to obtain each column of 

W0, ..-, W~_~. 
2. k~--h+l.  
3. If k> p, set k ~-- 1. 
4. 3~---k-~q. 
5. If3 > p, se t j~--J- -P.  
6 EXCLUSIVE-OR, W~(~ W,. 
7. Store, W~ ~ Wk~ W: . 

A rotating table of p words is kept in GFSR, which is implemented as a FORTRAN func- 
t ion in Figure 5. A FORTRAN function allows complete generality to be realized, as shown 
by the results for IBM 360/67, SRU 1108, CDC 6400, and HP 2116A seen in Figure 6. 
Although the compiled FORTRAN code of Figure 5 correctly implemented RAND for 
these four computers, some compilers may not implement full word logical operations or 
others may optimize logical computations. Nevertheless, GFSR pseudorandom numbers 
may be checked for validity against the results in Figure 6. 

2. Initialization of GFSR Algorithm 

The GFSR algorithm is self-initializing in the sense that  delayed replicas are produced by 
the same procedure that  generates full words. Linear independence of starting columns 

FUNCTION R A N D I M t P ~ Q , I N T S !  Z) 
C 
C M(PI=TABLE OF P PREVIOUS RANDCM NUMBERS. 
C PrO=POLYNOMIAL PARAMETERS:X=*P4X**Q÷[. 
C .NOT. OPERATOR IMPLEMENTED IN ARITHMETIC. 
C [NTSIZ=INTEGER SIZE (BITSI CF HOST MACHINE: E.G., 
C IBM 360, 3[; CDC 6000, ~8; SRU 1100, 35; HP 2100, 15. 

C 
LOGICAL AA tBBgLCOMPJtLCC~PK 
INTEGER A~BgP~O~INTSIZ,MIt) 
EQUIVALENCE (AAtA),IBB,B},(MC(]MPJ~LCOMPJ| ~(MCOMPK,LCOMPK) 
DATA J I O /  
N= ( 2 * * (  I N T S I Z - 1  ) - 1  1 * 2 ÷ 1  
J = J + l  
I F ( J . G T . P )  J = l  
K= J~-Q 
I F [ K . G T . P )  K = K - P  
MCOMPJ=N-M( J ) 
MCOM PK=N-M I K ) 
A=M( K | 
B=M(J) 
BB=LCOMPJ.AND.AA.OR. LCCMPK. AND. BB 
M( J I=B 
R A N O = F L O A T ( M ( J )  ) / F  L O A T ( k )  
R E TURN 
END 

FIG. 5. FORTRAN implementation of GFSR algorithm. Initialization is done by SETR in Figure 7 
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0 36963295936584470 
0 40631365776062010 
0 42877840995788570 
0 47411382198333740 
0 95315784215927120 

(a) 
0.36963297409225149 
0.40631371808778027 
0.42877845193692465 
0.47411388879095284 
0 95315778681866803 

(e) 

0.36963297000000000 
0 406313720000000(0 
0 42877845000000(0)0 
0.474113890000(000O 
0.95315778000000000 

(b) 
0 36964017152786255 
0 40632343292236328 
0.42878508567810059 
0 47410506010055542 
0 95318460464477539 

(d) 
FIG 6 The first five normahzed pseudorandom numbers from GFSR x 98 + x ~v + 1, delayed col- 
umn = 9800, produced on the (a) IBM 360, (b) SRU 1108, (c) CDC 6400, and (d) HP 2116A computers 

is guaranteed if the maximum delay measured from the leftmost column is less than  the 
full period, 2 p - 1 (if the "constant  delay"  between each column is relat ively prime 
to 2 p - 1, then maximum delay can exceed the full period).  Using this procedure 
every p-tuple is generated (except all zeros) before any p-tuple repeats. Each initial 
column is a p-tuple, and therefore, must  be independent of all others. For  example, in 
Figure 4, init ialization can be done from most significant to least significant bits (left-to- 
right) s tar t ing with [11111]. The recurrence relation is applied 25 times, here, to get the 
next column [10110]. A second 25 applications results in [00010], a third 25 applications 
results in [10101], and finally, [01101] is obtained. The recurrence is applied by  calling the 
G F S R  R N G  with zero fills placed to the right. Each new column is shifted to the right 
after being generated, and the original column [ l l l l l ]  is replaced at  the extreme left 
column. In more realistic (bigger word size) generators, the full period will not  be ex- 
hausted by  init ialization in keeping with conditions for linear independence (here, linear 
independence was guaranteed because 25 is relat ively prime to 31). 

For  ease in implementat ion the [111...] s tart ing p- tuple  is used in S E T R  as given in 
Figure 7. However, S E T R  applies 5000p addit ional  delays so tha t  the leading [111...] 
column is "reeurreneed" also, thus, giving a random pat te rn  of leading bits ra ther  than  
all ones. This addit ional  "reeurreneing" is necessary to allow [111...] to "die out ."  The 
effects of such a regular pa t te rn  carry over to later p-tuples. For  example, [111...], p = 98, 
q = 27, is t ransformed to 72 zeros, 26 ones; next to 45 zeros, 53 ones, etc. The groupings 
of all ones or all zeros become increasingly smaller and more " random" tt;rough repeated 
appl icat ion of the recurrence relation. "Damping"  of the initial p-tuple is done in S E T R  
by applying the recurrence relation 5000p times to full word star t ing values. I t  should be 
noted tha t  if generality relative to word size is not  desired, then addit ional  "reeurreneing" 
is not  necessary when initialization is performed from least significant to most significant 
bits. The most significant bi t  will have been delayed p . D E L A Y  times since i t  is "re- 
curreneed" once for each bit  in a p-bit  word (the least significant bi t  is a one).  Thus, the 
addit ional  "randomizing" of the initial [111...] pa t te rn  will have been done without  
addit ional  labor. 

Finally,  S E T R  returns a value for the number of linearly independent columns avail- 
able to the init ialization procedure. ~ 

3. (;euerality of (JFSR 

The parallel nature  of G F S R  immediately generalizes to L-bi t  (integer size) machines 
independent  of the relation between L and p. Thus, for L < p, many repeated numbers 
will occur, but  cycle length, m, is still 2 p -- 1. The case where L = 3 and x ~ -4- x 2 + 1, 

1 For any particular computer SETR should only be run once and the table constants entered in a 
DATA statement in RAND. The DO 6 and DO 5 were necessary (rather than DO 5, DO 5): some 
compilers multiply L*5000 and implement a single DO loop. Since L*5000 is often large, this value 
sometimes exceeds the maximum value which can be held in an index register on some computers. 
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C, 
C: 
C 
C 
C. 
C, 
C 
C 
C, 

INTEGER FUNCTION S E T R I M , P , D E L A Y ~ Q t I N T S I Z |  

SETR=COLUMN NUMBER OF REPEATIIwG ONE PATTERN. IF SETR ( f f i  P, 
THEN AN IMPROPER SHIFT  LENGTH HAS BEEN SELECTED, 
H(PIffiTABLE OF RANDOM NUMBERS TO BE INITIALIZED. 
P~Q=POLYNOMIAL PARAMETERS: X**PcX**Q+I. 
DELAY=RELATIVE DELAY BETWEEN COLUMNS OF M(P I  t IN BITS. 
INTSIZ-INTEGER SIZE (8ITSI OF MOST MACHINE: E.G., 
IBM 360 ,  3 l ;  CDC 6ODOr 4 8 ;  SRU l l O O t  3 5 ;  HP 2100~ 1 5 .  

INTEGER D E L A Y t P , Q . O N E  t I NTSI Z ,M( 1 ) 
SETR=P+i  
ONE= 2 . * (  INTSIZ-I ) 
D3 I l=l,P 
M ( I )fflONE 
DO 4 K=I,INTSIZ 
DO 2 J = l t O E L A Y  
X=RAND(MtPtQ t I N T S I  Z) 
KOUNT=O 
DO 3 I = l t P  
I T E M P = O N E / 2 * * (  K- 1 ) 
I T E M P = ( M ( !  | - M ( I ) / O N E * O N E ) / | T E M P  
I F {  I T E M P . E O . I )  KOUNT=KOUNT+I 
I F ( K . E O . I N T S I Z )  GO TO 3 
M( I )=HI I )I2÷ONE 
CDNTINUE 
I F ( K O U N T . E Q . P |  SE TR=K 
CONTINUE 
D3 6 I = 1 , 5 0 0 0  
DO 5 Jff i l tP 
X=RAND(MtP~O ,INTSI ZI 
CONT [NUE 
RETURN 
END 

FZG 7. FFoawRAN implementation of SETR to initialize GFSR algorithm 

Wo 1 1 0 Wlo 0 1 0 W2o 0 0 1 
W1 1 0 0 Wi~ 1 0 0 W~i O 1 1 
W2 1 1 0 W12 1 0 1 W~ 1 0 0 
Wa 1 1 1 W1, 1 0 1 W2* 0 1 1 
W~ 1 0 0 W,  0 1 1 W~ 0 0 1 
Ws 0 0  0 W15 1 1 1 W~ 1 0  1 
W6 0 1 1 Wle 0 0 1 W26 0 0 0 
W7 0 1 0  W17 1 1 0 W~7 1 0 1 
W~ 1 1 1 Wls 0 1 0 W2s 1 1 0 
W9 1 1 1 W19 0 1 0 W~9 0 0 1 

Wso 0 0 0 
FIG. 8. GFSR algorithm for L = 3, polynomml x 5 + x ~ + 1 

f rom Figure  4, is demons t r a t ed  in F igure  8. Here  2 p-L nonzero dupl icates  and 2 ~-L - 1 
zeros are produced  in one full period. 

Very  long per iod sequences can be genera ted  on any  L-b i t  machine  mere ly  by  select ing 
p large. A par t ia l  table  of p r imi t ive  polynomials  of large p is r eproduced  in F igure  9 [11]. 
A comple te  tab le  can be found in [12, 13]. 

4. Perwd of GFSR 

An " u n l i m i t e d "  per iod is possible w i thou t  increasing word  size of hos t  machines.  F o r  
example,  M = 25~2 - 1 is ob ta ined  using x 5~2 -F x 37 + 1 f rom the  table  in F igure  9. To  
exhaus t  this cycle would  require  m a n y  years on a v e r y  fast  computer ,  i.e. if 106 n u m b e r s /  

• 150 
second were  generated,  app rox ima te ly  10 years would  be needed to  comple te  the  cycle! 
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FiG 9. 

p q 
47 5,14,20,21 
95 11,17 
98 11,27 

111 10,49 
124 37 
170 23 
250 103 
380 47 
476 15,141 
532 37 

Primitive polynomials, xv+ xq+ 1, p large 

More importantly, though, is the repeatability of numbers within a full period. Thus, an 
extended sequence is obtained with desirable n-space properties. 

5. Mean, Variance, and Correlation of GFSR 

The theoretical mean and variance of a GFSR sequence is guaranteed by periodicity; 

ta--1 
1 2v # = - - ~  W,;  m = - 1. 

m , = 0  

For an L-bit machine, 2 v-L nonzero duplicates and 2 v-L - 1 zeros will be generated before 
the entire sequence repeats; 

2L-1 [ __1)(2L) ] l ( 2 ~ L )  2V--L 2L--1 2 v-L -- 1 2 p-L (2 L 
# - -  m ~ i + - -  ~ 0 = 1 , ~  ,=1 m ~=1 T 2 

In  the normalized (0, 1) interval go ~ ½. 
The variance, 

~ - 1  1 ( 2 ~ )  a2 1 ~ W2 _ ~ (2v-L) 2L--1 . . . .  ~ i S _ 2 ~ _ _  _ /~ 
m ~=0 ~/~ ~=1 

and normalized to (0, 1), 

~ o ~  - ~ = ~. 

The correlation obtained by averaging over the entire period, 

1 N--1 

E[R(t)] = m 
3=0  = 

can be derived using techniques identical to Tausworthe's [7]. However, intuition indicates 
that  columns with nearly the same delay and hence nearly equal, bit-by-bit, should result 
in large correlation coefficients. The correlation intuitively must decrease as relative de- 
lay increases. Full period analysis by Tausworthe does not properly model this micro- 
structure and tells us nothing about short sequences. Therefore, an empirical rule is used 
which computes the maximum correlation coefficient over a range 0 < t < 50. A plot of 
maximum correlation coefficient versus relative delay between columns shown in Figure 
10 indicates a relative column delay of 100p or more to be satisfactory. I t  is possible to 
find smaller delays which also give satisfactory correlation, but several polynomials were 
tested and all found to be "safe" with delays of order 100p. Finally, selection of delays 
which are multiples of p assures linear independence of starting values discussed in 
Section 2. 
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FIG. J0 
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(a) Two-dimensional plot of GFSR, X n -Jr X 13 T 1, 9-bit word size and delay of 93, (b) three- 
dimensional plot of GFSR, X ~ -+ X ~3 Jr 1, delay = 93 

6. Multidimenswnal Uniformity of GFSR  

Figure 11 shows a much improved 9-bit generator compared with Lehmer and Kendal l  
R N G ' s  shown in Figures 1 and 2. The underlying reason, of course, is the longer than  
m = 29 period, and the repeatabi l i ty  of numbers within one cycle of the generator. 

To fill in m s cells in n-space, (2 L)" ~ 2 p - 1, or nL ~_ p. Therefore, a necessary condi- 
t ion for n-space uniformity is tha t  ~ < p /L .  For  example, suppose L = 15, p = 98, then 
uniformity may be possible up to dimension, n = 6. 

n-Space uniformity cannot be guaranteed without  knowledge of the order of numbers 
generated by  GFSR.  Known order can be exploited for the purpose of designing tests 
which the G F S R  will fail. Rather  than  take this negative approach, greater emphasis is 
placed upon n-space uniformity for actual  use. 

G F S R  THEOREM. The sequence of L-bit numbers generated by GFSR, xq + x" + 1, 
p > L, has 

(1) period, m = 2 ~' - 1, i f  Z' -Jr x q Jr 1 is primitwe, 
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(2) normalized mean, #o ~ 2, 
(3) normalized variance, ~o 2 ~ -~z , 
(4) potential n-space uniformity for n < p/L.  
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7. Conclusions 

The advantages of GFSR RNG's  are: 
(1) Speed: One EXCLVSlVE-OR versus a multiply/reduction modulo m for Lehmer, and 

two EXCLUSIVE-ORS/tWO shifts for Kendall 's algorithm. 
(2) Gvnerality: A standard FORTRAN subprogram can be implemented on any com- 

puter independent of the word size. A small word size merely reduces the resolution of 
random rmmbers produced, but high order bits will be unchanged on any machine. Com- 
parison with sequences obtained on other machines using a FORTRAN program are given 
in Figure 6. 

(3) "Unlimited" period: Any primitive polynomial can be implemented when sufficient 
memory i,s available for storage of p words. For example, x 98 + x 27 + 1 can be used on a 
16-, 24-, 32-, 36-, 48-, 60-bit machine and a cycle length of 298 - 1 realized on them all. 

Moreover, the speed/cost ratio is further enhanced when GFSR is implemented as a 
microprogrammed instruction. Figure 12 shows a microprogram which computes a 
pseudorandom number each time R N D  REG1, TABLE, is issued. The Interdata 4 
machine instruction D4~6 was wired into read-only-memory as shown in Figure 13. 

Impressive speed (24 microseconds on the Interdata 4, which is equivalent to 5-6 micro- 
seconds on an IBM 360/65) and extended period are realized on a small word size machine 
(16 bits). The period of 29~ -- 1 greatly surpasses the previously attainable periods of 
2 ~5- Ior2 ' 8 -  i. 

The table for RND REGI, TABLE is organized as shown in Figure 14. Thus, 
x ~ + x ° + 1 is generated using index I. 

8. Testing 

The following empirical tests on 10,000 GFSR-produced numbers were made using 
X 9s + X ~7 + 1, 15-bits, and chi-square statistic [2-4, 6]. 

The frequ,ency test counts the number of numbers falling in each of 100 equal cells in the 
(0, 1) interval. 

Yule's test counts the number of sums-of-5 digits falling in each of 45 cells. This is 
applied to each of the four most significant decimal digits obtained by scMing the nor- 
mMized (0, 1) pseudorandom number. 

The gap &,,st counts the length of gaps between successive like digits formed by scaling 
normalized ]~NG number to decimal digits. The test is applied to digits 0 through 9. 

The autocorrelation test computes the maximum normalized autocorrelation coefficient 
up to lag 50. Acceptable correlation is in the interval (.03, .08). 

The D ~ te~:t compares the theoretical distribution of a random line in two dimensions 
with the distribution obtained empirically. 

The serial test counts the number of pairs of numbers from an R N G  falling in 100 equal 
cells. Here, pairs of decimal digits are combined to give an integer from zero to ninety- 
nine. A frequency test is applied to the 100 cells. 

The runs test computes the longest run, the frequency of each run compared with the 
theoretical distribution, and number of runs above/below the mean. The total number of 
runs is compared with the expected number. 

The minim um/maxzmum-of-n-test compares the empirical with the theoretical distribu- 
tion of the mdnimum/maximum-of-n numbers. The number of extremes is counted for 
each of 100 ce.lls and a frequency test is applied for n = 2, 4, 6 • • • , 20. 
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MODEL 4 MICRO CODE 

ORG X'428' 

0428 5004 RND L RAH,H(RND) 
0429 3080 C SB 
042A 4453 L MR4,MAR SAVE TABL IN MR4. 
042B 43A3 L MR3,MDR SAVE I IN MR3. 
042C 5802 L AR,X'2' 
042D C550 A MAR,MAR,NF+NC 
042E 3100 C MR GET S,N: LOC TABL+2. 
042F C050 A MR0,MAR,NF+NC SAVE TABL+4 IN MR0. 
0430 58FF L A R , X ' F F '  
0431  82A3 N MR2,MDR,NF MASK-OFF S;  N IN MR2. 
0432 48AF L AR,MDR,CS 
0433 91FF N M R i , X ' F F '  CROSS SHIFT AND MASK-C 
0434 4833  L AR,MR3 COMPARE I : N .  
0435 E824 S AR,MR2,NC 
0436 1138 B L,OK BRANCH I F  I<N.  
0437  5300  L M R 3 , X ' 0 0 '  OTHERWISE, SET I=0  
0438  4813  OK L AR,MR1 
0439 C130 A MR1,MR3,NF+NC J = I + S  
043A 4813  L AR,MR1 
043B E224 S MR2,MR2,NC ( M R 2 ) = J - N .  
043C l 1 3 E  B L,OK2 BRANCH I F  J<N.  
043D 4123  L MR1,MR2 OTHERWISE, SET J = J - N .  
043E 4818 OK2 L AR,MRi,SL+NC Di=2*J. 
043F C500 A MAR,MRO,NF+NC LOC TABL+DI+4. 
0440 3100 C MR GET TABL(J). 
0441 4838 L AR,MR3,SL+NC D2=2'I. 
0442 C500 A MAR,MRO,NF+NC LOC TABL÷D2+4. 
0443 48A3 L AR,MDR SAVE TABL(J). 
0444 3100 C MR GET TABL(1). 
0445 AEA3 X YD,MDR,NF EX-OR TABL(J)+TABL(I). 
0446 4AE3 L MDR,YD 
0447 3200  C MW RESULT IN T A B L ( I ) .  
0448 5801 L AR,X'01' INCREMENT. 
0449 CA30 A MDR,MR3,NF+NC I=l÷l. 
044A 4543  L MAR,MR4 
044B 3200  C MW NEW I IN LOC TABL. 
044C 4563  L MAR,LOC 
044D 066B D LOC,LOC,P2N 

END 

FiG 12. Interdata  4 mlcroprogram for GFSR Execute, RND REG1, TABLE. The resulting random 
integer is returned to register REG1, and the address of TABLE locates the memory table. To inter- 
pret the code L-load, C = command, A = add, N = and, S = subtract, B = branch, X = exclumve- 
or, and D = decode. There are mlcrocode registers MR0 through MR4, memory address register 
(MAR), and memory data regmter (MDR) which refer to core memory. The third operand modifies 

the operation for example, NC means "no carry" 

T h e  conditional bit test c o u n t s  t h e  n u m b e r  of one  b i t s  in  t h e  j t h  b i t  p o s i t i o n  g iven  t h e  
j - -  1 p r ev ious  bi ts .  A b i n a r y  t r ee  is fo rmed  w i t h  a b r a n c h  a t  each  b i t  pos i t ion .  T h e  t r ee  
of b i t  c o u n t s  is t h e n  c o m p a r e d  w i t h  t h e  expec ted  v a l u e  of (½) * 10,000 = 5000. I f  t h e  
b i t s  are  i n d e e d  i n d e p e n d e n t  t h e n  t he  empi r ica l  v a l u e  m a t c h e s  expec ted  va lue .  

T h e  fimte Fourier transform (FFT) test t e s t s  for  a " f i a t "  s p e c t r u m  b y  t h e  s t a t i s t i c s  

U = ( S  --  ½) ~ / ( 1 2 M ) ,  P,  = la,[ 2 la~l 2, n = 1 , 2 , . . . , M  + l, 
r--1 

1 ~ P,, M [N/2,  N even,  
S = ~ , _ 0  = ] ( N -  3 ) / 2 ,  N o d d ,  
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Fla. 13. Interdata 4 read-only-memory board with RND instruction wired in. Note the two rows of 
transformers with interwoven wire. Each transformer provides one bit of memory 

TABLE.;{ 
TABLE + 

TABLE + 4 L 

I 

s f n 

w 0 

w l  

F ~  14. 

TABLE+2n-2 

Orgamzation of TABLE for microprogram RND GFSR uses x" + x ~ + 1 by EXCLUSIVE-OR 
of wn with wn+, 

and the t ransformed sequence 

A,, = ~ ]  R j e x p ( - 2 v i j n / N ) ;  n = O, 1 , " . , N -  1; Re = random number.  
3 ~ 0  

The scattering experiment simulation compares the expected distr ibution of scattering 
angles with theoret ical ly expected values. A point  on the surface of a unit  sphere is 
randomly chosen thus giving a solid angle. This solid angle represents the deflection of a 
neutron after colliding with an atom. The solid angle is rejected to weight according to 
a(0) = 7r(1 - 0/~-) : 0 < 0 < ~-. The empirical distr ibution of 0 is compared with the 
theoretical  using a chi-square test  on 36 intervals in (0, ~-). 

A visual test is done by  observing 2, 3-space plots of successive n-tuples as shown in 
Figure 11. A CRT display is part icular ly useful for observing order by dynamic plot t ing 
of points as they are generated. 

9. Result8 of Tests 

The 15-bit G F S R  algorithm performed satisfactorily in the above tests a t  the 5 percent 
level of significance. Failure was noted at  n = 8, 14, 20 in the minimum-of-n test  as pre- 
dicted. However, no failures were noted for n = 10, 12, 16, 18 and all n tested in maximum- 
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of-n test. Thus, a partial indication of nonuniformity for n > 6 is given by these tests. 
For applications requiring uniformity above n = 6 one merely uses a higher degree 
polynomial. For 24 mantissa bits and X 9s + X ~7 + 1, no failure was detected on any of the 
tests. 

The GFSR algorithm must be considered statistically qualified as an RNG while 
superior in speed and generality to other contemporary RNG's. 

.&CKNOWLEDGMENTS. We wish to thank Fred M. Ives for his microprogramming ex- 
pertise and assistance for wiring the read-only-memory board. Also, we wish to thank 
Peter D. Gross, W. R. Thorson, and A. F Kupinski for running programs on the SRU 
1108 and CDC 6400 computers. Terry E. Harem, compiler writer, Data Products Divi- 
sion, Hewlett-Packard, Palo Alto, California, filled us in on the history of the DO loop 
and ran our programs with the new HP compiler on the 2116A computer. 

The initial draft of the paper was circulated to several scientists. R. R. Coveyou, L. R. 
Turner, K. C. Wang, and J. RB. Whittlesey made many valuable suggestions on short- 
comings and how to improve this paper. Frank Engle, Jr., Chairman, ANSI X3J3 
Standards Committee, pointed out to us that RAND did not conform to ANSI X3.9-1966 
FORTRAN specifications. He coded two conforming versions of RAND which execute 
much more slowly than our nonstandard code. T. G. Ostrom gave us the solution to the 
problem of counting the number of different zero-one matrices with linearly independent 
rows. Finally, J. P. R. Tootill not only corrected some of our ideas about Kendall's 
algorithm but modified his "decimated-Kendall-sequence" algorithm [9] to study our 
x 98 + x ~7 + 1 sequence and reported, "We paid no particular attention to efficiency of 
method or coding, so our algorithm as modified would win no prizes for speed, but it did 
establish that your sequence to 16-bit accuracy is, in fact, 6-distributed." Again we ex- 
press appreciation to all these scientists. 

REFERENCES 

1. CovEYou, R. R., AND MAcPHERSON, R .D .  Fourier analyms of uniform random number genera- 
tors J. ACM 14i, 1 (Jan 1967), 100-119. 

2. KENDALL, M. G., AND SMITH, B. B. Randomness and random samphng numbers J Roy 
Statist. Soc 101 (1938), 162-164. 

3. LEWis, P. A W , GOODMAN, A S , AND MILLER, J. M A pseudorandom number generator for 
the SYSTEM/360 IBM Syst. J. 8, 2 (1969), 136-146. 

4. MMACLAREN,~¢[ D ,ANnMARSAGLIA, G. Umformrandomnumbergenerators. d .ACMl2,  1 (1965), 
83-89. 

5. MARSAGLIA, G. Random numbers fall mainly on the planes. Proc Nat. Acad. Sc*. 61, 1 (Sept 
1968), 25-28. 

6 PAYNE, W. H , AND LEWIS, T. G Conditional bit samphng:  Accuracy and speed In Mathe- 
matical Software, J. R. Rice (Ed) ,  Academic, New York, 1971, pp 331-345. 

7 TAUSWORTHE, R. C Random numbers generated by linear recurrence modulo two Math. 
Compul 19 (1965), 201-209. 

8 TOOTILL, J P. R., ROBINSON, W. D , AND ADAMS, A G The runs up-and-down perlormance of 
Tausworthe pseudo-random number generators. J ACM 18, 3 (1971), 381-399. 

9. TOOTILL, J. P. R ,  ROnlNSON, W. D ,  ANn EAGLE, D . J .  An asymptotically random Tausworthe 
sequence. J. ACM 20, 3 (July 1973), 469-481 (thin issue) 

10. WHITTLESEY, J RB. A comparison of the correlational behavmr of random number generators 
for the IBM 360. Comm ACM 11, 9 (Sept 1968), 641-644 

11. WHITTLESEY, J. RB., AND GRIESL, F. Multi-dimensional pseudorandom non-umformity. Proc. 
of the UMR-Mervln J Kelly Communication Conference, Oct. 1970, U. of Mmsouri at Rolla, 
Rolla, Mo ,  pp. 15-4-1-15-4-6 

12. ZlERLER, N. Prm~tive trinomials whose degree is a Mersenne exponent. Inform Contr. 15 
(1969), 67-69. 

13 ZIERLER, N , AND BRILLHART, J. On primitive trmomlals (mod 2), II. lltform. Contr. 14 (1969), 
566-569 

RECEIVED AUGUST 1971; REVISED JULY 1972 

Journal of the Assocmtioa for Computing Machinery, Vol. 20, No 3, July 1973 


	Generalized Feedback Shift Register Pseudorandom Number Algorithm
	Recommended Citation

	Generalized Feedback Shift Register Pseudorandom Number Algorithm

