MISSOURI
E Missouri University of Science and Technology

Scholars' Mine

Electrical and Computer Engineering Faculty

Research & Creative Works Electrical and Computer Engineering

01 Jul 1973

Generalized Feedback Shift Register Pseudorandom Number
Algorithm

Theodore Gyle Lewis
Missouri University of Science and Technology

W. H. Payne

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork

b Part of the Electrical and Computer Engineering Commons

Recommended Citation

T. G. Lewis and W. H. Payne, "Generalized Feedback Shift Register Pseudorandom Number Algorithm,"
Journal of the ACM (JACM), vol. 20, no. 3, pp. 456 - 468, Association for Computing Machinery (ACM), Jul
1973.

The definitive version is available at https://doi.org/10.1145/321765.321777

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized administrator
of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for
redistribution requires the permission of the copyright holder. For more information, please contact
scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F4917&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F4917&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1145/321765.321777
mailto:scholarsmine@mst.edu

Check for
Updates

Generalized Feedback Shift Register Pseundorandom
Number Algorithm

T. G. LEWIS
University of Missours at Rolla, Rolla, Missour:
AND

W. H. PAYNE

Washington State Umwversity, Pullman, Washington

ABsTRACT. The generalized feedback shift register pseudorandom number algonithm has several
advantages over all other pseudorandom number generators These advantages are (1) 1t produces
multidimensional pseudorandom numbers; (2) it has an arbitrarily long period independent of the
word size of the computer on which it 1s implemented, (3) 1t 18 faster than other pseudorandom num-
ber generators, (4) the “same’’ floating-point pseudorandom number sequence 1s obtained on any
machine, that is, the high order mantissa bits of each pseudorandom number agree on all machines—
examples are given for IBM 360, Sperry-Rand-Univac 1108, Control Data 6000, and Hewlett-Packard
2100 series computers; (5) 1t can be coded in compiler languages (it 1s portable), (6) the algorithm is
easily implemented in microcode and has been programmed for an Interdata computer

KEY WORDS AND PHRASES pseudorandom numbers, Lehmer, Tausworthe, feedback shift register,
hinear recurrence mod 2, primitive polynomial, GF (2), tests of randomness, lattice, wave properties,
Fourier analysis, Kendall’s algorithm

CR CATEGORIES: 3.15,5.5, 8.1

The Lehmer congruential multiplicative pseudorandom number generator has been shown
to have n-space nonuniformity [1, 5]. This shortcoming is particularly severe for small
word machines. As an alternative, the feedback shift register (FSR) pseudorandom
number generator (RNG) is claimed to be uniform in n-space if p-bit words are deci-
mated into n subwords [7]. Figures 1 and 2 give examples of nonuniformity of Lehmer
RNG’s for 9-bit words in two- and three-space. FSR generators with primitive generating
function, X* + X7 + 1, small ¢ or ¢ near (p —1)/2, should be avoided because of bad
runs properties [8]. However, careful selection of p, ¢ provides satisfactory random
numbers in low-dimensional space [10].

Perhaps FSR sequences offer the best prospects for n-space improvement. Kendall’s
algorithm is moderately fast on most machines, but the period is fixed by the word size
and it is difficult to implement in multiprecision [10]. Moreover, decimation in order to
gain 7n-space uniformity further shortens cycle length and resolution. This problem is
intrinsic to periodic sequences. A cyclic sequence of m numbers, when taken in pairs,
locates only m of m” points in a two-dimensional m by m grid. In general, m” — m grid

Copyright © 1973, Association for Computing Machinery, Inc General permission to republish,
but not for profit, all or part of this material 1s granted provided that ACM’s copyright notice is
given and that reference is made to the publication, toits date of 1ssue, and to the fact that reprinting
privileges were granted by permission of the Association for Computing Machinery.

Authors’ addresses. T. G Lewis, Computer Science Department, University of Missour: at Rolla,
Rolla, MO. 65401, W. H. Payne, Computer Science Department and Computing Center, Washington
State University, Pullman, WA 99163.

Journal of the Association for Computing Machinery, Vol. 20, No. 3, July 1973, pp 456-468

http://crossmark.crossref.org/dialog/?doi=10.1145%2F321765.321777&domain=pdf&date_stamp=1973-07-01

Generalized Feedback Shift Register Pseudorandom Number Algorithm

g 457
8
- =

poo oooao ooaa add Toaoaaeasn S

dooooo o Qoo poaa Gooca 8 CElQDDEDDDDDDDDDDDQDQUHHNuCﬁ"‘””
ghn oooooooa o ooooonooogoad cunnuuunnnuaunnmnaunnnuaqmnnmu
sh o o goooaaoao go aann [=[=]=]=]8] 3:1DQuunDunuununmauunnonuuaunnnu

<

bhoo oogoon

hoonog o O 0O ogogoo O
o oo ogo oaQ ono oo O

gpoaoa gaaqd

EDE onaopag Q qanoa go 0O a0 °

Qoooa nooooooo 00 cgo oooaoaag :DDﬂDGDGQDDDUDDQQQDQQQQDDUUDQQD

~ ga gooo o a g aaoaQq onoa oof QUEDDUQDQDQUDDUDEDDDUQOGQDGQDQ

S5 DDDDDDDUGDDQDDDDDDDD og 09 = CDDDDDDDDDGDDQQDQQDUQDDDDQDDED

;d{ﬂ oooaand ogonooo g Qaa ooaoqQ éggDDDDDDUDDDDDDQDDGDQQDDQDDDDDD
=] opoo o xbtuDDDDGDDDUDDDQDDDDDQDDQDDDQDQ

hoooo gpoooQo 0ooono
h goo ooooao oo oboooano
[afa]s]=]a]
h oo aQo poonacoood onag
gooo oo goooog

ooo o 0

gooo coa 0o agogonoono o

[= s

[a]sJial=]=]=]
ogoaon Qo

BQDDDDDDDGDDDQGDQDQDQDQGQQQEDD
JQDDDQDDDGDDQUGDDDQDDDDQDDDUUD
DDDUDDDDDUUDDUDDQUDDQDDUDDQQQB

JDDDDDDDDUDUDDDQDQDDDDQDDDDQUQ
JDDDDUDDDDDGQDDDDGDDDDDDDQEQEQ
BDDDDDDDDDDGQDDDDQDDDDGUEQQDDD
DQDDQDDDDDDDDDDDDDDQDQGDUQDQDG
DDDDDDUDDGDDDDDDDDDDDDDDDDQQDD

8| gonogooo cooso oo oogo O a g o
.00 0.20 0.40 o o §/anameqaannesss’ Bt
su0 X .50 .00 oo 0.20 0.u0 [
i’ g .60 0.80 1.00
a,
(b)
(-]
o co
3 o a DFP;-. o ‘oo a %o
h (@ a] T n"d"ﬁ o 1 °
on o&I0 o
o O o £ ° .
G oo g el
H] Oog £ e * °
=1 n %
o o Bhn el g
!p :‘n =] e ° q‘l °
a o (@] ‘ce DU D'
2 DDEL u%,pn %o L)
=1 eoo Sa o
.:‘ qj o a amj a Duﬂn a
e a
><° DDDU £0 J]D o CB]
o1 o oY =] °'ﬂ‘;th,—|o £8 ‘o
oo °Y gp_" %o °f
o ooy O oo o 5
“b.00 0.40 ¥
. 0.80 1.20 1.60
Fic 1 Continued ©
growth of “crystals’’ in X,, =
w1 = 17X, — 1 (mod 512), (a) 384 points in 2-space, (b)

512 i
points in 2-space, (c) plot 1n 3-space of 256 successive triplets

points will n i
points » Cros(;\;)e:o;ti)lelcltosc:;ced In n-space by n-tuples taken from an m-periodic sequence
T uets & e ntlllssmg. T?ns sparseness in n-space underlies nonuniformity o%
all periodic - period : é)p rently, what is needed is an RNG which allows repeated numbers
e matpone g thisquznce.‘Such repeated numbers could fill in m" points, for some n
ponoratn et {) per 1s to present a new, completely general FSR algorithm fox"
s o _y Ong sequences of random numbers possessing desirable 7-
any word sizc machine, and to demonstrate the feasibility of Iilin?)I}))?"(;e

ramming a sin le instr u(?llOIl W 1”1 hl h pe (1 ()S(1 ll() “hl h. pI()duCeS a Ia:ndonl
g spec /C a 3 C.

1. Generalized Feedback Shift Register Algorithm (GFSR)

Define @ to

Kendalls alg(:)r?tfll:s iE;XCLI;SIVE~OR operator which is equivalent to addition modulo 2

where g — @, - used to select successive n-tuples from the basic sequence {a‘}d.
e @ UG, k=p,p+1, - ,givena,, - - ,a, and feedback shift relg:

X (I+1)

T. G. LEWIS AND W. H. PAYNE

] a g a&—a a
<T@ U8 7 e oo o “1%° “c®a 0 o a "o aa o
%2 o % nnc’nuuaana o aa Dmnnunun‘:‘un eans°
o TN “6%%% % °
el a nuuuaoaq:u 9, 8.0 o sfa a nnaq:luununuun
st © Qo0 . g a Qa ST o° o Q a %"
a o o o aaag
@ aa ofa® g a a o 8cfa® 5 a aa
o a0 o a ao o o oo g9 9%
Qo ooaa ag E 98,88 0a a
g|® 0o 8y " 24 2|2 ® 9890 "o a® %
Stac” 9 Taa a 9 0680 sta a 59" % e a_o°
J Q a o “a o o P %% "% %a’a_a]
o o aaq a o a
oQ oaQ [=] o_c o o =
- oo mo. o o oa_ .oa@8. .0.68.°
.6, o o @o@afad I S R
Pl) 0g a oo a FaCa Ooao nnnuununu
> g o anu Dunnnuu i Dﬂnﬂnnnunununu
N a a [« R
@08ga @ _a %Dund:’u Q $@800gaaa ngqncgunnipun a®
g”clnu a a a un nnun DQ Dn 000 gpoan
°ln"a o oQa o aogao oo as o ao’s o0 ol
d o a a a® o o, 6. oo a%g
°oa g 9 0044 g d 0,0 095% 9,9 %0 a7 g
o (=] ocooQaoon =} a o oo oo 0
] o” 0 %% 0% o g]7.%2°% %% % o%a” o goe
.00 0.20 0.40 0.60 ©.%0 0.40 0.60 0.50 1.00
X m
(a) (b)
g PP ., SO . WA = T s B
~T§ g 0 a oo oa " . "g"a a0 a a8 o
02a a o.a 8 0_8.0.0 8 9% %, &
a”a aa a B 0 caoaa &
anooaB 909 a"aah o aa i °
oo no0aoa aga Q 0 aa e i
glo o a 0o o omagao a_a_Qq 2 s 8
sP.9.9.9p @ o a @ aoaq = a5
N9 S 9p p Oh 008 ggoa a
L__IQDEQ [=IN=] o 0 0 g o =} DD
0o 0 agoogdnoopng dgoao a
000 o 0 0adoosalg oo a a
8h o oo 90,0 0g og 0 o oo & 0
<10.2.08.0.9% 1% a 0 o o _B_° 0.0 -] 5 0
a oo
Ju g gc?unnnuuoaﬂ DDQ o %% g g QEBUD
h%o 0 0 008 9 ,0:9%% % a2 o ° @9
$10,0.9.6,9.%%:% a0 a g 8.0 9.0 8 o q’d?
‘& 0_o
allnnnnnaunouoauun %%%"a a0 o o =° = ° O
o a +
o g U oQ g aoa QQQ Qaqnnnnnunn = D'ﬂ
0 00gpgado 050 % ha pPOq =< #D &
glo O goO0fg 080 gpoao]
. 3=} c0a gaa o ado o =5
0 D00 OoaoopO0o o o oo o &
o 000 gogao.0 0 0d o & e
DUDQDQDUDDGDDDDD =}
40 a0 ®°. %% o0 0o o ob.0
3°,°;°c"a o0, 0 0o oo oQo '
.00 0.20 0.40 0.60 0.80 0 o 1.0 160
X XD
(e) @)

Fic.2. RNGFSR: X+ X441, (a) 127, (b) 255, (c) 511 points plotted (successive pairs) 1n 2-space,
(d) 255 sucecessive 3-tuples plotted in 3-space

Ao 11111 Ay
Ay 11000 Au
A, 01110 A
Az 00101 A
Ay 00100 Au
As 01101 Axs
As 11110 Ase
A 10001 A
As 11101 Ass
As 01010 Ay

[l e = =]
Ot OO D = D ek e
- OO O Moo

- OOOOHMHOMO
HHOQHMMROOO

Azo
Aa
A22
Aszs
Az
Aas
Ass
An
Ass
Az
Ao

O OHOOMOOO M
SOOI = O D= O
HOOMMMEOOOO
o = O et et OO et
OO O O et et b D

Fie 3 “Kendall sequence” for the polynomial 25 + 22 4 1

ister based on primitive polynomial * + 27 + 1(10). For example, ©© + 2 + 1
and @p = a; = @y = a3 = a5 = 1 yields {a,}}’ = {1111100011011101010000100101100}.
Selecting 5-tuples, 4,, by Kendall’s algorithm produces the random numbers seen in

Figure 3.

Generalized Feedback Shift Register Pseudorandom Number Algorithm 459

—— W, W 1o 01001 Wao 0011j1
W, Wi 10/000 Wy 0111]1
é-*——u', Wi 10110 W, 1001|0
W, Wis 101/00 W, 011 0|0

W, Wi 01110 Wae 00101

——— Wy Wis 111411 Was 10101
W, Wie 001{00 Wie 00011

W, Wi, 110]00 Wey 10111

W, Wis 01011 Wi 11001

W, Wi 0101]0 W 00110

Wie 00010

F1a. 4. GFSR sequence for polynomial z* + z? 4+ 1 with delay —6 (=25) between each column

It is important to observe that each A, (with the exception of 0) occurs once and only
once in the full period of a Tausworthe pseudorandom sequence (the ‘“Kendall sequence”
is one specific “Tausworthe sequence’”) [7].

The idea behind the generalized feedback shift register pseudorandom number algo-
rithm (GFSR) is that the basic shift register sequence {a,} based on primitive trinomial
2® 4+ z* + lissetinto j columns, j < p, with a judiciously selected delay between columns.
An example will make the basic GFSR algorithm clear. Again choose primitive trinomial
2’ + 2° + 1. The basic sequence of {a,} is copied in the first column of Figure 4. For this
particular polynomial the second column was formed by delaying the first columns by
25 (256 — 31 = —6, depending on the orientation of the “circle” of bits) bit positions;
the third column was obtained by delaying the second eolumn by another — 6 bit positions;
and so on until all five columns have been filled.

Since each column obeys the recurrence a; = Gx—p+q ® Gi—p , each word must also obey
Wi =Wipts ® Wip.

Carefully observe that each W, occurred once and only once in the full period of
2 — 1 = 31 numbers.

Do arbitrary delays between the columns ensure that each number between 1 and 2° — 1
occurs once and only once in each period? No, but any ‘starting matrix”
(Weo, Wy, Wy, W5, Wifor a° + & + 1) can be checked to see if this desirable property
holds and, second, the number of different sequences with this property can be analytically
computed.

For clarity we will proceed using the example in Figure 4. The companion matrix for
polynomial &* + &* 4 1 is

00001

10000

C=}101001

00100

00010

80

t Wo W W2 Wi W, W, W Wy Wi Ws
1 1 1 1 1 00001 1 1 1 1 0
T 0 1 1 10000 0o 1 1 0 0
0 0 0 1 0 01001}=)0 1 0 0
1 0 1 0 1 00100 0 ;) 10
o 1 1 0 1 00010 1 + 0 1 1

or in matrix notation WoC = W, . After 2* — 1 = 31 applic .ions of this matrix recurrence
WC* = W, or C is congruent modulo 2 to the identity matrix. Clearly C, Cz, c: -,
and C* are all different by virtue of the period of the shift register sequence. Thus for all
WoCk, 1 < k < 30, to be different, it is only necessary that W, have linearly independent
rows. This is easily checked.

The number of different sequences which can be produced by the GFSR algorithm is
equal to the number of ways different W, matrices with linearly independent rows can be
selected.

460 T. G. LEWIS AND W. H. PAYNE

Let v, 75, 13, 74, and r; denote the five rows of matrix W, . Row 7 can be selected to
be any of the 2° — 1 = 31 nonzero binary vectors. Row 7, can be any of the
2° — 1 — 1 = 30 binary vectors which excludes 7 and the zero vector. Row r; can be
any of the 2° — 1 — 3 = 28 binary vectors which excludes the zero vector and any linear
combination of r; and 7, . Row 74 can be any of the 2° — 1 — 7 = 24 binary vectors ex-
cluding the zero vector and linear combinations of 7y , 7, , 73 . The same argument can be
extended to selection of r,. Thus with the GFSR algerithm it is possible to produce
(2° - 1)(2° —2)(2° — 4)(2° — 8)(2° — 16) = (31) (30) (28) (24) (16) = 9,999,360
different sequences based on primitive polynomial #° 4+ 2* + 1.

The GFSR algorithm 1is,

GFSR: 0. If k 5 0, go to 2 (k itially zero)
1 Initialize, Wy ,---, W, using a delayed basic sequence, {a,} to obtain each column of
Wo, oo, Wos .
ke—Fk-+ 1.
If k> p,set k1.
J<—k+q
If3>p,setje—j—op.
EXCLUSIVE-OR, W: @ W, .
Store, Wi — W D W, .

N o o w N

A rotating table of p words is kept in GFSR, which is implemented as a ForTraN func-
tion in Figure 5. A ForRTRAN function allows complete generality to be realized, as shown
by the results for IBM 360/67, SRU 1108, CDC 6400, and HP 2116A scen in Figure 6.
Although the compiled ForTran code of Figure 5 correctly implemented RAND for
these four computers, some compilers may not implement full word logical operations or
others may optimize logical computations. Nevertheless, GFSR pseudorandom numbers
may be checked for validity against the results in Figure 6.

2. Initialization of GFSR Algorithm

The GFSR algorithm is self-initializing in the sense that delayed replicas are produced by
the same procedure that generates full words. Linear independence of starting columns

FUNCTION RAND(M,P,Q,INTSIZ)

M{P)=TABLE OF P PREVIOUS RANDCM NUMBERS.
PyQ=POLYNOMIAL PARAMETERS:X#*#P+X%%Q+1.

«NOT. OPERATOR IMPLEMENTED IN ARITHMETIC.
INTSIZ=INTEGER SIZE (BITS) CF HOST MACHINE: E«Gay

IBM 360, 313 CDC 6000, 48: SRU 1100, 35; HP 2100, 15.

O OO0

LOGICAL AA,8B,LCOMPJI,LCCMPK
INTEGER AyB4PyQy INTSIZ, ML)
EQUIVALENCE (AA,A)s(BB4B) s (MCCMPJ,LCOMPY) 4 (MCOMPK,LCOMPK)
DATA J/0/

N=(2%%x{ INTSIZ-1)=1)%2+]

J=J+1

IF(J.GT.P) J=1

K=J+Q

IF{K.GT.P) K=K-P

MCOMPY=N-M{J]}

MCOMPK=N-M(K)}

A=M(K)

B8=M(J)
B88=LCOMPJ.AND.AA.OR. LCOVMPK. AND, BB
M{J)=8

RAND=FLOATIM(J))} /FLOAT(N)

RETURN

END

F1e.5. ForTRAN implementation of GFSR algorithm. Initialization is done by SETR in Figure 7

0 36963295936584470
0 40631365776062010
0 42877840995788570
0 47411382198333740
0 95315784215927120
(a)
0.36963297409225149
0.40631371808778027
0.42877845193692465
0.47411388879095284
0 95315778681866803
(e)

Generalized Feedback Shift Register Pseudorandom Number Algorithm

0.36963297000000000
0 40631372000000000
0 42877845000000000
0.47411389000000000
0.95315778000000000
(b)
0 36964017152786255
0 40632343292236328
0.42878508567810059
0 47410506010055542
0 95318460464477539
(@)

461

Fra 6 The first five normahzed pseudorandom numbers from GFSR 2% + 227 + 1, delayed col-
umn = 9800, produced on the (a) IBM 360, (b) SRU 1108, (¢) CDC 6400, and (d) HP 2116A computers

is guaranteed if the maximum delay measured from the leftmost column is less than the
full period, 2° — 1 (if the “constant delay’’ between each column is relatively prime
to 2° — 1, then maximum delay can exceed the full period). Using this procedure
every p-tuple is generated (except all zeros) before any p-tuple repeats. Each initial
column is a p-tuple, and therefore, must be independent of all others. For example, in
Figure 4, initialization can be done from most significant to least significant bits (left-to-
right) starting with [11111]. The recurrence relation is applied 25 times, here, to get the
next column [10110]. A second 25 applications results in [00010], a third 25 applications
results in [10101], and finally, [01101] is obtained. The recurrence is applied by calling the
GFSR RNG with zero fills placed to the right. Each new column is shifted to the right
after being gencrated, and the original column {11111] is replaced at the extreme left
column. In more realistic (bigger word size) generators, the full period will not be ex-
hausted by initialization in keeping with conditions for linear independence (here, linear
independence was guaranteed because 25 is relatively prime to 31).

For ease in implementation the [111...] starting p-tuple is used in SETR as given in
Figure 7. However, SETR applies 5000p additional delays so that the leading [111...]
column is “recurrenced” also, thus, giving a random pattern of leading bits rather than
all ones. This additional “recurrencing’ is necessary to allow [111...] to “die out.” The
effects of such a regular pattern carry over to later p-tuples. For example, [111...], p = 98,
g = 27, is transformed to 72 zeros, 26 ones; next to 45 zeros, 53 ones, ete. The groupings
of all ones or all zeros become increasingly smaller and more “random” through repeated
application of the recurrence relation. “Damping” of the initial p-tuple is done in SETR
by applying the recurrence relation 5000p times to full word starting values. It should be
noted that if generality relative to word size is not desired, then additional “recurrencing”
is not necessary when initialization is performed from least significant to most significant
bits. The most significant bit will have been delayed p-DELAY times since it is “re-
currenced” once for each bit in a p-bit word (the least significant bit is a one). Thus, the
additional “randomizing” of the initial [111...] pattern will have been done without
additional labor.

Finally, SETR returns a value for the number of linearly independent columns avail-
able to the initialization procedure.!

3. Generality of GIFSE

The parallel nature of GFSR immediately generalizes to L-bit (integer size) machines
independent of the relation between L and p. Thus, for L < p, many repeated numbers
will oceur, but cycle length, m, is still 2 — 1. The case where L = 3 and z° + «° + 1,
! For any particular computer SETR should only be run once and the table constants entered in a
DATA statement in RAND. The DO 6 and DO 5 were necessary (rather than DO 5, DO 5): some
compilers multiply L#5000 and implement a single DO loop. Since L*5000 is often large, this value
sometimes exceeds the maximum value which can be held 1n an index register on some computers.

462

from Figure 4, is demonstrated in Figure 8. Here 2°“ nonzero duplicates and 27~*

o Y N Y Y N a N a X

T. G. LEWIS AND W. H. PAYNE

INTEGER FUNCTION SETRIM,P,DELAY,Q,INTSIZ)

SETR=COLUMN NUMBER OF REPEATIMNG ONE PATTERN, [IF SETR <= P,

THEN AN IMPROPER SHIFT LENGTH HAS BEEN SELECTED.
M(P}=TABLE OF RANDOM NUMBERS TO BE INITIALIZED.

Py Q=POLYNOMIAL PARAMETERS: X*¥P¢X*x%Q+],

DELAY=RELATIVE DELAY BETWEEN COLUMNS OF M(P}, IN BITS.
INTSIZ=INTEGER SIZE (BITS) CF HOST MACHINE: EeGe

I8M 360, 313 CDC 6000, 483 SRU 1100, 35; HP 2100, 15.

INTEGER DELAYsP4Q¢ONE,INTSIZ,M(1)
SETR=P+1

ONE=2%*(INTSIZ-1)

D3 1 I=1,P

M{ I)=0NE

DD 4 K=1,INTSIZ

00 2 J=1,DELAY
X=RAND(M,P,Q,INTSIZ)

KOUNT=0

D0 3 I=1,P
ITEMP=0ONE /2% *(K~1)
ITEMP=(M(I)-M{1) /ONE*ONE} /I TEMP
IFCUTEMP .EQ. 1) KOUNT=KOUNT+1
IF{K.EQ.INTSIZ) GO 7O 3
MUT)=M(T)/2+0ONE

CONTINUE

IF(KOUNT.EQ.P) SETR=K
CONTINUE

Dl 6 I=1,5000

DD 5 J=1,P
X=RAND{M,P,0,INTSIZ)
CONTINUE

RETURN

END

Fic 7. FoRrTRAN implementation of SETR to initialize GFSR algorithm

110 Wio 010 Wao 0
100 Wi 100 Wa 0
110 Wia 101 Waa 1
111 Wis 101 Was 0
100 W 011 W 0
000 Wis 111 Was 1
011 Wie 001 Wae 0
010 Wiq 110 Wa 1
111 Wi 010 Was 1
111 Wi 010 Wae 0

Wso 0

Fic. 8. GFSR algonthm for L = 3, polynomal 25 + 22 4 1

zeros are produced in one full period.

Very long period sequences can be generated on any L-bit machine merely by selecting
p large. A partial table of primitive polynomials of large p is reproduced in Figure 9 [11].
A complete table can be found in [12, 13].

4. Perod of GFSR

An “unlimited” period is possible without increasing word size of host machines. For
example, M = 2°® — 1 is obtained using 2** + z* + 1 from the table in Figure 9. To
exhaust this cycle would require many years on a very fast computer, i.e. if 10° numbers/
second were generated, approximately 10"° years would be needed to complete the cycle!

COROOOOMORO
Ot O O e b O

-1

Generalized Feedback Shift Register Pseudorandom Number Algorithm 463

¥4 q
47 5,14,20,21
25 11,17
98 11,27
11 10,49
124 37
170 23
250 103
380 47
476 15,141
532 37

Fic 9. Primitive polynomials, 27 4 z2 + 1, p large
More importantly, though, is the repeatability of numbers within a full period. Thus, an

extended sequence is obtained with desirable n-space properties.

5. Mean, Variance, and Correlation of GFSR

The theoretical mean and variance of a GFSR sequence is guaranteed by periodicity;
p==2 W,; m =27 — 1,

For an L-bit machine, 2°~* nonzero duplicates and 2?~* — 1 zeros will be generated before
the entire sequence repeats;

p—L 2L—1 p—L __ 1 2L=1 p—L L _ L p+L

m =1 2 2 m

In the normalized (0, 1) interval py = &.
The variance,

m—1 —ry 2L—1 +2L
27 %) 2 s 1 <2”) 5
= E W2 — _ >, P — Wz -
Tm&E m =1 ¢ K 3\ m »

and normalized to (0, 1),

The correlation obtained by averaging over the entire period,

1 m—1 1 —1
[R(t) = — ZD W W1+t;

1=0

can be derived using techniques identical to Tausworthe’s [7]. However, intuition indicates
that columns with nearly the samé delay and hence nearly equal, bit-by-bit, should result
in large correlation coeflicients. The correlation intuitively must decrease as relative de-
lay increases. Full period analysis by Tausworthe does not properly model this micro-
structure and tells us nothing about short sequences. Therefore, an empirical rule is used
which computes the maximum correlation coefficient over a range 0 < ¢ < 50. A plot of
maximum correlation coefficient versus relative delay between columns shown in Figure
10 indicates a relative column delay of 100p or more to be satisfactory. It is possible to
find smaller delays which also give satisfactory correlation, but several polynomials were
tested and all found to be “‘safe” with delays of order 100p. Finally, selection of delays
which are multiples of p assures linear independence of starting values discussed in
Section 2.

X (I+1}

464 T. G. LEWIS AND W. H. PAYNE

108

075

COEF

0.50

AUTOCORRELATION
0.25

00

£

00 12.50 25.00 37 0 00 62.50 75.00 87.50 100,00

.50 [
DELAY

Fi1c. 10 Maximum correlation versus relative column delay (measured 1n p umts) for GFSR RNG
using 15-bits, £ + 227 4 1

o o
o ob Sgo oy
& :?Ebu D% Og a® o
89 g o G@g ov EEDS 08P poo 3
o o D% [e] oF TRo a =
Og fa) 8 o & e T
(=) a tho g Og g =
IbD a [} g 0D o, omYg
slat® ol o o % efioad 2
°la ¥ o Fhoo & £e qo °
o o ®° ° 2 @%D'@]DBD =} qu
fa} @%HDDDCD o a gn
AL e B VI
© ag o o Op —_eT
oo a o =
TS B3 8 ° a0 B@oP| F
D@é Ll fo g @, =
A S T e
T B ot By 0T <1
o a a o
Etnﬂﬂj m 70 5 % = o 0 B ©
8]l o @maq'-@éa = o 82 @& 8
S.00 0.20 ;-(I?) 0 60 080 1o %
(a) (b)

Fig 11 (a) Two-dimensional plot of GFSR, X3 4 X' 4 1, 9-b1t word size and delay of 93, (b) three-
dimensional plot of GFSR, X% + X + 1, delay = 93

6. Multidimensional Uniformity of GFSR

Figure 11 shows a much improved 9-bit generator compared with Lehmer and Kendall
RNG’s shown in Figures 1 and 2. The underlying reason, of course, is the longer than
m = 2° period, and the repeatability of numbers within one cycle of the generator.

To fill in m” cells in n-space, (2°)" < 27 — 1, or nL, < p. Therefore, a necessary condi-
tion for n-space uniformity is that n < p/L. For example, suppose L = 15, p = 98, then
uniformity may be possible up to dimension, n = 6.

n-Space uniformity cannot be guaranteed without knowledge of the order of numbers
generated by GFSR. Known order can be exploited for the purpose of designing tests
which the GFSR will fail. Rather than take this negative approach, greater emphasis is
placed upon n-space uniformity for actual use.

GFSR Turorem. The sequence of L-bit numbers generated by GFSR, z¢ 4+ 27 + 1,
p = L, has

(1) period, m = 2° — 1, 4f 2° + 27 + 1 is primitwe,

Generalized Feedback Shift Register Pseudorandom Number Algorithm 465

(2) normalized mean, py =~ %,
(3) normalized variance, oo ~ s,
(4) potential n-space uniformaty for n < p/L.

7. Conclusions

The advantages of GFSR RNG’s are:

(1) Speed: One ExCLUSIVE-OR versus a multiply/reduction modulo m for Lehmer, and
two EXcLUSIVE-Ors/two shifts for Kendall’s algorithm.

(2) Generality: A standard FORTRAN subprogram can be implemented on any com-
puter independent of the word size. A small word size merely reduces the resolution of
random riumbers produced, but high order bits will be unchanged on any machine. Com-
parison with sequences obtained on other machines using a FORTRAN program are given
in Figure 6.

(3) “Unlimited” period: Any primitive polynomial can be implemented when sufficient
memory is available for storage of p words. For example, 2° + &’ 4+ 1 can be used on a
16-, 24-, 32-, 36-, 48-, 60-bit machine and a cycle length of 2* — 1 realized on them all.

Moreover, the speed/cost ratio is further enhanced when GFSR is implemented as a
microprogrammed instruction. Figure 12 shows a microprogram which computes a
pseudorandom number each time RND REG1, TABLE, is issued. The Interdata 4
machine instruction D41 was wired into read-only-memory as shown in Figure 13.

Impressive speed (24 microseconds on the Interdata 4, which is equivalent to 5-6 micro-
scconds on an IBM 360/65) and extended period are realized on a small word size machine
(1156 bits). Tll;e period of 2® — 1 greatly surpasses the previously attainable periods of
27 —1lor2” — 1.

The table for RND REG1, TABLE is organized as shown in Figure 14. Thus,
z" 4 " 4+ 1is generated using index I.

8. Testing

The following empirical tests on 10,000 GFSR-produced numbers were made using
X® 4+ X% + 1, 15-bits, and chi-square statistic [2-4, 6].

The frequency lest counts the number of numbers falling in each of 100 equal cells in the
(0, 1) interval.

Yule’s test counts the number of sums-of-5 digits falling in each of 45 cells. This is
applied to each of the four most significant decimal digits obtained by scaling the nor-
malized (0, 1) pseudorandom number.

The gap test counts the length of gaps between successive like digits formed by scaling
normalized RNG number to decimal digits. The test is applied to digits 0 through 9.

The autocorrelation test computes the maximum normalized autocorrelation coefficient
up to lag 50. Acceptable correlation is in the interval (.03, .08).

The D? test compares the theoretical distribution of a random line in two dimensions
with the distribution obtained empirically.

The serial test counts the number of pairs of numbers from an RNG falling in 100 equal
cells. Here, pairs of decimal digits are combined to give an integer from zero to ninety-
nine. A frequency test is applied to the 100 cells.

The runs test computes the longest run, the frequency of cach run compared with the
theoretical distribution, and number of runs above/below the mean. The total number of
runs is compared with the expected number.

The minim um/maximum-of-n-test compares the empirical with the theoretical distribu-
tion of the muinimum/maximum-of-n numbers. The number of extremes is counted for
each of 100 cells and a frequency test is applied forn = 2,4,6 -- - , 20.

466 T. G. LEWIS AND W. H. PAYNE

MODEL 4 MICRO CODE

ORG X'428"
0428 5004 RND L RAH,H(RND)
0429 3080 C SB
042ZA 4453 L MR4,MAR SAVE TABL IN MR4.
042B 43A3 L MR3,MDR SAVE I IN MR3.
042C 5802 L AR,X'2'
042D C550 A MAR,MAR,NF+NC
042E 3100 C MR GET S,N: LOC TABL+2.
042F CO050 A MRO,MAR,NF+NC SAVE TABL+4 IN MRO.
0430 S8FF L AR,X'FF'
0431 82A3 N MR2,MDR,NF MASK-OFF S; N IN MR2.
0432 48AF L AR,MDR,CS
0433 91FF N MR1,X'FE' CROSS SHIFT AND MASK-C
0434 4833 L AR,MR3 COMPARE 1I:N.
0435 E824 S AR,MR2,NC
0436 1138 B L,OK BRANCH IF I<N.
0437 5300 L MR3,X'00' OTHERWISE, SET I=0
0438 4813 0K L AR,MR1
0439 (130 A MRI,MR3,NF+NC J=I+S
043A 4813 L AR,MR1
0438 E224 S MR2,MRZ,NC (MR2)=J-N.
043C 113E B L,OK2 BRANCH IF J<N.
043D 4123 L MR1,MR2 OTHERWISE, SET J=J-N.
043E 4818 0K2 L AR,MR1,SL+NC D1=2*J.
043F C500 A MAR,MRO,NF+NC LOC TABL+D1+4,
0440 3100 C MR GET TABL(J).
0441 4838 L AR,MR3,SL+NC D2=2*I.
0442 C500 A MAR,MRO,NF+NC LOC TABL+D2+4.
0443 48A3 L AR,MDR SAVE TABL(J).
0444 3100 C MR GET TABL(I).
0445 AEA3 X YD,MDR,NF EX-OR TABL(J)+TABL(I).
0446 4AE3 L MDR,YD
0447 3200 cC MW RESULT IN TABL(I).
0448 5801 L AR,X'01' INCREMENT.
0449 CA30 A MDR,MR3,NF+NC I=I+1.
044A 4543 L MAR,MR4
044B 3200 cC MW NEW I IN LOC TABL.
044C 4563 L MAR,LOC
044D 0668 D LOC,LOC,P2N

END

Fic 12. Interdata 4 microprogram for GFSR Execute, RND REGI1, TABLE. The resulting random

integer is returned to register REG1, and the address of TABLE locates the memory table. To inter-

pret the code L-load, C = command, A = add, N = and, S = subtract, B = branch, X = exclustve-

or, and D = decode. There are microcode registers MRO through MR4, memory address register

(MAR), and memory data register (MDR) which refer to core memory. The third operand modifies
the operation for example, NC means ‘‘no carry’

The conditional bit test counts the number of one bits in the jth bit position given the
j — 1 previous bits. A binary tree is formed with a branch at each bit position. The tree
of bit counts is then compared with the expected value of (3) * 10,000 = 5000. If the
bits are indeed independent then the empirical value matches expected value.

The finate Fourier transform (FFT) test tests for a “flat” spectrum by the statistics

n MH
U = (8 — 1) v(12M), P,.=2|anr‘/zl|an|2, n=1,2 -, M+1,
r=] -

» = N/2, N even,
T (N —3)/2, N odd,

o)
i
[~
M=

¥

3
]
L3

Generalized Feedback Shift Register Pseudorandom Number Algorithm 467

i
i
-
3
|

1

Lhid
.

-

Fic. 13. Interdata 4 read-only-memory board with RND instruction wired in. Note the two rows of
transformers with interwoven wire. Each transformer provides one bit of memory

TABLE + ¢ I
TABLE + 2 s | n
TABLE + 4 Yo

w1

.

~]

TABLE+2n-2 vn_y

Fig 14. Orgamzation of TABLE for microprogram RND GFSR uses z* 4 z* + 1 by EXCLUSIVE-OR
of w, with w,,

and the transformed sequence
1 N-—-1
A, = = 2, R, exp (—2mwijn/N); w=01,---,N —1; R, = random number.
=0

The scattering experiment simulation compares the expected distribution of scattering
angles with theoretically expected values. A point on the surface of a unit sphere is
randomly chosen thus giving a solid angle. This solid angle represents the deflection of a
neutron after colliding with an atom. The solid angle is rejected to weight according to
() = 7(1 — 6/7) :0 < § < 7. The empirical distribution of ¢ is compared with the
theoretical using a chi-square test on 36 intervals in (0, 7).

A visual test is done by observing 2, 3-space plots of successive n-tuples as shown in
Figure 11. A CRT display is particularly useful for observing order by dynamic plotting
of points as they are generated.

9. Results of Tests

The 15-bit GFSR algorithm performed satisfactorily in the above tests at the 5 percent
level of significance. Failure was noted at n = 8, 14, 20 in the minimum-of-n test as pre-
dicted. However, no failures were noted for n = 10, 12, 16, 18 and all » tested in maximum-

468 T. G. LEWIS AND W. H. PAYNE

of-n test. Thus, a partial indication of nonuniformity for n > 6 is given by these tests.
For applications requiring uniformity above n = 6 one merely uses a higher degree
polynomial. For 24 mantissa bits and X* 4+ X* + 1, no failure was detected on any of the
tests.

The GFSR algorithm must be considered statistically qualified as an RNG while
superior in speed and generality to other contemporary RNG’s.

ACKNOWLEDGMENTS. We wish to thank Fred M. Ives for his microprogramming ex-
pertise and assistance for wiring the read-only-memory board. Also, we wish to thank
Peter D. Gross, W. R. Thorson, and A. F Kupinski for running programs on the SRU
1108 and CDC 6400 computers. Terry E. Hamm, compiler writer, Data Products Divi-
sion, Hewlett-Packard, Palo Alto, California, filled us in on the history of the DO loop
and ran our programs with the new HP compiler on the 2116A computer.

The initial draft of the paper was circulated to several scientists. R. R. Coveyou, L. R.
Turner, K. C. Wang, and J. RB. Whittlesey made many valuable suggestions on short-
comings and how to improve this paper. Frank Engle, Jr., Chairman, ANSI X3J3
Standards Committee, pointed out to us that RAND did not conform to ANSI X3.9-1966
ForTraN specifications. He coded two conforming versions of RAND which execute
much more slowly than our nonstandard code. T'. G. Ostrom gave us the solution to the
problem of counting the number of different zero-one matrices with linearly independent
rows. Finally, J. P. R. Tootill not only corrected some of our ideas about Kendall’s
algorithm but modified his ‘‘decimated-Kendall-sequence” algorithm (9] to study our
«® 4+ 27 + 1 sequence and reported, “We paid no particular attention to efficiency of
method or coding, so our algorithm as modified would win no prizes for speed, but it did
establish that your sequence to 16-bit accuracy is, in fact, 6-distributed.” Again we ex-
press appreciation to all these scientists.

REFERENCES

1. Covevou, R. R., aNp MacPuERsoN, R. D. Fourier analysis of uniform random number genera-
tors J. ACM 14,1 (Jan 1967), 100-119.

2. Kenpary, M. G., anp Smrry, B. B. Randomness and random sampling numbers J Roy
Statist. Soc 101 (1938), 162-164.

3. Lewis, P. A W, Goobman, A S, anp MiLLER, J. M A pseudorandom number generator for
the SYSTEM/360 IBM Syst. J. 8,2 (1969), 136-146.

4, MacLAReN, M D, aNp MarsaGLiA, G. Uniform random number generators.J. ACM 12,1 (1965),
83-89.

5. MarsacrLis, G. Random numbers fall mainly on the planes. Proc Nat. Acad. Sce. 61, 1 (Sept
1968), 25-28.

6 Pavyne, W. H, ano Lewis, T. G Conditional bit sampling: Accuracy and speed In Mathe-
matical Software, J. R. Rice (Ed), Academie, New York, 1971, pp 331-345.

7 TauswortsHe, R. C Random numbers generated by linear recurrence modulo two Math.
Comput 19 (1965), 201-209.

8 TooriLy, J P. R., RosinsoN, W. D , aNp Apams, A G The runs up-and-down performance of
Tausworthe pseudo-random number generators. J ACM 18, 3 (1971), 381-399.

9. Toorirs, J. P. R, RoriNsoN, W. D , anp EAGLE, D. J. An asymptotically random Tausworthe
sequence. J. ACM 20,3 (July 1973), 469-481 (this issue)

10. WHirTLeseY, J RB. A companson of the correlational behavior of random number generators
for the IBM 360. Comm ACM 11,9 (Sept 1968), 641-644

11. WarrtLesEY, J. RB., aND GRIEsE, P. Multi-dimensional pseudorandom non-uniformity. Proc.
of the UMR-Mervin J Kelly Communication Conference, Oct. 1970, U. of Missoun at Rolla,
Rolla, Mo , pp. 15-4-1-15-4-6

12. Zierrir, N. Primutive trinomials whose degree is a Mersenne exponent. Inform Contr. 16
(1969), 67-69.

13 Zierner, N, anp BriLLaart, J. On primitive trinomials (mod 2), I1. Inform. Contr. 14 (1969),
566-569

RECEIVED AUGUST 1971; REVISED JULY 1972

Journal of the Association for Computing Machinery, Vol. 20, No 3, July 1973

	Generalized Feedback Shift Register Pseudorandom Number Algorithm
	Recommended Citation

	Generalized Feedback Shift Register Pseudorandom Number Algorithm

