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Fig. 1. (a) Set of words to be stored in DICTIONARY. (b) Diagnostic key
of DICTIONARY.

lent to a trigram test dij, or as realizing simultaneously the digram
test dk and dik. In fact, as the mth test of the diagnostic key is being
performed, m - 1 digram tests are performed simultaneously.
Although there is reason to doubt the possible existence of efficient

algorithms for generating optimal diagnostic keys (keys which
minimize the expected number of tests to be performed) [1], efficient
heuristics have been proposed [2], [4] for generating keys which
approximate optimal keys.

Diagnostic keys are efficient with respect to time because after a

series of tests has been successfully performed, one need not search
for the word in DICTIONARY, since its existence will have been demon-
strated as a side effect of the tests.
With respect to memory, the storage required for the digrams is

obviated and the storage for DICTIONARY may be reduced (in spite
of the need to store all the pointers), since the words may share
portions of the diagnostic keys. A simple storage scheme consists
of storing the pointers as stacks. of 26 words (depending upon the
machine and language being used, the pointers could be packed more
efficiently). Updating under this storage scheme is particularly
attractive, since one need only follow the path of a new word until
the first missing pointer, and add the appropriate tests and pointers
thereafter. The storage needed for the diagnostic key will surpass
that of DICTIONARY as the words become more and more dissimilar,
no longer sharing common paths of the key.
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An Asynchronous Circuit Design Language (ACDL)

GREGORY M. BEDNAR AND JAMES H. TRACEY

Abstract-This correspondence describes a special purpose
Asynchronous Circuit Design Language (ACDL) for specifying the
terminal behavior of asynchronous sequential circuits. The language
is a valuable tool for formalizing and documenting asynchronous
designs, as well as providing a user interface to a completely auto-
mated synthesis system. The language includes many special
features which permit quick and precise specification of terminal
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behavior and is best suited for problems that are currently being
described informally by word statements.

Index Terms-Asynchronous sequential circuits, design automa-
tion, design languages, sequential circuit synthesis, sequential circuit
specifications, switching theory.

I. INTRODUCTION

A number of synthesis procedures for fundamental-mode asyn-
chronous sequential circuits now exist and many of these have been
programmed for computer application[1]-[6]. Although considerable
work has been directed toward improving the synthesis procedures,
little has been done in interfacing the user to these procedures.

This paper presents an Asynchronous Circuit Design Language
(ACDL) which provides a simple and concise means of describing
the terminal behavior of asynchronous sequential circuits. As a
circuit model, ACDL is more precise than word statements and more
natural than flow tables. When an ACDL description is combined
with a translator [7] and synthesis programs [4}-[6], the circuit
design equations can be generated automatically. However, even
without translation the language is a powerful tool for specifying,
formalizing, and documenting a design.

Procedures exist for specifying asynchronous sequential circuits
when the terminal characteristics of the machine are easily expressed
in input/output sequences [6], [8]. However, only a small percentage
of designs are suitable for this type of terminal description since
for most circuits, the task of specifying all possible input-output
sequences is not easy or straightforward.
ACDL is based on the observation that the complete terminal

behavior of an asynchronous sequential circuit can be uniquely
specified in terms of relatively few critical input-output events.
Many designs originate in the form of critical events, and typically, a
designer first converts these critical events into a word statement for
later use in the manual construction of the primitive flow table. With
ACDL the designer can proceed directly with the listing and formali-
zation of the critical events without the need for specifying informal
word statements and manually constructing flow tables. Further
advantageous characteristics of ACDL are

1) it permits ease of expression;
2) it retains a formal structure;
3) it provides compact and descriptive specifications;
4) it permits automatic translation;
5) it provides readable documentation for a design.
A review of well-known digital design languages [91-[14] reveals

that they are intended for networks whose designs can best be
described by functional operations and information transfers between
basic hardware elements such as registers, switches, terminals,
memory, etc. None of these languages were found to satisfy all of
the above desired characteristics for specifying the terminal (input/
output) behavior of an asynchronous sequential circuit. Specific
drawbacks of these languages include the inability to assign transi-
tion values to variables, the inability to make proper declarations
such as "input constraints" and the inability to list multiple inde-
pendent sequence paths without introducing additional control
variables or cluttering the listing with many "go to" type statements.

II. A DESCRIPTION OF ACDL

The following discussion is an informal description of the salient
characteristics of ACDL. A complete, formal definition of the lan-
guage is given in the Appendix. All symbols used in ACDL can be
formed from characters available on standard computer keyboard
devices.

A. Transition Value
In Boolean Algebra a symbol can stand for either a 0 value or 1

value. In addition to these level values, ACDL defines a more

important type of value called the transition value. The possible
transition values are '0 -- 1' and '1 -- 0', where '--' is the transition
symbol and is read as "makes a transition to.'

Circuit input variables will take on transition values as well as
level values. Table I illustrates a shorthand notation that is defined
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TABLE I
SHORTHAND NOTATION FOR BASIC TRANSITION EXPRESSIONS

Expression Shorthand Notation

X =O 1 X-1
(X = 1 -+1 + XX O
(X = 0 1) + (X = 1 --> 0) X ?

TABLE II
EXAMPLES OF TRANSITION EXPRESSIONS

Expression Logical Meaning Informal Meaning

Xl - 1 Xl makes a transition from 0 to 1 X1 turns on Xl goes up etc.
X1 and X2 0 X1 makes a transition from 0 to 1 and X2 makes a transi- X1 turns on at the same time X2 turns off

tion from 1 to 0 simultaneously
X1 1 + X2 0 XI makes a transition from 0 to 1 or X2 makes a transi- X1 is to turn on or X2 is to turn off

tion from 1 to 0
Xl ? and X2 -+? X1 and X2 make a transition simultaneously, i.e., X1 and X1 and X2 change state simultaneously

X2 go from 00 to 11 or 11 to 00 or 01 to 10 or 10 to 01
Xl 1 WHILE X2 = 1 Xl makes a transition from 0 to 1 while X2 stays at 1, i.e., Xl turns on while X2 is held on

inputs X1, X2 go from state 01 to 11

TABLE III
EXAMPLES OF LABELS

Label Type Examples

Standard FIRST:, $31:, BEGIN-HERE:
Output ZOO:, Z(OO, 01/2, 11):, Z11O/3:

for basic transition expressions to enable the designer to make quick
and easy specifications. The notation 'X -4?' indicates the occur-
rence of a don't-care transition and essentially says that X makes a
transition and "you don't care" if it is a 'O -- 1' or a '1 -4 O' transi-
tion. Further description of transition expressions is provided in
Table II.

B. StWent Labels

In ACDL there are two different types of labels: standard labels
and output labels. A standard label is essentially an identifier with
the restriction that the first character of the label cannot be the
letter "Z." The letter "Z" is reserved for the beginning character
of output labels, and it is followed by the current output state of the
circuit. Hence, the output label serves two major purposes; it indi-
cates the next statement to occur in the design sequence while at
the same time provides the designer with the present output state
at that point in the sequence. The output state of the label is fol-
lowed by a / and digit when it is necessary to distinguish a previous
output label having the same output state. An output label may
specify multiple output states where the next statement in the
sequence is the same for each state. All labels are followed by a
colon. Examples of standard and output labels are given in Table
III.

C. Statements

The statements available in ACDL are briefly described in Table
IV. Further explanation is provided as necessary.

1) Declare Statement: The input and output declarations indicate
the number and names of the input and output variables required
in the design. If no initial condition is explicitly shown for the vari-
able, then an initial value of zero is assumed.
The constraints declaration (CONSTR:) indicates those input transi-

tions that are not allowed. The input constraints are either shown
explicitly with level and transition expressions, or for some of the

more common occurring cases can be designated by special keywords.
The keywords "Single Input Change" abbreviated SIC, assists the
designer in problems which permit only single input changes. The
keywords "All Unspecified Sequences" abbreviated AUS, restricts
all sequences of input transitions which are not explicitly described
in the design. This constraint is extremely useful where only a specific
number of alternative sequences can occur. Level expression con-
straints, e.g., X1 = 1, restrict transitions to those input states which
agree with the value of the expression. If there are no input transition
constraints the keyword NONE is written.
The global declaration is used when there are certain transition

conditions which arise frequently throughout the design and are
independent of any particular I/O sequence. Instead of repeating
the transition statement many times in the design specifications, the
statements are listed once in a global declaration. The global list
of transition statements have automatic linking designated, so that
whenever a global transition occurs, an immediate branch is made
to a specified point in the design sequence.
Examples of the design and declare statements are presented in

Table V. In the declare statement, the initial conditions for the input
variables are explicitly given (i.e., shown within parentheses) while
for the output variable it is left to default to zero. The slash following
the output change of the global declaration is the symbol used to
designate automatic linking. This concept is further explained in
Section V in conjunction with the list statement.

2) Transition Statement: The transition statement is used to show
input transitions and may relate an input transition to an output
change. Since the inputs to the circuit change at random, the input
transitions specified by the transition expression are essentially test
conditions for particular input transitions. An output change is an
output variable(s) being assigned the value of a specified Boolean
expression. The output change occurs only when the transition
expression is satisfied. Examples of transition statements are shown
in Table VI.

3) Link Statement: This statement provides a natural way to
describe alternate behavior at a branch point in the design sequence.
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TABLE IV
STATEMENTS OF ACDL

Statement General Format Description Use

Design DESIGN optional accounting information of design #, Begins ACDL Design
designer's name, and date;

Declare DECLARE
INPUTS: input names with or without initial condi- Defines all input variables, output variables, constraint

tions transitions and global transitions of the design.
CONSTR: keywords, level expressions or transition

expression constraints
OUTPUT: output names with or without initial condi-

tions
GLOBAL: list of automatic link transition statements;

Start START; Starting point for the design sequences. Invokes initial
I/O conditions and establishes initial state of machine.

Transition transition expression; Expresses the I/O relationships of the critical input-
or output events of the design.
transition expressionw= output change with or without

automatic linking specified;
Link LINK (test condition list) label list; For branching in ACDL, where the test condition is an

input level or transition test, causing a branch to the
corresponding label.

Statement block BEGIN; For listing independent sequence paths resulting from a
statement list link or list statement.
END;

List LIST followed by a list of automatic link transition state- For branching when all test conditions lead directly to an
ments; output change.

Program end END. Designates the end of the sequence specifications and end
of the design.

Comment "any valid character string" Adds clarification to the design.

TABLE V
EXAMPLES OF THE DESIGN AND DECLARE STATEMENTS

Statement Type Example

Design DESIGN 103, JOHN DOE, JAN 3, 1973;
Declare DECLARE INPUTS: A(1), B(0)

CONSTR: SIC,
A= 1&B= 1

OUTPUTS: Z
BLOBAL: B 0* Z 0/;

A test condition is either a transition expression, level relation, or
the keyword ELSE (meaning all other unspecified conditions). Each
test condition links the previous specified sequence to an alternate
sequence path given by the label corresponding by position to the
test condition.
Whenever an output change follows a test condition of the LINK,

it is shown in the first statement of the new path. In this case the
dummy term LINKTEST (abbrev. LK'T) is inserted as the transition
expression for this transition statement. This implies that the LINK
test condition causing the branch also causes the output change.
A special case of the link statement is the link unconditional writ-

ten as: LINK label; . This case is primarily used for unconditionally
branching to a previously specified statement.

4) Statement Block: The statement block provides a means of
separating alternate sequence paths resulting from a link statement.
The BEGIN and END statements act as separators which serve to
segregate a block of statements from other statements. Statement
blocks may be nested within other statement blocks. After a state-
ment block has been completed, its sequence path continues with
the next statement in the listing which does not belong to another
statement block of the same nested level. Examples of the link
statement and statement blocks are given in Table VII.

5) Automatic Linking and the List Statement: Automatic linking
is designated by a slash, /, following the output change of a transition
statement. This linking is accomplished by branching to the state-
ment identified by an output label having the current output state.
The designer must ensure that a unique and correct output label

TABLE VI
EXAMPLES OF THE TRANSITION STATEMENT

Statement Explanation

A 1; Input A is to make a transition to 1
A - 0. Z <- 1; Input A making a transition to 0 implies that

output Z changes to 1 if not already 1
(C 1) + (B -+ 1) Input C making a transition to 1 or input B
XGa- 1, R +- 0; making a transition to 1 causes output G

to be replaced to 1 and R to be replaced to 0.

TABLE VII
EXAMPLE OF LINK STATEMENT AND STATEMENT BLOCKS

Statements Explanation

LINK (B --+ 1, A -- 0)L1, L2; The 1st test condition transfers
Li: BEGIN; control to statement block LI

LK'T=Z 1; where the lst statement says that
the link test B -. 1 causes Z <-- 1.

END; After the 1st statement block is
L2: BEGIN; completed, control is transferred

C 1; to the transition statement B --

0. If none of the link statement
END; test conditions are true for the
B 0; current input transition, the

sequence will not advance, but
rather will remain at the link
statement until a test condition
becomes true for some later
transition.

has been assigned to some statement. To distinguish between output
states having the same value, but occurring at different points in
the sequence, the designer follows the slash with a digit which must
agree with the trailing digit of the correct output state label.
Automatic linking saves the designer having to explicitly specify

a link statement and hence, improves the clarity of the specification
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listing. It was the automatic linking feature which led to the develop-
ment of the list statement. This statement is a special purpose link
statement in which all test conditions lead directly to an output
change. It does not specify a sequence of successively occurring
transitions, but rather, it specifies a set of statements from which
only one is selected to occur. The test conditions of all transition
statements in the list are scanned concurrently, and only one test
condition may be true at a time. When a test condition becomes
true, its corresponding output change indicates the next statement
in the design sequence via automatic linking. The transition state-
ments within a LIST statement are separated by commas, while the
end of the list is indicated by the LIST statement's semicolon. An
example of the list statement is given in Table VIII.

6) Sequences: Statements in ACDL are interpreted in the sequen-
tial order in which they are specified, except when the physical
sequence is interrupted by branching which results from explicit or
automatic linking. The rules for interpreting sequences written in
ACDL are

1) In a test condition of an ACDL statement, any undesignated
input variables are considered as don't-cares in the specified
input state transition.

2) The sequence will advance to the next statement for any input
state transition which agrees with a test condition of the
current statement.

3) The sequence remains quiescent (i.e., does not move) for any
input state transition which does not agree with a test condi-
tion of the current statement.

Now that a description of the language has been presented, a
simple and efficient technique for correctly specifying the operation
of the sequential circuit will be described.

D. Critical Event

In studying the specification problem of asynchronous sequential
circuits, it was found that only those sequences of input transitions
which cause output changes are important in describing the basic
operation of the circuit. Also it was observed that these sequences
are relatively few compared to the total number specified in the flow
table. These findings led to a specification technique for ACDL that
provides a precise circuit description from which the complete syn-
thesis can be carried out automatically.

Definition: A set of minimum length sequences of input states
which cause the next output change and starts from the I/O state
resulting from the previous output change is called a critical event.
A critical event may be an incompletely specified sequence, i.e.,

a sequence which contains don't-care variables in some states. In
this case the critical event will actually represent more than one
possible sequence resulting from the random changing of the don't-
care variables. However, any intermediate states that are introduced
by the don't-care variables will not affect the integrity of the critical
event, i.e., these states neither cause an output change nor destroy
any past history of the critical event.
For many asynchronous sequential circuits, the design conditions

originate in the form of critical events, and it is from these that
normally a word statement and flow table follow. ACDL, however, is
a means to directly and formally specify the critical events. This is
done by starting from the initial state of the circuit and listing the
critical events which cause the first output changes. Continuing
from these points in the sequences, subsequent critical events are
listed until all possible output changes have been specified. The
following design examples illustrate the use of this specification
procedure.
Example 1: Design a circuit which has two inputs, osc and BTN,

and one output, Z. The input osc is the output of a square wave
oscillator, and BTN is a button which, when depressed, gates one
and only one full width oscillator pulse to the output. An output
pulse can occur only if the button depression overlaps the leading
edge of an oscillator pulse. The inputs cannot change simultaneously
[15].
The ACDL design is:

DESIGN 1: JOHN BROWN, AUG. 27, 1973;
DECLARE INPUTS: OSC, BTN

CONSTR: SIC
OUTPUTS: Z;

START;
BTN -> 1;
OSC -. 1 WHIILE BTN = 1 =>Z - 1;

TABLE VIII
AN EXAMPLE OF THE LIST STATEMENT

Example Explanation

ZOO: List In the list statement either of the two
Xi 1-÷i= Zi <- 1/, listed input transitions can occur. If
X2 - 1=> Z2 l- 1/; Xl -* 1 then an automatic link is

made to the statement having the
Z10: X2 -+ 1; output label Zi0. Similarly, if X2 -- 1

is true, then a branch will be made
ZO1: X1 --+ 1; to ZO1 upon completion of the output

change Z2 *- 1.

osc -0> Z +-0;
END.

There are usually many different ways to specify a design. For
example, the critical events of Example 1 could have been described
as:

START;
L1: osc 1 WHILEBTN = =Z -1;

osc - O>0 Z +-0;
LINK (BTN = 0, ELSE) LI, L2

L2: BTN -4 0;
END.

Example 2: Design a special asynchronous two-input coincidence
detector in which the output turns on when both inputs are on
concurrently, but turns off only when the input which rose first
goes off. The inputs are not permitted to change simultaneously.
The ACDL design is:

DESIGN 2; "COINCIDENCE DETECTOR"
DECLARE INPUTS: A, B

CONSTR: SIC
OUTPUTS: Z;

START;
LIST

Zi /1:
Z1/2:
ZO:

A -1 WHILEB = 1X Z 1/1,
B-1WHILEA = 1=>Z 1/2;
B =>Z +0/;
A 0 Z +0;
END.

Example 3: Design a combinational lock circuit which has two
cipher signals (X1, X2) and a reset signal (R) as inputs and a single
output (Z). The lock is to open (Z = 1) if there is a' sequence of four
consecutive changes of Xl while X2 remains on and is to stay open
regardless of further changes of Xl and X2. If, however, X2 turns
off, after two or three consecutive changes of Xl with X2 on, the
lock will remain closed no matter what changes in X1 and X2 occur
thereafter. Whenever the reset signal occurs, the lock closes (if not
already closed) and the combination can be restarted. Only single
input changes are permitted [16].
The ACDL design is:

DESIGN 3; "COMBINATION LOCK"
DECLARE INPUTS: X1, X2, R

CONSTR: SIC
OUTPUTS: Z
GLOBAL: R 1 = Z 0/;

START;
L2: X1-- ? WHILEX2=1;

LINK (X1 *?, X2 0) Li, L2;
Li: LINK (X1 ?,X2 Or) L3, ZO;
L3: LINK (Xl -*?, X2 - 0) L4, ZO;
L4: LK'T = Z - 1;
ZO: R -0;

END.

The primitive flow tables for Examples 1, 2, and 3 have 8, 7, and
22 rows, respectively. An algorithm to automatically translate ACDL
designs to primitive flow tables was developed to provide a direct
and simple mechanism for verifying the language and specification
process. A detailed description of the ACDL translator and flow
table algorithm is given in [7]. A system is also available to auto-
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matically convert ACDL descriptions to the circuit design equations
[4]-[7]. Further information on the availability of these programs'
can be obtained from Dr. Tracey.

IV. CONCLUSION
ACDL is a compact, easy-to-use language for specifying the

behavior of asynchronous sequential circuits which is more precise
than word statements, and more natural and descriptive than flow
tables. With ACDL, a design can be described in different ways by
using the various features available in the language. In many prob-
lems, the critical event philosophy of listing only minimum sequences
of input changes which cause output changes greatly reduces the
amount of information needed for specification. This feature may
enable the designer to handle some large problems (e.g., designs
yielding 50-150 row flow tables) which would otherwise be too cum-
bersome for hand-construction of a flow table. However, as the
number of primary inputs increase, the exponential rate of increase
of input states and therefore, input sequences, causes problems to
become inherently more complex.
ACDL is also a flexible system in terms of its problem versatility

which includes designs for word statements, I/O sequences, switches
flip-flops, counters, etc. However, it is best suited for describing those
problems that originate as a small collection of critical events and
are currently being described informally by word statements. Prob-
lems originating as a fixed set of I/O sequences are specified easily,
but somewhat less naturally, than with present I/O sequence meth-
ods U6}-[7], since the I/O sequences have to be converted to the
ACDL transition statements as opposed to a direct listing.
The ACDL system has been tested with mnany examples in an

attempt to use every feature of the language and to verify the cor-
rectness of the specification process.

Presently, ACDL could be combined with existing synthesis
programs to provide a completely automated synthesis system
[4 J-E7]. Futureresearch willbeexaminingthe possibility ofproceeding
directly from an ACDL description to design or implementation
equations without the classical intermediate steps. Also, ACDL
provides an opening for further research in the area of language
design for large asynchronous networks.

APPENDIX

FORMAL DEFINITION OF ACDL
To formalize the definition of ACDL the metalanguage Backus

Normal Form (BNF) [17J is used which consists of the following
symbols:

(X) to be read as "the object named X;"
= to be read as "'can be formed from,"

to be read as "or" (exclusive or).
The metalanguage construct takes on the following meaning:

"the object named in the corner braces may be formed from the
objects named or specified on the right." Concatenation of names
or objects is implied by their juxtaposition in the construct.
The following ACDL definition is the accepted syntax of the

current ACDL translator [7].
A. Vocabulary of ACDL

1) Symbols:
(letter) ::= AIBICI ... IZI # -I1@1&1'
(binary digit) :: = 0 11
(nonbinary digit) 2 31 4 5 16 1 7 819
(digit) :: = (binary digit) (nonbinary digit)
(special character)-:: = / ?

(separator) ::= 'I ; 1:1. (j)
(relation symbol) :: = JX
(replacement op :: = <
(logical op) :: = .l& +

2) Constants and Identifiers:
(constant) :: = (number) (level) (transition)
(number) :: = (digit) (number) (digit)
(level) :: = (binary digit)
(transition) :: = (long transition) (short transition)
(long transition) ::= 0 -I 1 1 -40
(short transition ) :: = -41 -I0 -?
(identifier) :: = (letter) (identifier) (letter) (identifier)

(digit)

3) Relations and Expressions:
(level relation ) :: = (identifier) = (level) (level relation) &

(identifier) = (level) ((level relation))
(transition relation) :: = (identifier) = (long transition)

(identifier) (short transition) (transition relation ) &
(identifier) = (long transition) (transition relation) &
(identifier) (short transition) ((transition relation))

(compound relation) := (transition relation) WHILE (level
relation) (transition expression) ::= (transition relation)I
(compound relation) (transition expression) + (transition
relation) (transition expression ) + (compound relation )
(dummy term) ((transition expression))

(dummy term) :: = LINKTEST LK'T
(Boolean expression) ::= (logical factor) (Boolean
expression) + (logical factor)

(logical factor) ::= (logical term) (logical factor) & (logical
term)

(logical term) :: = (logical primary) (logical primary)
(logical primary) :: = (level) (identifier) ((Boolean
expression))

4) Statement Labels:
(label) :: = (standard label): (output label):
(standard label ) ::- (letter (except Z)) l (standard label)

(letter) (standard label ) (digit)
(output label) :: = Z (output state) Z( (output state set))
(output state set) :: = (output state) (output state set),

(output state)
(output state) :: = (output code) (output code)/ (number)
(output code):: = (binary digit) (output code) (binary digit)

B. Statements
1) Design Statement:

(design statement) :: = DESIGN DESIGN (accounting
information)

(accounting information) :: = (design number) (design
number), (designer's name) (design number), (designer's
name), (date)

(design number) :: = (number)
(designer's name) :: (identifier) (designer's name)

(identifier)
(date) :: = (identifier) (number), (number)

2) Declare Statement:
(declare statement) :: = DECLARE (declaration type) l

(declare statement) (declaration type)
(declaration type) :: = (input declaration) (constraints
declaration) (output declaration) (global declaration)

(input declaration) :: = INPUTS: (variable definition) (input
declaration), (variable definition)

(variable definition) :: = (identifier) (identifier) (initial
condition)

(initial condition) :: = ((level))
(constraints declaration) :: = CONSTR: (constraints)
(constraints):: = NONE AUS SIC (transition expression)

(level relation) (constraints), (transition expression)
(constraints), (level relation)

(output declaration) :: ='OUTPUTS: (variable. definition) l
(output declaration), (variable definition)

(global declaration) :: = GLOBAL: (list)
(list) :: = (automatic link transition statement) (list)

(automatic link transition statement)
3) Start Statement:

(start statement) ::= START
4) Transition Statement:

(transition statement) :: = (basic transition statement) l
(automatic link transition statement)

(basic transition statement) :: = (transition expression)
(transition expression) =* (output change)

(output change) :: = (identifier) +- (Boolean expression)l
(output change), (identifier) -- (Boolean expression)

(automatic link transition statement) :: = (transition
expression) m (output change ) (autolink)

(auto link) ::= / /(number)
5) Link Statement:

(link statement) :: = (link conditional) (link unconditional)
(link conditional) :: = (tests) (branch points)
(tests) :: = ((test condition) (tests), (test condition)
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(test condition) ::= (transition expression) (level
relation) ELSE

(branch points) ()(single label) (branch points), (single
label)

(single label) = (standard label) Z (output state)
(link unconditional) = LINK (single label)

6) Statemnt Block:
(statement block) = (beginning) (statement list) (ending)
(beginning) ::= BEGIN; (label) BEGIN;
(ending) ::= END (label) END

7) List Statement:
(list statement) = LIST (list)

8) Comments:
(comment) - "(almost anything)"
(almost anything) :: = (any string of valid system 360
characters which does not contain a")

C. Program Structure:
(program ) :: = (program head ) (statement list ) (ending).
(program head) :: = (design statement); (declare statement);

(start statement);
(statement list = (statement) (statement list ) (statement)
(statement) ::= (basic statements) (statement block);
(basic statement):: = (transition statement); (link
statement); (list statement); (label) (basic statement)
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Sequency Domain Design of Frequency Filters

A. E. KAHVECI AND E. L. HALL

Abstract-Each discrete transform has its advantages over other
transforms. Fourier domain filters are easier to design than Walsh
domain filters. But Walsh transforms can be computed much faster
than Fourier transforms. This paper considers the problem of design-
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Fig. 1. Filtering with transforms A and C.

f BD _g,

Fig. 2. Filtering with transforms B and D.

ing a Walsh domain filter, given a Fourier domain filter. Same pro-
cedure can be applied to other transforms. Given a Slant filter its
equivalent Fourier filter or Walsh ifiter can be found.

Index Terms-Equivalent filtering, filter design, Fourier trans-
forms, Karhunen-Loeve transforms, slant transforms, unitary trans-
forms, Walsh transforms.

INTRODUCTION

Transform techniques are widely used in signal and image process-
ing. It is also a very well-known fact that filtering operations are
easier to design with some transforms than with others. As an exam-
ple, filter design in the Fourier domain is much easier than in the
Walsh domain because a large background of frequency domain
design information is available. One may, therefore, make use of the
superior properties of each transform by performing each operation
in the transform domain which offers the greatest ease and the fastest
time.

Fig. 1 is the block diagram of a generalized discrete filtering system
using transforms A and C. Fig. 2 is the block diagram of a generalized
filtering system using transforms B and D. The filtering result using
transformations A and C may be expressed as gA = CGAAf and using
transformations B and D as gB = DGBBf. The only condition on
A, B, C, and D is that they must be nonsingular with real or complex
elements. Equivalent filtering would give gA = gB. Then CGAAf =

DGBBf and for a given GA we can solve for GB = BCGAAD. For
unitary transforms C = A-' = A*T and D = B-1 - B*T.

Equivalent filtering opens ways to doing filter design in one domain
and computation in the other domain. A Karhunen-Loeve filter,
therefore, may be designed in the Karhunen-Loeve domain and
implemented in the Walsh domain or vice versa. If A is a complex
unitary transform and B is a real unitary transform then A-1GAA
is required to be real for GB to be realizable.

DESIGN OF SEQUENCY FILTER USING
FREQUENCY INFORMATION

It is well known that the fast Walsh transform is computationally
advantageous over the fast Fourier transform. However, Walsh
transform filters are not as easy to design as simple frequency domain
fast Fourier transform filters. To take advantage of both the simple
design techniques of the fast Fourier transform and the decreased
computation time of the Walsh transform the following problem is
considered: given the discrete Fourier transform of a desired spatial
filter, derive an equivalent Walsh sequency filter.

Pratt [2] has shown that discrete Weiner Filtering may be imple-
mented by any unitary transformation, rather than just the Fourier
transform.
The purpose of this paper is to describe methods for designing

Walsh transform filters given the equi-spaced discrete frequency
domain specifications. This solution allows one to use the fast Fourier
transform for experimentation with the design of a digital filter for
signal enhancement, then implement the filter with a faster com-
putational method.

In the next section, equivalent Walsh transform filtering is
described. Then computational problems are considered.
The block diagram of a Fourier filtering system is shown in Fig. 3.

The block diagram of Walsh domain filtering is shown in Fig. 4.
For a one-dimensional system, the input column vector, r, is first
discrete Fourier (DFT) transformed, producing the DFT of s. Next,
a point-by-point multiplication in the frequency domain is per-
forned. Finally, the inverse Fourier transform of the filtered input
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