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Fig. 11.. Error density. 

greater reliability and higher throughput ( a s  a result of fewer 
retransmissions), easily justify  the  incremental  product cost due 
to inclusion of the code. Implementation of the code can be accom- 
plished by  the  traditional  hardware  approach or by  the inclusion of 
programming routines  to  handle  the encoding and/or decoding 
functions. The  IBM Mobile Terminal  System contains  examples of 
both  hardware  and software  implementations. 
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Computer Modeling of the Statistical  Properties 
of Transionospheric  Scintillation  Channels 

W. F. DECKELMAN AND R. E. ZIEMER, 
SENIOR MEMBER, IEEE 

Abstract-This concise paper shows that  a  band-limited  bivariate- 
normal  time series is a useful model for the envelope of scintillating 
radio signals traversing the ionosphere. A software  model is pre- 
sented whose  generated  time series is compared to an  actual  block of 
scintillation  data. A comparison of computer-generated  and  actual 
scintillation  data shows that the fade-duration  distribution of the 
simulated  data  fits  that of the  actual  data closely through  proper 
choice of model  parameters. 

I. INTRODUCTION 

Ionospheric  scintillation in  the polar and  equatorial  latitudes dur- 
ing local nighttime  hours  has been observed as a perturbation  in 
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transionospheric  communications  channels which causes  signal enve- 
lope fades on the order of seconds. In order to  predict the reliability 
of a  transionospheric radio communications  link a model of iono- 
spheric  scintillation  is needed. 

The purpose of this concise paper is to  present  a useful computer 
model based on the band-limited  bivariate-normal distribution  that 
generates a time series whose fade-duration distribution approxi- 
mates  that of a sample of ionospheric scintillation data.  The  actual 
data were selected from a quasi-stationary portion of the received 
beacon signal from  the  Tacsat I satellite (250 MHz), recorded  on 
Guam [l] in 1972. It is intended  that  this model will provide the 
groundwork  for developing more precise models. 

Model development  is proceeding along two lines in  the  literature. 
Scintillation strength is studied as a function of ionospheric condi- 
tions. The  statistical properties of scintillation (amplitude  and spec- 
tral  distributions)  are studied  independently.  Since much  data  have 
been accumulated  on  scintillation strength,  the modeling of scintil- 
lation  strength as a function of ionospheric conditions is proceeding 
rapidly [a ] .  However, since no data  are available on t$e amplitude 
and frequency distribution of the inphase and  phase-quadrature com- 
ponents of a scintillating signal, modeling of the  statistical  properties 
of ionospheric scintillation has been directed at the  amplitude dis- 
tribution (i.e., the percent time signal level is below a given level) 
of the envelope. 

The  amplitude  distribution of ionospheric scintillation has been 
approximated by  the  RiceNakagami [2], [ a ] ,  log-normal [2], and 
bivariate-normal [2] distributions.  A  detailed  comparison of these 
distributions in  the  literature [a] demonstrates  that  the bivari- 
ate-normal distribution yields the best  representation of the ampli- 
tude  distribution of ionospheric scintillation. The  curve  fitting  is 
based on two  parameters  that  are functions of in-phase noise power, 
phase-quadrature noise power, and covariance. Since these  three 
independent  parameters  are represented by  two control parameters, 
a  range of each of these  three  parameters exists that will satisfy  the 
restraints of the  two control parameters. 

While the  amplitude  distribution does provide useful data  to  the 
communications engineer, the fade-duration distribution would 
show how long  fades are likely to  last.  The fade-duration distribution 
is the  number of fades  per unit  time below a given level for a given 
length of time or longer. Knowledge of the  amplitude  and  spectral 
statistics of the in-phase and phase-quadrature  components of the 
scintillating signal would greatly  facilitate  the modeling procedure. 
Since this information  is not available, an  iterative procedure  is used 
here to  approximate  the overall fade-duration distribution  by man- 
ipulating  the  statistics of the in-phase and  phase-quadrature com- 
ponents. In  this fashion, a suitable model is obtained which fits the 
second-order fade-duration statistics of the envelope of the received 
signal in  addition to  the first-order intensity histograms. 
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Fig, 1. Block diagram of model of ionospheric scintillation. 

TABLE I 

I ~ F I N I T I O N S  OF SUBROUTINE SCINT VARIABLES 

Model Input Variables 
FC FC is the cutoff freauencv of Filter 1 and Filter 2 in - "  

H R  
hertz. 
H R  is the desired time  interval between data points 

I X  
in seconds. 
Z X  is the seed value used in the random  number 
generator, GAUSS. The value  for I X  is chosen to 
give GAUSS a  nearly  normal  distribution and  to pro- 
duce a long string of random  numbers  without repe- 

N P  
tition. 
N P  is the number of poles of Filter 1 and Filter 2. 
N P  can specify a 1 ,  2,  3, or 4 pole Butterworth filter. 

RHO 
phase and phase quadrature components, X1 and Y1, 
RHO is the correlation coefficient between the in- 

respectively. 

data point. At T > 0, the model generates data points. 
T = 0 the model initializes itself and generates one 

UNDXMU  UNDXMU is the undisturbed  mean magnitude (rms 
voltage level) of the signal before scintillation starts. 

S K  1 X K 1  is the  ratio of phase quadrature noise power to 

X K 2  
total noise power. 
X K 2  is the ratio of noise power to  total signal plus 

E l  
nolse power. 
E l  is an error parameter  that tells the calling program 
that NP(E1  = l), FC(E1 = 2) ,  or HR(E1 = 3) has 
been changed without resetting T to zero. 

'SCINXY  SCINXY is the  magnitude of the signal level as  it 
scintillates: 

T T is the  time corresponding to each data point. At 

SCINXY = [ ( S M U  + X2)2 + Y22I1/2, 

11. COMPUTER  MODEL  DESCRIPTION 

A  functional block diagram of the proposed model is shown in 
Fig. 1 .  The variables FC, HR,  ZX,   NP,  RHO, T, U N D X M U ,   X K l ,  
and X K 2  are  the external  variables that control the model. SCZNXY 
and E l  are  the  output variables. These variables are defined in Table 
I. 

The model begins with a Gausaian random  number generator, 
subroutine GAUSS. Each call to GAUSS yields two  uncorrelated  random 
numbers, X 1  and Y1.  For  this model, the  time series of X 1  and Y1 
each has a mean of zero and a variance of unity. Ftandom numbers 
X and Y are obtained by a linear  transformation of X 1  and Y 1  that 
yields the specified variance and correlation corrected for the  at- 
tenuation of Filter 1 and  Filter 2. Filter 1 and  Filter 2 are  Butter- 
worth filters obtained by  the bilinear 2 transform [4]. Their order 

and cutoff frequency are specified by N P  and FC, respectively. 
Random numbers X 2  and Y2, the  outputs of these filters, are  the 
in-phase and phase-quadrature  components of the received signal. 
Choosing the sample time H R  to  be small compared to  1/FC will 
cause X and Y to  be essentially white noise sources in the passband 
of the filters. Thus, X 2  and Y 2  then  have  the power spectral  density 
provided by  Filter 1 and  Filter 2. X M U  is the  steady-state compon- 
ent of the received signal. The  instantaneous received signal level 
SCZNXY is calculated  according to 

SCINXY = ( ( X M U  + X2)' + (Y2)2)1 /z  ( 1 )  

where 

XMU'  UNDXMU'  (1-XK2)  (2) 

uZz2 = ( I - X K I )  * X K 2  * UNDXMU2 (3) 

and 

UJ = X K 1 *   X K 2  * UNDXMU'. (4) 

Since UNDXMU is the mean rms signal level, UNDXMU' is the 
mean rms power level. X K 2  is the fraction of the  total signal power 
that is  diverted into  the scintillating  portion of the signal. Therefore, 
(1-XK2) X UNDXMUZ is  the power in the nonscintillating  portion 
of the signal as  stated  in (2 ) .   XK1  is the fraction of the noise power 
that resides in the out-of-phase scintillating  component so that 
( 1 - X K l )  is the fraction of the noise power that resides in  the in-phase 
scintillating component. Since the  total noise power is X K 2  X UN- 
D X M W  and  the signal  variance  is the signal power, (3) and (4) are 
written  directly as above. 

111. FITTING  SCINTILLATION  PARAMETERS 

In  order to  select parameters for the model that will represent the 
envelope of ionospheric scintillation, actual scintillation data were 
obtained from  tests conducted by  the  Naval Electronics Laboratory, 
San Diego, Calif. The  instantaneous envelope of the 250-MHz beacon 
signal of Tacsat I was recorded on F M  analog tape for  various site 
configurations on  Guam. Further  details on the recorded data  and 
subsequent  statistical analyses  results are available El]. 

The analog records were then sampled a t  0.2-s intervals. A 
stationary region of 4096 data points was selected using the  run 
and  trend  tests [5] at the 10-percent level of significance. These data 
were analyzed and normalized such that  the  total signal power would 
be unity.  Thus,  the  undisturbed nonscintillating  signal should have 
a mean rms  magnitude of unity.  This mean in-phase magnitude  drops 
during scintillation due  to  the  fact  that power from the signal  is di- 
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160 "I Fade Levels are in Percent of 
the Undisturbed Mean Signal Level 

Fade Duration, Seconds 

Fig. 2. Fade-duration  distribution for 4096 scintillation  data  points 
spaced at 0.2-s intervals: . 

verted  into  the in-phase and phase-quadrature  scintillating compon- 
ents.  The  fade levels chosen for the  fadeduration  distribution were 
100, 80, 60, 40, and 20 percent of the  undisturbed  mean signal level. 
Fig, 2 shows the  fade-duration  distribution for this  sample of scintil- 
lation  data.  The  leftmost  tip of each  curve  indicates  the  total  number 
of fades below that level. 'The normalized mean  and  variance  are 
0.9352 and 0.1254, respectively. No fades were observed below the 
20-percent level. 

The first model parameters  determined were the filter order N P  
and  the cutoff frequency FC. Rough  information  in  the  literature 
[I], [2], [6] on the  spectral  distribution of the envelope of iono- 
spheric  scintillation  served as a guide to  the choice of FC. Figs. 3 
and 4 show the  fadeduration  distribution below 100 percent O F  the 
undisturbed  signal level for a second-order and a first-order Butter- 
worth filter, respectively, at selected frequencies  along with  the  actual 
data.  The fade-duration distribution for fades below 100 percent of 
the  undisturbed signal level is a measure of spectral  distribution. 
That is, no  matter how strong  the fades, their  mean level crossing 
depends on the  spectral  distribution of the  random process. In each 
of these cases, care was taken  to  match  the  data at long fade  dura- 
tions,  where  communications systems  are  very  likely  to  be suscrepti- 
ble. Fig. 3 shows that  the second-order filter has  far  too few ;short 
fades  due  to  the  lack of high  frequency content  in  its  output. Alterna- 
tively, as shown  on  Fig. 4, the first-order filter has too  many  short 
fades. The control parameters XKl,  XK2, and RHO, were varied 
to  compensate for the imperfect spectral  distribution  and to  achieve 
the  best possible fit to  the  relative  curve spacing. 

Table I1 shows the  effect of the control parameters XKl,  XK2, 
and RHO on the fade-duration  distribution. The effects of XK1 and 
XK2 were consistant regardless of  cutoff frequency, filter order, and 
correlation coefficient. However, the effects of the correlation ooeffi- 
cient  depend  on the  other conditions, as shown in  Table 11. 

The model using the second-order filter did not yield good results 
for short fades. The best results  for  this model are shown in Fig. 5. 
J 
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Fig. 3. Comparison of FC for N P  = 2. 
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Fig. 4. Comparison of FC for NP = 1. 
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TABLE I1 
EFFECTS OF X K 1 ,   X K 2 ,   N P ,  AND RHO ON THE FADE-DURATION DISTRIBUTION 

~~ ~ ~~ ~ 

20 percent 40 percent 60 percent 80 percent 100 percent 
Fade Levels" 

Quiescent Conditions VAR R S F   L F   S F   L F   S F   L F   S F   L F   S F   L F  Mean Variance 

FC = 0.2, X K 1  = 0.5 N P  1 -+ 4 1 
X K 2  = 0.5, RHO = 0 
FC = 0.2, X K 2  = 0.5 . X K I  0.1 -+ 0.9 1 
N P  = 2,RHO = 0 
FC = 0.2, X K 1  = 0.5 XKZ 0.1 + 0 . 9  T 
N P  = 2,RHO = 0 
FC = 0.11,XKl = 0.8 RHO 0 + 0 . 9  1 
X K 2  = 0.5, N P  = 2 
FC = 0.4, X K 1  = 0.1 RHO 0 4 0 . 9  1 
X K 2  = 0.152, N P  = 1 

r 
1 
t 
1 
- 

1 
r 
- 

1 
r 

and long fades (LF), for the  fade levels shown, increase ( T ), decrease ( 1 ), or do not change significantly (-). 
As the variable (VAR), is  extended  over the range (R), in  the sequence shown, the mean, variance, and  the number of short fades  (SF) 

* Fade levels are in percent of the rms level of the nonscintillating signal. 
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Fade-duration  distribution for model, X K 1  = 0.8, X K 2  = 0.5, 
R H O  = 0.3, FC = 0.11, N P  = 2. 

However, the first-order filter yielded a fairly good fit without vary-  durations, thus indicating that  an increase  in p or filter order  is neces- 
ing RHO as shown on Fig. 6 (RHO = 0). The  data for RHO = 0.6, sary  to decrease the  number of short fades. 
shown in  Fig. 7, were further refinements based on the least-squared To summarize, the simulation  results shown in Figs. 5-8 indicate 
error between actual  and model-generated fade-duration  distribu- that a good fit to  the measured data is fairly easy to achieve for  the 
tions. The fade-duration distribution  for RHO = 0.9 is also included longer fade  durations, which are a more important consideration in 
in  Fig. 7 at the 100 and 20 percent levels for comparison. communications  system design than  short fades. To obtain a good 

A decrease in  the  number of fades below the 20 percent level is overall fit, however, requires more complete  measured data  than 
shown for p = 0.9 over that for p = 0.6, but a worse overall fit to  the employed here. 
actual  data results, especially for fade  durations between 0.8 and 
3.2 s a t  the 100 percent level. Fig. 8 shows the  variation of fade- IV. CONCLUSIONS 
duration dist.ribution as the  parameter X K l  is varied from 0.2 
to 0.7. In general, the fit is very close for  the longer fade durations, The model that has been developed provides data which are a 
but  departs  markedly from the measured  curves at the  short  fade reasonable  approximation to  the  actual  data  in  terms of fade-duration 
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180 - I I I I I I I , 
170 - Scintillating  signal 
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Fig. 8.  Fade-duration distribution for model, RHO = 0, F C  = 0.05, 
N P  = 1. 

distribution.  From  the  appearance of the curves, the band-limited, 
bivariate-normal time series  employed for the model appears to  give 
a suitable simulation of ionospheric scintillation. If a more flexible 
filter had been available, a better simulation of the data may  have 
been achieved. It is not assumed that any of the  parameters  that 
have been  derived are  the  actual  parameters of ionospheric scintil- 
lation. Instead, a combination of parameters  has been chosen based 
on a restricted spectral  distribution  to form an imperfect, but  suita- 
ble, fit to  the  data. Recent  analyses by  Rino et al. [7] suggest that 
the phase-quadrature Gaussian model is  accurate,  with more than 
90 percent of the  scattered power in  phase  quadrature  with  the 
deviated signal. 

It should be stressed that  this model is based on only  one sample 
time series of ionospheric scintillation. It is possible that  parameters 
other  than X K 2  may  vary as scintillation  strengt.h  varies.  Work is 
needed in determining how the  input  parameters will change with 
scintillation strength. 

The experiment suggested in Fremouw [2] would take  much of the 
guesswork out of modeling this phenomenon. Basically, two or more 
signals would be  transmitted  through  the ionosphere simultaneously 
with one signal at a frequency  high  enough to  be relatively unaffected 
by  the scintillation. This higher frequency  signal would be a phase 
reference so that  the in-phase and phase-quadrature  components of 
scintillation could be measured separately.  This would enable the 
analyst  to design a subroutine  that would closely approximate  the 
actual  amplitude  and frequency distribution of each  scintillation 
component. 
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Probability of Error in Pseudonoise (PN)-Modulated 
Spread  Spectrum  Binary  Communication Systems 

PHILLIP M. HOPKINS AND RICHARD S. SIMPSON, 
SENIOR MEMBER, IEEE 

Abstract-The probability of error  in  a  binary communication 
system using  pseudonoise (PN) modulation to  spread  the  transmitted 
spectrum is influenced by noise, bandlimiting, and synchronization 
errors. In  this paper the average probability of error is  determined, 
using  a series expansion of the characteristic  function of the inter- 
symbol interference. It is shown that  the effects of intersymbol  inter- 
ference  are reduced by spreading and  that local code synchronization 
errors become the dominant  factor  in the probability of error when 
the  system bandwidth is large. 

INTRODUCTION 

In modern digital communication systems, there  are  many appli- 
cations for spectrum  spreading,  including  multiple access to a single 
channel, private communications, and reduction of power flux den- 
sity  to meet statutory or treaty limitations [I]. One of the most 
popular  techniques  for spectrum spreading is modulation by a 
pseudonoise (PN) binary code waveform prior to transmission. 
Many of the applications  require expansion of the  transmitted signal 
bandwidth. In PN-modulated  systems, bandwidth expansion is ac- 
complished by using a PN code with  a  keying rate  greater  than 
that message sequence. The  bandwidth of such a system, particu- 
larly that of the receiver, can become a critical design parameter. 
It is therefore of interest to analyze the performance of a PN- 
modulated binary communication system  in the presence of band- 
limiting and Gaussian noise. Many papers [2>[7] have been 
written on the  subject of bandlimited binarv communication SYS- 

(l/!P)l’Z, k7 < t 5 ( k  + 1)7 

otherwise. 
‘#‘k(t) = 

(11, 
(2 ) 

For the purposes of this  paper, r is assumed to be an integer and 
generally much greater  than one, although the results  derived will 
be valid for r = 1. Then  the  transmitted signal can be expressed as 

i---m k-ir 

where E is the energy  per message symbol, M i  is the  transmitted 
message symbol ( f l  with equal probability),  and ck is the  kth 
coefficient of the spreading code (fl with approximately  equal 
probability). 

If it is assumed that an  exact  integer  number of code symbols 
occur during a message symbol, ;.e., r is an  integer, then (3) can be 
expressed as 

Ckt Mi = +1 
i i = {  (5) 

-ck, Mi = -1  

and  the indices i and k are related by ir  < k 5 (i + 1 ) r  - 1. 
At the receiver, the  output of the filter is 

F(u) = S(u) + E(u) 

= E”2 c bk&(u) + E(u) ( 6 )  
k 

where the  tilde (“) indicates filtered waveforms. Because of time 
delay and distortion  in the filtering process, the  time origin (u = 0) 
has been adjusted  to minimize the  probability of error. Also, i t  is 
assumed that  the integrate-and-dump detector is synchronized to 
the local code generator in  such a manner  that  any  timing  error of 
the local code, say Ar, appears  in  the  timing of the  detector, i.e., 
the  interval of integration for the  j th  symbol is from ( j r  + A ) T  to 
[( j + 1 ) r  - 1 + A].. Since the message symbols are assumed to 
be equally likely, the problem can be confined to the zeroth  symbol 
without loss of generality. The  output of the  integrator at the sam- 
pling instant is 

eo = F(u) du 

terns. However, the spread spectrum system  has received little-; 
attention. \ . - 1  + rAr E(u) c&i (u - A T )  du 

SYSTEM  DESCRIPTION 

A  baseband model of a PN-modulated  binary communication 
system is shown in Fig. 1. Bandlimiting is represented by  the low- 
pass filter in the correlation receiver. Recovery of the signal  requires 
that a local replica of the spreading code be synchronized to  the 
received code and multiplied with  the received signal prior to  the 
integrate-and-dump message symbol detector [SI. It can easily be 
shown that  the correlation receiver is an optimum receiver  for 
PN-modulated  binary signals in the absence of bandlimiting. 

If T is the  duration of one message symbol and T is the  duration 
of one code symbol, then  the spreading ratio, r, is defined by 

r = T/T  2 1 (1) 

and  the  kth pulse of the code waveform is 
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J A, i 

= E 1 / 2 M ~ ( e s  + er + e N )  

where es, er, and e N  are  the  outputs  due  to desired signal, inter- 
symbol  interference, and Gaussian noise, respectively. 

It can be shown in a straightforward exercise that  the variance of 
the noise output is unchanged by  the code multiplier if the detector 
and local code are synchronized. If the noise process prior to filter- 
ing is white  Gaussian noise with  spectral  density N0/2, then  the 
variance of eN is 

var (ex)  = u = N o B N / ~ E  ( 8 )  

where 

By interchanging the order of integration and summation, ( 7 )  
can be manipulated  to show that’  

es = Fo(A) (10) 
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