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and assuming appropriate regularity conditions for the expressions ACKNOWLEDGMENT 
stated, we conclude from (8) and (9) that 

The authors wish to thank a  reviewer  of a  previous  version of this note 
for improving comments and for indicating the recursive computation of 
partial sequences in the linear  case of Solution A. k =  1,2;. . 

We notice that (13) corresponds top,,(uk)=cS(uk+q)+(l-c)S(uk-q) 
with not predetermined c ~ ( 0 , l ) .  

Considering now S [(4), (5)] together  with  (12) and (13)  we will show 
that the state of S can exactly  be reconstructed from the  measurements 
bY 

;~=zkk-7)sgn(zk-cp(;~*_1)), ifi$’xw ( 14) 

Indeed for k = 1, 

Let i z  = x,, then we find that 

~ ~ + 1 = ~ k + l + ~ k + 1 - ~ ~ ~ ( ~ k + l + ~ k + l - ~ ( ~ ~ ) ) = ~ k + l .  

So (14)  is true for V k =  1,2;. . 
Some  comments  may now be  useful on Solutions A and B. 
1) The estimator (14),  which can also be  generalized for invertible 

multivariable  systems, has a structure similar to the Kalman-Bucy  filter. 
It consists  namely of the model of the dynamicd process and a control 
element in the feedback  loop.  One further recognizes this control ele- 
ment as the possible noise generating  model, that 0, A sgn(u2, U ~ Z O ,  
and u;--N(O,u’). 

2) The simplicity of (14) in comparison  with  the stochastic estimator 
[(9), (lo)] is evident  from  Solution B, the later requiring an on-line digital 
implementation. 

3) It should be mentioned that the assumption of apriori knowledge 
of x,,, which  makes  Solution B less attractive, may be relaxed  by the use 
of bounds as in (12). 

CONCLUSION 

Some advantages and limitations  of  two  different  solutions for a 
non-Gaussian/nonlinear estimation problem have been discussed. 
Although  the deterministic Solution B seems to correspond to a  very 
restrictive  case, it appears that such  a  modeling of the uncertainties may 
sometimes better interpret a  given  physical  situation. The stochastic 
approach of Solution A on the other side indicates that a  discrete-type 
representation of p,  l e a d s  to computational schemes  without further 
linearizations and approximations. 

Finally let us point out that a combination of both approaches, say for 
disjoint regions of the observation set Zk, may lead to “filter-observers’’ 
matching even better the nature of the problem. 

Further Comments on “Two Counterexamples 
to Aizerman’s Conjecture” 

D. RONALD FANNM 

Sin& and Mukerjee [l] have  recently  questioned  some results of the 
above paper.’  Specifically,  they  considered  a  system as follows: 

X? -a,z+y 

i=-~zx-a ,Y-g(y)Y 
z = x  (1) 

where a’, uz, and u3 are constants and g is continuous such that 

az>O, a,>O, g(y)>O. (2) 

A Lyapunov function is  assumed to be 

v= a,u,xZ+ a ,  yz+ a,%2 (3) 

v= -2o;y*-2ulg(y)y*. (4) 

and  it is found that 

In his  reply 121 Fitts correctly points out that V is not negative  definite, 
but only  negative  semidefinite, and that asymptotic stability can not be 
concluded from their argument. However, it appears that global  asymp- 
totic stability can indeed be  established for this system  by appending the 
following brief argument. 

It is  well  known [3] that globa! asymptotic stability can be concluded 
when V is  positive definite and V is only negative semidefite provided 
it can a!so be shown that the system can not remain  forever at points 
where V=O, except at the origin. For the Lyapunov function under 
consideration, Y is zero wheny =O for a r b i t r q  values of x and t. From 
the system equations (I), however, it is  clear that the system can remain 
indefinitely at points where y = 0 only if 

x=o, z=O (5) 

is also satisfied. Thus global asymptotic stability is established. The 
remainder of the analysis of Singh and Mukerjee  remains  unchanged. 

Manuscript  received  March 24, 1975. 
T h e  author is with  the Department of Electrical Engineering, University of Missouri- 
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Author's Reply2 
R. E. FITTS 

I appreciate the interest of D. R Fannin in my short paper, e~pecidy 
since  his correspondence reveals a point which my paper did not make 
completely  clear. In my investigation of the third-order  nonlinear  system 
shown in  Fig.  1, I wanted  the  complex poles to lie only in the left-half 
plane. I estabhhed that their  relative  damping, 5, was at least O.ooO1 and 
I bounded  the entries for 5 in Table 111' from  below to show that fact. 
Since I did not establish an experimental  upper  bound on the relative 
damping for four of the  five cases, I did not show an upper bound for 
those cases in Table 111; but I did  include Case 4 to show one experi- 
mental upper bound (c=0.092). From the nature of Case 4, its  upper 
bound is probably an upper  bound for all the other cases, however  the 
short paper  did not state that explicitly. 

Although  the  objective of Singh and Mukejee [ I ]  was to disprove my 
counterexample,  the  proof as finally constructed by Fannin is a contri- 
bution to the objective of  my work, for I undertook my investigation  in 
order to reduce the uncertainty in our knowledge of nonlinear system 
behavior.  Previous  investigators, notably Brockett and Willems [2], had 
established  some  sufficient  theoretical boundaries for the regions of 
stability of nonlinear systems; at the suggestion of Prof.  Brockett I 
undertook the task of  looking for an unstable  nonlinear  system  outside 
those boundaries so that we could  establish the necessary boundary. 
Ultimately, our goal  was a precise statement of the ranges of parameters 
for which a nonlinear system  would  be  unstable in order to avoid  having 
to use unquantifiable statements to explain why our approximate analy- 
tical  methods  break  down, for example, as in a recent  paper by Kou and 
Han [3]. 

The contribution of  Fannin's  proof can be seen by examining  the 
behavior of the  system of Fig. 1 as the location of the zeros is vaned. 
Initially, let us confine the zeros to the imaginary a x i s  (n=O). The 
transfer function of the linear part becomes 

G (s) = 
s2+ bZ 

s 3 + ( 1 + 2 5 ) ~ z + ( 1 + 2 5 ) ~ + 1 .  

A simple calculation shows that the phase angle of the denominator is 
90" when s=  +jbo, where b0=( l+2{) - ' / ' .  Fannin's proof  requires 
b = bo (see  Singh and Mukerjee [ I D .  The result of this condition is to 
confine the Nyquist l o c u s  of the linear part to the  first and fourth 
quadrants, as can be seen in Fig. 2, where the locus is drawn  for 
5=O.ooOl, the  value  used in Table 111.' 

Fig. 2 displays two other Nyquist locii, both of which  characterize 
unstable systems. One, for b=0.797, represents  the  upper limit of insta- 
bility  in Table 111.' The other for b = b ,  where b , = f i + 2 { ( 3 + 2 { ) ,  

. 

zManuscript received May 8, 1975. 
n e  author is with the Office of the Assistant Secretary of Defense, R w  Analysis, 

and Evaluation, Washington, 0.C 20301. 

- 
Fig. 1. Third-ordcr nonlinear feedback  system. 

represents the zero location for which the Nyquist  locus  passes through 
(- 1,O) and the linear part of Fig. 1 ,becomes unstable. Portraying these 
boundaries in 3- b parameter space  defines regions of stability and 
instability of this system. The inner region of ipstability does not have a 
precisely defied boundary; the intent of my short paper was only to 
show that that region  was  not a single  point  but  covered  some area. 
Several  precisely  defined inner boundaries could  be constructed from 
Pliss' monograph [4],  but the nonlinearity used to obtain the data for 
Table I11 ( f ( y ) = & ( y 2 -  I)? violates Pliss' constraints. Thus one is 
driven to the conclusion that there  is an inner region of instability which 
must be avoided for stability (the necessary condition) and that a precise 
determination of the boundary of this  region  (which depends upon the 
nonlinearity) has not yet been made for  the  nonlinearity I used. 

Both my short paper and my dissertation [5] discuss the system of Fig. 
1 in the conceptual framework of the describing function. In particular, 
the  nonlinearity acts to advance the phase of the fundamental and retard 
the  phase of the harmonics so that the system  becomes unstable at two 
or more  frequencies  simultaneously.  Fig. 2 is annotated to show the 
location of the fundamental frequency of oscillation. In all cases, the 
fundamental frequency lies on the portion of the  Nyquist  locus  in  the 
second quadrant where  frequency  increases as one moves along the  locus 
away  from the origin. If all other parameters are held constant, reversing 
the direction of the  Nyquist  locus (so that frequency  increases as one 
moves toward the origin)  should  convert a point of stable oscillation 
(convergent  equilibrium) to a point of unstable  oscillation  (divergent 
equilibrium) and the oscillation  should  cease. This heuristic argument is 
the basis  for  labeling the region  between the line b = bo and b = b ,  in Fig. 
3 as stable. 

If the zeros are restricted to the negative real axis excluding the origin 
then  the  Nyquist l o c u s  can be confined to the  first and fourth quadrants 
by setting b2 = 1, and u = 1 + 5 (in  effect  reducing  the  linear part of the 
system to a second-order system) and the system is globally  assymptoti- 
cally stable. If the  leftmost  zero  moves further away  from  the  origin 
while  the other stays at (- 5,O) the Nyquist  locus enters the third 
quadrant at high  frequencies.  Although  the  direction of the  Nyquist 
locus is appropriate for stable nonlinear oscillation,  the  nonlinearity 
must produce a phase advance at the fundamental both greater than 90" 
and greater in magnitude than the phase retards at the  harmonics.  Such 
a behavior is contrary to that which I observed so, heuristically, the 
system of Fig. 1 is stable for this case. 

Therefore,  based on Fannin's proof and the arguments presented 
above one concludes that the system of Fig. 1 is  potentially unstable if 
its linear part is lightly  damped  with  zeros  lying  closer to the  origin than 
the poles,  even  when the nonlinearity lies completely within the Hurwitz 
sector.'  Alternatively, one might  say that the  system is potentially 
unstable for nonlinearities lying  within the Hurwitz sector if the Nyquist 
locus of the linear part moves  away from  the  origin in the  second 
quadrant. In addition, there is a region of demonstrated instabihty when 
both zeros lie  close to or at the origin. The instability need not take the 
form of sustained oscillations, O'Day and Hyde [6] have shown that 
subharmonic generation and jump resonance are also  possible  for  these 
systems. 
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