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Kalman  Filter  Equalization  for QPSK Communications 

T. S. LEE AND DAVID  R.  CUNNINGHAM, MEMBER, IEEE 

Aktrucr-The discrete  complex Kalman filter is considered  as  an 
equalizer  for  quadrature  phase-shift  keyed (QPSK) systems in the 
presence of additive  noise  and  intersymbol  interference (ISI). When 
the  channel is unknown, an adaptive Kalman equalizer is  used  in  which 
the  channel  complex  tap  gains  are  estimated  by  decision  feedback. 

I. INTRODUCTION 

For  additive  white Gaussian noise (WGN) and  no  other 
signal corruption,  the  system  error-rate  performance  and 
optimum  receiver  structure  of  various  types  of  digital  com- 
munication  systems  are well known [ 11.  In  high-speed  data 
transmission  systems,  two  important  causes of detection  error 
are  intersymbol  interference (ISI) and  additive  noise. IS1 may 
result  from  realizable  filters,  from  distortion  due to a  disper- 
sive transmission  medium,  or  from  a  nonoptimum  choice  of 
sampling  instants [ 21, [ 3 ] .  As a  result, if the  rate  of  trans- 
mission  is  high  enough,  successive  received  symbols  overlap 
and  significantly  degrade  error-rate  performance.  For  quad- 
rature phase-shift  keyed  (QPSK)  systems, IS1 also  causes  cross- 
talk  between  in-phase  and  quadrature  channels [ 4 ] .  

Lawrence  and  Kaufman [ 5 ]  have used the discrete  Kalman 
filter  as  an  equalizer  for  binary  transmission in  the presence  of 
noise  and ISI. It was shown  how  the  Kalman  filter  can  be used 
to  estimate  both  the  tap  weights  and  the  binary  signal. More 
recently,  Fitch  and  Kurz  [6] have applied  recursive  equaliza- 
tion  to  pulse-amplitude  modulated  systems.  For  an  unknown 
or  slowly  varying  channel,  an  ‘adaptive  decision  feedback 
equalizer  has  been  derived [ 71, [ 81. 

Evaluating  the  error  probabilities of various  digital  com- 
munication  systems  in  the  presence  of  both  Gaussian  and 
intersymbol  interference  has  been  investigated  by  many 
authors [ 91, [ 101.  Finding  an  accurate  upper  bound  or  lower 
bound  for  the  error  probability is often  more  practical  from 
an  engineering  standpoint  than  finding  the  exact  closed  form 
for  the  error  probability. 

In  this  concise  paper,  a  discrete  complex  Kalman  filter is 
developed  as  an  equalizer  for  a QPSK system  in  the  presence 
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of WGN and ISI. When the  channel  parameters  are  unknown, 
an  adaptive  discrete  complex  Kalman  filter  equalizer is derived 
which  uses  decision  feedback  for  channel  estimation.  ,A  two- 
component  multipath  channel QPSK system is used as  an 
example.  Simulations  using the  Chernoff  upper  bound  for  the 
error  probability,  both  for  the  known  channel  and  for  the 
unknown  channel  equalizers,  indicate  better  performance  than 
the  integrate-and-dump  correlator  with  no  equalizer. 

11. SYSTEM  MODEL AND  STATE  VARIABLE 
REPRESENTATION 

Fig.  1  illustrates  a  typical  integrate-and-dump QPSK system 
used  when IS1 is negligible. The  transmission  channel  is 
assumed  linear,  causal,  and  time  invariant  with  finite  duration 
impulse  response h ( t ) ,  i.e., h ( t )  = 0 for t < 0 and t > nTs. The 
received  signals  are  perturbed by additive WGN with  double- 
sided  power  spectral  density N 0 / 2 .  The  transmitted  signal 
which  is  assumed to  be  generated  by  an  infinite  bandwidth 
modulator is 

S ( t )  = E cos[wot + p ( t )  --- , “ 2 4  “I  
where 

7 1 ”  (p. = p .  --- 
2 4 ’  

I 1  

otherwise, 

(3) 

E is the energy  per  symbol  of S ( t ) ,  wo = 2nno/Ts, no is  a 
fixed  integer, T, is the  symbol  period,  and p ( t )  = pi = k for 
( i  - 1)T, < t <iT,, k = 1,2,3,4  and i=... ,  -2,-1,0,1,2,-..  It 
is  assumed  that  the  values  of p i  are  equally  probable,  and  that 
p i  is independent of p j + j .  It is  also  assumed that  the receiver 
is perfectly  synchronized  with  respect  to  the  carrier  bit  period. 
Synchronization  errors  and  the  effect of finite  bandwidth 
modulation  can  be  included  in h ( t ) .  

If wo S 2n/T,, that  is  narrow-band  modulation  relative to 
the carrier  frequency,  the  complex  discrete  signal  representa- 
tion  of  the QPSK system  of  Fig.  1 is well known  and is shown 
in Fig. 2 .  The  complex  output  is 

where ck = ah -I- jbh and ni = r z , ( i )  -k jn,(i) are  defined  in  the 
Appendix,  and j = &i, i = 1,2,3, -. The-Gaussian  random 
variables nc( i )  and n,(i) will have zero  mean  and  variance 

Thus  the  model  chosen  to  represent  the  channel  and 
detector is  a complex  weighted  n-tap  delay  line  with  constant 
delay T, between  taps.  From  (4),  define 

NOl-2. 

and 
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$ cos W 0 t  

d$ sin w o t  

Fig. 1. QPSK system. 

Fig. 2. Complex  representation of a QPSK system. 

Using (5)-(7) in  (4),  the  complex  scalar  observation  equa- 
tion is 

zi = CWi + ni ,  (8) 

where C is the  channel-coefficient  vector, W i  is the signal 
vector,  and n i  is a  scalar  complex  Gaussian  random  variable. 
The  “dynamics”  of  the  message  source  can  thus  be  represented 
by  the trivial complex  vector  state  equation [ 51 

where 

F =  

and 

ui = wi = exp (-j@&. 

111. COMPLEX  DISCRETE  KALMAN  FILTER 
EQUALIZER-KNOWN  CHANNEL 

The  assumption  has  been  made  that  the  values  of & are (I 
priori equally  likely, n i  is a  zero  mean  complex  Gaussian  ran- 
dom  variable,  and W i  and ni are  uncorrelated.  Define.!?* to  be 
the  complex  conjugate  of  the  complex  scalar n, FT t o  be the 
transpose  of  the  real  matrix, F, C* t o  be the  complex  con- 
jugate  transpose of the  complex  matrix C, E(u i )  t o  be the  sta- 
tistical  expectation  of ui ,  cov ( u i , n j )  = ~ ( ( u ~  - ~ ( u ~ ) ) ( n ~  - 
E ( n j ) ) * ]  t o  be the  covariance of ui and nj,, var (W,) = E((Wo- 
E{Wo))(Wo - E(Wo})*) ,  and I to  be  the  identity  matrix.  The 
complex  discrete  Kalman  filter  derivation is similar to  that  for 
the  more  common  real  discrete  Kalman  filter,  and  the 
algorithms  are  changed  only  in  that  the  transpose  of  a  complex 

TABLE I 
COMPLEX DISCRETE  KALMAN  FILTER  EQUALIZER 

Message 
Model 

Observation 
Model 

Prior 
Statistics 

Filter 
Algorithm 

Gain 
Equation 

A Priori 
Variance 
Algorithm 

A Posteriori 
Variance 
Algorithm 

Conditions 
Initial 

ACGORITHMS 

W. = F Wi-l + G u. (1-1) 

z. = c w. + n. 
1 1  

(1-2) 

Etu.1 = 0, Etn.1 = 0, E{W 1 = 0 (,1-3) 

covtui,u.l = 6,Ii-j) (1-4) 

Covini,n.l = N 6 li-j) (1-5) 

cov{ui,n.) = covtWo,u.l = CovtWo.n.l = 0 11-6) 

vartwol = Po 11-71 

, 

I o k  

I 7 

W .  = F Wi-l + K. (2. - C  F W. 
1 1. 1-1) (1-8) 

K. = Pili-l  C*tCP. 1 I l-lc* . + No] (1-9) 

pi I i-l = F P ~ - ~ F ~  + G G ~  (1-10) 

P. = [I - K.CI P. . 
1 111-1 11-11) 

W- = E{W 1 = 0 (1-12) 

Polo-1 = Po (1-13) 

The  complex  discrete  Kalman  filter  equalizer  algorithms  are 

In  the  estimate 
summarized  in  Table I. 

of W i ,  the  term AiPj(i)  is the  estimate  of wPj  at  time i .  For 
the best  estimate, w i - ,  would  be  estimated  by Gi-,(i) rather 
than using hi(i) t o  estimate w i .  This  causes  a  delay  of n sym- 
bol  periods. If the  delay  could  not .be tolerated, G i ( i )  could  be 
used with  increased  error-probability.  After  the  estimate  of ]vi 
is obtained, a decision @i-n on  the value of @i-n is made 
depending  on  which  quadrant Gi-,(i) lies in. 

The  algorithms  are  comparatively  easy to  implement as the 
inverse that  appears  in  the  gain  equation is a  complex  scalar 
inverse. The  resulting  general  form  for  the  filter is shown  in 
Fig.  3. 

IV.  ADAPTIVE  KALMAN  EQUALIZER-UNKNOWN 
CHANNEL 

If the  channel  coefficient  matrix C is unknown  and  time ’ 

invariant  (or  very  slowly  time  varying), C at  time i - j is 
approximately  equal  to C at  time i ,  that is 

C C(i)  

E C(i - j ) ,  i = 1,2,3, ... 

j = n,n + 1, e-, 2n.  (12) 

Using decision  feedback [ 61 , [ 71 , all decisions  are  assumed 
correct  and  (4)  may  be  approximated  by 

(13) 

where & is the decision  for @ i .  
Define 

matrix  becomes  the  complex  conjugate  transpose. 
- 
Wi = (Zi-,,Wi-,-I, wi-n-2,  --,wi-2,), 

- - - 
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CHANNEL U .  

Fig. 3. Complex  discrete  Kalman fiiter equalizer. 

and 

CT = (co, c1, ..., c , )T .  (1  6) 

Equation  (1 3) can  be  written as 

Zi--n = WiCT + ni ,  (17) 

where w i  is the  known  decision  vector,  and  the  approximation 
has  been  assumed  an  equality. 

Equation  (17) is  of the same  linear  form  as  (8) if the 
decisions  are  known.  Thus  the  channel  coefficients  can  be 
estimated  by  a  Kalman  filter.  The  algorithms  are  easily  derived 
and  are  presented  in  Table 11. If the  channel is not  stationary 
but  changes  very  slowly,  the  algorithms  are  still  applicable if a 
lower  bound is placed on  the covariance  matrix PCi. 

Using these  identification  algorithms,  (8) is approximately 

zi 1 ciwi + ni (18) 

where 

t i  = (?o ( i ) , ; l ( i ) ,  -., ; , ,( i)) .  (19) 

As the  estimate Ci is obtained  from  data  prior t o  i, ti is avail- 
able  at  time i an9  the  adaptive  equalizer  equations  are  formed 
by  substituting Ci for C in  the  equations  in  Table I. The  block 
diagram for  the  adaptive  eqyalizer is shown  in  Fig. 4. In the 
steady  state,  the  estimate Ci of the  coefficient  matrix  con- 
verges to  C and the  error  probability  (or  upper  bound)  for  the 
adaptive  equalizer  may  be  found  by  the  same  procedure 
developed  for  the  Kalman  equalizer.  The  possibility  exists  of 
course  that, if the a priori values  of C are  sufficiently  in  error, 
the  adaptive  equalizer  may  not  converge.  A  known  training 
sequence  a  few  times  as  long as the  number of  elements  in C 
will usually  assure  convergence given reasonable  signal-to- 
noise  ratios. 

V. ERROR  PROBABILITIES  AND  COMPUTER, 
SIMULATIONS 

Calculating  the  exact  error  probability  for  an  arbitrary 
QPSK system  with IS1 and WGN is extremely  difficult  and  a 
direct  computer  simulation  requires  an  enormous  amount  of 
computer  time  for small  error  probabilities.  Therefore,  an 
upper  bound  on  the  error  probability  at  the  output  of  the 
integrate-and-dump  correlator  or  at  the  output  of  the  Kalman 
filter is of  considerable  value.  Prabhu [ 8 ]  has  derived  a 
Chernoff  upper  bound  for QPSK degraded  by WGN and ISI. 
His work  can  readily  be  adapted to  bounding  the  steady  state 

TABLE I1 
KALMAN FILTER CHANNEL COEFFICIENT IDENTIFICATION 

ALGORITHMS 

Message 
Model (11-1) 

(11-2) 

(11-3) 

(11-4) 

(11-5) 

A Priori  
Variance 
Algorithm 

(11-9) 

A Posteriori  
Variance 1 Pci = [ I  - K . w . ] P  . . 
Algorithm c1 1 clll-1 (11-10)  

Conditions 
I n i t i a l  i: EIC:} (11-11) 

Pcolo-1 = PC0 (11-12) 

2 .  Gi-n PIIASE DETEC- w ~ - ~  (i) KALNAN FILEX 
c 

ALGORITHMS 
EQUALIZER 

A A  A 

DECISON 
* 

DEVICE 

TOR  AND 

. . .  

c O  C 

Wi-2n  y w i - 2 n + 4   W i - n - l  , "i-n 
- - 

+ 

KALMAN F I L T E R  
' CHANNEL COEFFICIENT 

IDENTIFICATION ALGORITHP4S 

n 4 
I 

Fig. 4. Adaptive  discrete  Kalman  equalizer. 

probability of error  when  using  the  Kalman  filter  equalizer or 
adaptive  equalizer  with  decisions  based  on Gi( i ) ,  if the 
required  variances  are  determined  by  simulation.  This  also 
provides  a  loose  upper  bound  on  the  probability of error  for 
decision  based on Gi- , ( i ) .  An example  where  this  upper 
bound is found  follows. 
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’e 

I 

TABLE I11 
ESTIMATED CHANNEL COEFFICIENTS AFTER N = 300 
SAMPLING  TIMES FOR 0 = 0.9, m = 0.1, AND INITIAL 

VALUESao = 1 , a l  = b o  = bl = 0 

True Value True Value True Value True Value 

a =0.7496 a =-0.0278 b =0.7703 b =0.0856 

Estimated 
Value  

E/N, (DB) bo 

I 7. 1 0.7526 1 -0 .0218 I 0.7782 1 0 .1014 

9  0 .7516  -0 .0232  0 .7766  0 .0973 

11 0.7509  -0.0244  0.7751  0.0941 

1 3  . 0.7505  -0.0253  0.7739  0.0917 

1 5  0.750‘2 -0.2060  0.7729  0.0900 

17  0 .7500  -0 .0265  0 .7721  0 .0887 

ck = a h  + ] b k  

= (1 - !$) ej%*h(t + kT)T, .  

E/No (dB) - 
Fig. 5. Probability of symbol  error  in the presence of two-component 

multipath  and WGN. m = 0.1, 0 = 0.5,0.7, and  0.9. 

Example-Two  Component  Multipath  Channel: Consider 
the  impulse  response, h ( t )  = 6 ( t >  f p6(t - T), where 0 < p < 1 
a n d O < r < T s . L e t n o = 1 2 3 a n d m = r / T s .  

For  the  simulation a 1000-sample  equally  likely  random 
signal  sequence  and  independent  Gaussian  random  variable 
sequences n,(i) and n , ( i )  with  zero  mean  and  variance N0/2  
were  generated. For an  unknown  channel,  no IS1 was  assumed 
to  start-the  adaptive  Kalman  equalizer.  Fig. 5 compares  the 
performance  of  the  equalized  receivers  as given by  the 
Chernoff  upper  bound  on  probability  of  symbol  error  and  the 
performance  of  the  unequalized  receiver.  It  is  clear  that  as f l  
increases the  performance  of  both  the  Kalman  equalizer  and 
adaptive  equalizer  are  much  better  than  the  integrate-and- 
dump  without  equalizer.  Referring to Fig. 5, the curves  of the 
Kalman  equalizer  and  adaptive  equalizer,  given  the  same 
parameters m and 0, are  very  close to each  other.  This is be- 
cause  after  many  samples,  the  estimated  channel  coefficients 
are  very  close to  the  true  channel  coefficients.  This  is illus- 
trated  by  Table 111 using  parameters  defined in  the  Appendix. 

VI. DISCUSSION  AND  CONCLUSIONS 

The  calculated  error  bounds  show  that  the  complex  Kalman 
equalizer  significantly  improves the  performance  of  an 
integrate-and-dump’  correlator  when IS1 is present.  The 
number of delay  elements  required  for  the  Kalman  filter is 
equal to the  number n of  interfering  symbols,  and  for  opti- 
mum  performance,  the  decision is delayed  by n symbol 
periods.  The  channel  coefficients  may  be  estimated  by a 
second  Kalman  filter to form  an  adaptive  equalizer. 

APPENDIX 

The noise  terms  and  coefficients  in  the  complex  channel 
representation of (4) are 

= rs E e iwOtn[ t  - (i - l)T,] dt .  
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