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= f (  y1, t )  

y1 = r 

y2 = e 

These restrictions allow us to say 

on C: gr  . T((J) * p = (g, . a,)T(a)aP (ap * p) 

where from Equation ( 6 )  
T(O)" [y + ( K  - e )  div(a) v(0)] a11 + 2~ D(0)" ( B 3 )  

Using Equation ( A 9 ) ,  we can calculate that 

The definition for the surface divergence of a vector given in 
Equation (A10)  may alternatively be written 

div(,) v(0) = tr D(U) 

(B5) - - a11 D ( 0 )  + a22 D ( 0 )  
11 22 

We can consequently state that, because v(0)  = 0 at the pore 
wall, 

Let us now observe that 

Equations ( B 7 )  and ( B 8 )  permit us to express Equation (B2)  
in the form of Equation ( 7 ) .  

Manuscript receiucd May 20, 1974; reoision receioed and accepted 
July 5, 1974. 

Modified One-at-a-Time Optimization 

An optimization method has been developed that searches one variable 
at a time under the conditions that previously searched variables are at 
their approximate optimum and variables to be searched later are constant. 
This method provides the optimum and also information on the effects of 
the variables. The method is based on the Partan and Powell methods and 
on assuming linear partial derivatives of the objective function with respect 
to any given variable. The procedure involves searching each variable 
separately with other variables either constant or varied so that they remain 
at their estimated optimum for the given conditions. This method provides 
useful information on the effects of independent variables as well as locat- 
ing the overall optimum and a number of partial optimums and requires 
a comparable number of trials. 

M. E. FINDLEY 
Department of  Chemicol Engineering 

University of Missouri-Rolla 
Rolla, Missouri 65401 

SCOPE 
This paper reports on a study undertaken to develop and 

evaluate a search method of optimization that would pro- 
vide information not only on the location of the optimum, 
but also on the effects of the individual independent varia- 
bles on the objective function to be maximized or mini- 
mized. The principle of the method is to search one vari- 
able Z(J=K) at a time, with previously searched variables 
Z (J<K)  at their estimated partial optimum for any given 

search point in Z ( J = K ) ,  while variables to be searched 

later Z (J,K) are held constant. A partial optimum in this 
paper is taken to mean the optimum of 1 or more variables 
at given nonoptimum values of other variables. That is, 
the best value of Z(1) at given constant nonoptimum Val- 
ues of 2 ~ 2 1 ,  Z(3), Z(4) would be a partial optimum of & I ) *  

The information obtained in this type search O f  4 variables 
provide the Overall 4-variab1e Optimum Plus a 

ber of %variable, 2-variable, and 1-variable optimums 
under various conditions. I t  would also show the effects 
of each variable, combined with interaction effects of that 
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variable, on the objective function as the variable is 
searched. 

The technique used was based on the method of Powell 
(1962) described by Beveridge and Schechter (1970) and 
the Partan method described by Buehler et al. (1964). 
These methods in 2 dimensions involve searching along 
2 parallel lines to determine 2 partial optimums, each the 
optimum along one of the parallel lines. It can be shown 
that searching a third line connecting the first two local 
optimums will locate the overall optimum, if the system 
is second order. 

It can also be shown that with a second-order objective 
function the partial optimum of one or more variables 
will have a linear relationship with the other variables. 
While the Powell and Partan methods generally search in 

a direction related to steepest ascent methods, changing 
all variables simultaneously, this method attempts to keep 
changes to one variable at a time, under the conditions 
that other variables are at estimated partial optimums, 
or held constant. The estimated optimums are based on 
assuming a linear relationship between the partial opti- 
mum of each variable and the other variables. When 
changes are sufficiently small that a second-order equation 
can approximate the objective function, the method will 
rapidly reach the optimum. 

This method was developed in order to obtain the 
optimum and the effects of independent variables in a 
single run for preliminary design evaluations and to 
obtain as much information about a system as possible in 
a single run. 

CONCLUSIONS AND SIGNIFICANCE 
An optimization method that searches one variable at 

a time but uses previous variable searches to maintain 
previously searched variables at their estimated optimums 
has been developed and tested. Each independent vari- 

' ( J = K )  is searched under the conditions that Z c J < K )  
are optimum. Thus in one run, the search produces a 
number of partial optimum points, and as Z ( J = K )  is 
searched, the effects of Z ( j = K ,  combined with interaction 

can be obtained from the 
search results. In addition, of course, as the final variable 
is searched, the overall optimum is obtained. With the ex- 
ception of dynamic programming and one-at-a-time meth- 
ods, other optimization methods would require one run 
for each partial optimum desired or additional calculations 
to determine the effect of each variable. 

Some of the advantages of this method are as follows: 
1. It is similar to one-at-a-time optimization plus com- 

mon senye utilization of previous results. 
2. It is simple and based on the type of procedures used 

in design calculations. The principles should be easily 
understood by design engineers, and any problems in 
application should be more easily corrected. 

3. It is similar to dynamic programming but is not 
restricted in the way dynamic programming is. 

effects of Z ( J = K )  and ' < . J < K )  

4. It is essentially the Powell or Partan method with 
movements restricted to one variable at a time so that 
the effects of each variable combined with some inter- 
actions of that variable can be observed. 

Disadvantages are as follows: 
1. This method has not been tested on more than 4 

variables and it could be less favorable with additional 
variables. The method can be easily reprogrammed and 
tested if desired and, in any event, can be useful in pre- 
liminary design optimizations. 

2. At present, the method is not programmed to 
handle implicit inequality constraints on dependent vari- 
ables unless they can be related to independent variables. 
It seems probable that this could be done for most cases 
by testing for exceeded limits in the object program and 
reversing the search when limits are exceeded. 

In general this method could be useful in design and 
control studies for finding optimum conditions, finding 
partial optimums for alternative and contingency condi- 
tions, and finding the sensitivity of the objective function 
to changes in independent variables, all from a single run 
and printout. 

The number of trials required in this study was more 
than the complex and Rosenbrock methods and less than 
a gradient method. 

SEARCH PROCEDURE 

The procedure is based on assuming that a partial 
optimum value of one variable is a linear function of the 
other independent variables. If a response surface can be 
represented by an objective function containing first and 
second-order terms only in the independent variables, then 
the partial derivative of the objective function with re- 
spect to any given variable is first order. Solving the 
partial derivative set equal to 0 for the given variable will 
give a linear relationship with the other variables. This 
equation will apply whether the other variables are at 
their optimums or not, and thus 2 partial optimums of 
one variable at 2 different values of a second variable, 
with others held constant, will determine the relationship 
of the partial optimum location of the first to the second 
variable. In searching for an optimum of a more com- 
plicated objective function, application of these principles 
should lead toward the optimum but require repetition 
until the optimum is within a small enough region to be 

AlChE Journal (Vol. 20, No. 6) 

represented by a second order function. 
This assumption permits the variables to be searched 

more or less one at a time, except that as the second is 
searched, the first is also changed to keep it at its esti- 
mated partial optimum for the value of the second. As the 
third variable is searched, the first two are changed to 
maintain both at their estimated optimums for the value 
of the third, etc. This allows the procedure to follow a 
sharp ridge rather than oscillate across it or stop on a 
false optimum. If it is desired to study the effect of one 
variable with all other variables constant, that variable 
should be the first variable. If it is desired to study the 
efiect of one variable with all others at their estimated 
partial optimums, then that variable should be the last 
variable. 

This method was developed for maximizing the return 
on investment in a 4-variable plant design problem, and 
for this reason the objective function is termed ROI, and 
the problem will be considered to be maximization. The 
independent variables were termed as through &dl 
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 15475905, 1974, 6, D
ow

nloaded from
 https://aiche.onlinelibrary.w

iley.com
/doi/10.1002/aic.690200614 by M

issouri U
niversity O

f Science, W
iley O

nline L
ibrary on [26/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



varying from 0 to 1.0. Four independent process variables 
can be equated to functions of Z(1) through ZC4), accord- 
ing to the expected range of the variables and the in- 
equality constraints. For example, a process variable Pvl 
can be related to Z(1) by Pvl = Pvmin + z(i) (Pvmax - 
Pvmin), where Pvmax and Pvmin are maximum and mini- 
mum expected or allowed values of the process variable 
and can be a function of other variables previously de- 
fined or calculated. 

In this method the first variable Z(1) is searched, with 
the other variables &), Z(3), and ZC4) held constant. If 
Z ( J l I  represents the value of the variable Z(J) at the Ith 
trial level of Z(J,, then the starting point is Z ( ~ ) I ,  Z(2)1, 

Z(3)1, Z(4)1. If Z(l) is searched with the other variables 
constant until ROI is a maximum we have the point Z ( I ) ~ ,  
Z(2)1, 2 ( 4 ) 1  where m represents the level of Z(1) 
giving the maximum ROI as shown in Figure 1, at point 

The second variable is searched with z(3) and 2 ~ 4 )  

constant, but with Z(l) at the optimum or the estimated 
optimum for each value of Zc2) searched. Thus for each 
value of Z(z), Z(l) must be searched for the optimum or 
the optimum must be estimated. In Figure 1, Z(2) is 
changed to 2(2)2 and a second search of Z(l) is made, 
starting at Z(l)m from point (a ) ,  until a new optimum Z(1) 
is found, Z(l)m(b), Z(2)2r Z(3)1, and Z(4)1. After this search, 
the optimum Z(l) can be estimated for any value of Z(2) 
if a linear relationship between Z ( l ) m  and Z(2) is assumed. 
If 

(a>. 

&l)rn(b) - Z(l)rn(a) 
R 1 =  

2 ( 2 ) 2  - Z(2)l 
then 

&l)rn(n)est. = Z(l)rn(n-I) + R 1 ( Z ( z ) ( n )  - Z(2)(n-1) )  

After R1 is determined, Z(z) can be searched further with 
Z(l)m estimated at each point until a Z(z) is found giving 
maximum ROI, at point (c) in Figure 1, with Z( l )m,  Z(2)m, 

The search for optimum Zcz) is not, strictly speaking, 
one variable at a time since Z(l) may be changing also, 
possibly by a considerable amount. However, at each 
value of 2 ( 2 ) ,  the estimated best value of the objective 
function (with Zcl) at a partial optimum) is obtained for 
that Z ( 2 )  at constant Z(3) and Z(4). Thus the results would 
show the effect of changes in Z ( 2 )  on the objective func- 
tion optimized with respect to Z(l), but with ZC3) and 
z(4) constant. In some cases these effects might be more 
important than the effects of with Z(l), Z(3), and Zc4) 
constant as in a true one-at-a-time search. 

At this point, Z(3) is changed to Z ( 3 ) 2  and the entire pro- 
cedure shown in Figure 1 is repeated to obtain point d in 
Figure 2. Then the following calculations are possible: 

z(3)1, Z(4)l. 

Z(l)rn(d) - Z ( l ) m ( c )  

2 ( 3 ) 2  - 2 ( 3 ) 1  
R1 = 

Z ( l ) m ( n )  = Z ( l ) m ( n - 1 )  f R1(&3)(n) - Z(3)(n-l)) 

Z ( Z ) m ( n )  = Z(P)m(n-l)  + R2(&3)(n) - Z(3)(n-1)) 

z(3) can then be searched for its optimum, with Zcl) and 
at estimated optimums and Zc4) constant, as shown in 

Figure 2 as point (e ) ,  Z(l )m(e)r  Z(z ) rn(e ) ,  Z ( 3 m ( e ) ,  z(4)i. 
After point (e )  is found, Z(4) can be changed to Z(4)2 

and the entire procedure in Figures 1 and 2 can be 
repeated to find optimum Z(i), 2 ( 2 ) ,  and 2 ~ 3 )  at z(4)2 

which is point (f)  in Figure 3. At this point R1, RB, and 

Page 1156 November, 1974 

r-\ 
T** 

i- I 
I .o 

Z( I ) 

Fig. 1 .  Search in Z(1) and Z(z) with z(3) and Z(4) constant. 

0 1.0 
Z(2) 

Fig. 2. Search in Z(z) and Z(3) with Z(1) at estimated optimum 
and Z(4) constant. 

R3 can be calculated as previously, and optimum Z(l), 
Z(z), and Z(3) can be estimated at any value of Z(4). 
Searching Z(4) with other variables optimized leads to an 
approximate overall optimum in four variables, point (9) 
in Figure 3. Since this point is based on a number of 
assumptions of linearity, it can be checked by repeating 
the entire procedure. 

The search method used in each direction was first 
open-ended starting with small steps, with the step 
length 1.62 times the previous step after each successful 
step. If the first step produces a decrease in ROI, the 
direction is reversed, but after the first step, a decrease 
in ROI indicates the optimum has been passed and a 
closed-end search is initiated between the 2 points on 
each side of the maximum by the Golden Section or Modi- 
fied Fibonacci technique described by Wilde (1964) and 
Beveridge and Schechter (1970). When an upper or 
lower limit is reached, < .001 or Z(J) > .999, a 
closed-end procedure is also initiated. 

On searching the 2d, 3d, and 4th variables, the first 
change in values of the variables is 10 times the small 

AlChE Journal (Vol. 20, No. 6)  

 15475905, 1974, 6, D
ow

nloaded from
 https://aiche.onlinelibrary.w

iley.com
/doi/10.1002/aic.690200614 by M

issouri U
niversity O

f Science, W
iley O

nline L
ibrary on [26/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



initial step size so that more accuracy can be obtained in 
determining the ratios of the optimums of previous vari- 
ables to the change in the variable searched. The open-end 
search begins from that one of the first two points which 
produces the highest ROI. 

Each search in each direction ends when the range of 
the optimum is reduced to approximately 2 times the 
desired accuracy, ACC. When each overall optimum is 
reached, it is compared with the previous overall optimum, 
and the entire search is repeated if any variable is more 
than 3 times the desired accuracy from the previous over- 
all optimum. 

1.0 

Z(4 

Z(4L 

Z(4)M(G) 

- 
3 
N 

0 

Fig. 3. Sej 

I! 
Z Q )  

I in Z(3) and Z(4) with Z(z) and Z(1) at estimated 
optimums. 

TESTING AND EVALUATION 

Willioms-Otto Plant Optimization 

The procedure was tested primarily by using the 
Williams-Otto plant problem (Williams and Otto, 1960) 
with equations as presented by Adelman and Stevens 
(1972). This problem has four independent variables to 
optimize, and Christensen (1970) has presented a method 
of straightforward solution of the 8 basic equations. The 
solution used in this study is shown in Table 1. The first 
four equations use the optimization variables Zcl) through 
ZC4) to establish the four independent process variables T ,  
FRE, Fnc and PHI = FD/  ( FR - F p  - F G )  . As shown by 
Mason (1971), the response surface for this system has a 
sharp curved ridge near the nonfeasible region and is also 
bimodal in at least the two variables FRE and PHI.  Since 
this search procedure and most others are based on a 
unimodal surface, some consideration should be given to 
problems due to bimodality in comparing search tech- 
niques. 

Runs 1 and 2 in Table 2 give results of optimizing from 
the best and worst of Adelman and Stevens' starting points 
in a Complex optimization method. 

Runs 3 and 5 combined are a 3-variable optimization at 
constant 2c4), followed by a 4-variable optimization start- 
ing from the %variable optimum. The number of trials is 
less than the equivalent 4-variable optimization, run 4, 
but due to bimodality which misled both searches, the 
results only indicate the 2-step procedure is comparable I 
in number of trails to the 4-variable search, 

Adelman and Stevens used F R  as an independent vari- 
able which requires much more complicated calculation 
of the objective function than using PHI as in the program 
in Table 1. For this reason the comparison of trials with 
their Complex optimization is not appropriate for runs 1 
through 5. Equation (3)  in Table 1 was changed as shown 
in Table 1 for runs 6 through 13. This change makes 

approximately proportional to F R  even though it de- 

TABLE 1. EQUATIONS USED FOR WILLIAMS-OTTO PLANT SOLUTION 

Runs 1-5 Other runs if different 

1. T=Z(4)'100.+580. 1. Run 14 T=Z(3)"100.+580. 
2. FRC=Z( 2)'20000. 
3. PHI=Z(3) 3. Run 14 PHI=25000./( 475000."Z( 4 )  +25000.) 
4. FRE = ( Z( 1 ) "2.+ 1.) '11910./PHI 
5. X2=PHIDFRE".5 
6. FRP=.laFRE+4763. 
7. X3= ( X2-PHIa( FRP-4763.) -4763.)'2. 
8. XI= (PHIaFRC+X3)/2.+X2 
9. ZK1= .59755ElO'EXP( - 12000./T) 

10. ZK2=.25962313'EXP( -15000JT) 

3. Run 6-13 PHI=25000/(475000"Z( 3 )  +25000) 

11. ZK3= .96283E16"EXP( -2OOOO./T ) 
12. VF = X3/ ( ZK3"FRP 'FRC'50. ) 
13. FRB=X2/( ZK2'FRCaVF'50.) 
14. FRA=Xl/( ZKl'FRB'VF'50.) 
15. FG=300."X3/200. 
16. FR=FRA+ FRB+FRC+FRE+FG+FRP 
17. FB =X1+ PHI'FRB+X2 
18. FA=Xl+PHI'FRA 
19. V=VF'FR"2. 
20. FD=PHIa(FR-4763.-FG) 
21. SALE=1955.52'4783. 

Return on investment equations 

Adelman and Stevens (A@) 

Sriram and Stevens ( S&S ) 
DIV= 150.'V+ .13"FR 

ROI = ( 84. 'FA-201.96'FD -336. "FG+ SALE - 2.22'FR-VU3000. )/300./V 

ROI = ( 84."FA- 201.9629'FD - 336. 'FG+ SALE - 3.52'FR- 1500. 'V ) /DIV 

AlChE Journal (Vol. 20, No. 6) November, 1974 Page 1157 
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fines P H I  and makes the search more comparable to Adel- 
man and Stevens' search. 

In runs 6 and 7 the number of iterations required is 
considerably less than runs 1 and 2 and these runs require 
only about twice the number of iterations required by 
Adelman and Stevens and have the advantage of more 
usable information on the effects of variables. 

In run 8, the effect of requiring higher accuracy (ACC 
= 0.005) decreased the number of trials compared to run 
7 .  This was probably due to better accuracy in locating 
partial maximums and the following better estimated 
maximums in succeeding trials. Normally this would be 
true only for fairly sharp ridges, and higher accuracy 
would require more trials. 

Runs 9, 10, and 11 compare results with those of Sriram 

and Stevens' (1972) who used a gradient search method 
and a different ROI. In all three runs fewer iterations 
were required by this method, but more importantly, the 
nonoptimum information is more usable with this method 
than with a gradient method. 

In order to show what type of information can be ob- 
tained in addition to the optimum, runs 12, 13, and 14 
were made, again using the same equations as runs 6 
through 8. Hun 12 was used to plot 7 points in Figure 4 
from the printout of the optimization, with points given 
in Table 3. Four of these points allow a line to be plotted 
which locates the optimum Z(3) for a given ZO, when Z(,) 
and 2(*) are at estimated optimums for the given Z(31 and 
2(4). From the printout, optimums for Z(2)  and Z(l)  would 
also be available at these values of 2(4). To determine 

Run ho. 

1 
2 
3 

4 

3 +  5 

6 

J 

7 

ti 

9 

10 

I 1  

12 

13 

11  

I'll1 =7 Z(3)  
I'HI = Z ( 3 )  
l'lil = Z ( 3 )  
0l"l. 3 VAH. 

1101 

ACS 
.9Cb 
h&S 

A&S 
ABS 
h C S  

4&S 

*CS 

ihS 

\hS 

F&S 

ShS 

l * S  

u s  

9&S 

A h S  $1 120.Y 0.108 0.4J4 0.093 0942 
9&5 q 2  121.4 0.114 0.3i4 0.104 0 !I53 
ALL z = 0.5 

h". 
PHI Fx/lOE trials 

0.093 0.398 343 
0.101 0.358 326 

0.112 0.314 218" 
.A l ,L%=u.5  121.2 0.115 0.373 0.105 0.95 0.105 0.353 474' 
OPT. l i U N  3 121.5 0.111 0.388 0.099 0.933 0.099 0.373 I59 
AL.LZ = 0 5 121.5 0.111 0.388 0.09Y 0.856 0.0'38 0.373 377' 

\bS fil 121.4 0.115 0.385 0.173 0.857 

A&S $2 121.7 0 I08 U . : M  0 . 4 i i  0 . 9 3  

\h *2 1213 0.113 0.3'32 0.172 ll.%3 

0.103 0.369 188 

0.09!1 0376 246 

0.100 0.370 204 

0246 0 . l E  969 

0.241 0 116 206 

0.2M 0.145 139 

0099 0378 199 

0 . m  0.372 204 

Startinc point\ Z ( 1 )  Z(21 Z(R1 %( 1)  

Rtin 6-14 A 6 S  * I  0.01 0.16 0 27 I1 :I3 
Rim 6-14 A 6 S  i t 2  0 01 0 1  0 3R 0.42 
Run 6-14 S&S Y l  n ni 0 9  n fie I) n8 
R m  6-14 S&S f2 0. I 0.75 0 99 0.s1.5 
R i m  6-13 SLS 2 3  0 01 0 34 n 33 n 313 
Run 1-5 ,486 Y1 n 01 0 18 0.07 0 76 
Run 1-5 A M  +2 0.01 0.1 0 05 n 42 

' Sumber of lrinls Increued ripnificantly due to b l d a l i h /  

TABLE 3A.  DATA USED TO PLOT CONTOURS FROM RUN 12 IN FIGURE 4 

Z(1)  and Z(z) at  Estimated Partial Optimums 
T = f i (Z(4)) ,PHI = f z ( z ( 3 ) )  

Point no. 

I 
2 
3 
4 
5 
6 
7 
8 
8 A  
9 
9A 

10 
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Description Z(3)  

Overall Opt. 
Opt. Z(  3) for Z( 4 )  = 0.864 
Opt. Z( 3) for Z( 4 )  = 0.939 
Opt. Z( 3) for Z(  4 )  = 0.856 
Opt. Z( 3) for Z (  4 )  = 0.570 

Other conditions 
Other conditions 

Calc. Z( 3 )  at Z(4)  = 0.939 at ROI = 120 
Calc. Z(  3) at Z(  4 )  = 0.939 at ROI = 120 
Calc.Z(3) a t Z ( 4 )  = 0.939atROI = 118 
Calc.Z(3) a t Z ( 4 )  = 0.939atROI = 118 
Calc. Z(4)  along Opt. Z ( 3 )  at  ROI = 120 

November, 1974 

0.481 
0.467 
0.480 
0.464 
0.424 
0.562 
0.530 
0.550 
0.410 
0.591 
0.369 

see figure 

0.946 
0.864 
0.939 
0.856 
0.570 
0.939 
0.864 
0.939 
0.939 
0.939 
0.939 
0.894 

ROI 

121.34 
117.99 
121.30 
117.50 
79.58 

119.52 
117.04 
120 
120 
118 
118 
120 

Coinperison 
trials 

A&S = 124 
A B S  = I24 

- 
- 

R i m  4 = 474 

ABS = 124 

AhS = 124 

IBS = 124 

S&S = 313 

S&S = 332 

S6S = 236 

- 

- 

- 

Symbol 
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0 
0 
0 
0 
0 
0 
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a '  

m o  

0 

0 
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TABLE 3B. DATA USED TO CHECK CONTOURS IN FIGURE 4 FROM RUN 14 

Z(1) and Z(2) at Estimated Partial Optimums 
T = f i  ( 2 ~ 3 )  1, PHI = fz( Z(4) 1 

Point no. 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

23 

24 

23 

Description 

Overall Opt. 
Opt. Z( 3 )  for Z( 4 )  = 0.540 
Opt. Z( 3 )  for Z(4) = 0.465 
Opt. Z(  3)  for Z(4)  = 0.448 
Opt. Z( 3 )  for Z( 4 )  = 0.523 

Other conditions 
Other conditions 

Calc. Z( 3 )  at Z( 4 )  = 0.540 at ROI = 120 
Calc. Z( 3 )  at Z( 4 )  = 0.448 at ROI = 120 
Calc. Z(  3 )  at Z( 4 )  = 0.540 at ROI = 118 
Calc. Z( 3 )  at Z( 4 )  = 0.448 at ROI = 118 
Calc. Z (  4 )  along Opt. Z( 3 )  + direction 

Calc. Z(4) along Opt. Z( 3 )  + direction 

Calc. Z( 4 )  along Opt. Z( 3 )  - direction 

Calc. Z( 4 )  along Opt. Z( 3 )  - direction 

at ROI = 120 

at ROI = 118 

at ROI= 120 

at ROI = 118 

partial optimums such as given in points 2, 3, 4, and 5 
at four different values of Z(4) as well as the overall opti- 
mum would require 5 different runs using optimization 
techniques that do not move one variable at a time. Points 
1, 2, 3, 4, and 5 permit determination of the effect of z(4) 

with Z(l) through Zc3) optimized for the given ZC4). Part 
of these effects may be due to changes in Z(1) through 
Z(3) ,  but the changes will be either effects of Z(4) or inter- 
action effects of Z(4) with other independent variables. The 
points do represent the best values that can be obtained 
at the various values of Z(4). Such data will permit the 
rapid estimation of optimums of Z(l) through if for 
some reason (process troubles, material changes, other 
contingencies) Z(4) must be at a nonoptimum value. 

Inherent in the procedure and printout* are points such 
as 1 through 7 in Table 3 and Figure 4, and these can 
be used to estimate points on an ROI contour line, at least 
in one quadrant. However, a linear extrapolation is not ap- 
propriate since the partial of ROI with respect to ZC3) 
must change. A second-order extrapolation or interpola- 
tion, AROI = ZCA[Z(~) - Z ( 3 , M ] 2  is more appropriate and 
points 8 and 9 were calculated this way at ROI = 120 
and ROI = 118. 

A similar relationship applies to Z(4) along the optimum 
line, and Z(4) corresponding to ROI = 120 was cal- 

culated as point 10. Point 2 is close enough to 118 to be 
used directly for a 118 contour. From points 2, 8, 9, and 
10, plus the fact that the contour at points 2 and 10 will 
be parallel to the Z(3) axis, the contour lines can be esti- 
mated reasonably well for approximately 1/4 of their cir- 
cumference. If it is assumed that the slopes are similar on 
both sides of the optimum, a complete contour could be 
drawn, but this is very questionable in a complicated sys- 
tem. In Figure 4, this assumption is applied and points 
8A, and 9A are used to estimate the contours on the left 
side of the graph. 

In run 14, &3) and Z(4) were exchanged in the objec- 
tive function system so that a different approach would 
occur, and points 11 through 25 were obtained and plotted 

Supplementary material may be obtained by writing to the author. 
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0.477 
0.540 
0.465 
0.448 
0.523 
0.540 
0.448 
0.540 
0.448 
0.540 
0.448 
0.552 

0.951 
0.955 
0.950 
0.948 
0.957 
0.900 
0.907 
0.925 
0.898 
0.881 
0.870 

See fig. 

0.594 See fig. 

0.339 See fig. 

0.260 See fig. 

‘ - O r  

$1 0 5 n/L 0 5 
0.2 

ROI 

121.37 
120.40 
121.31 
121.31 
120.59 
119.06 
120.41 
120 
120 
118 
118 
120 

118 

120 

118 

Symbol 
Figure 5 

V 
V 
V 
V 
V 
V 
V 
v 
v 
v 
v 
v 
v 
v* 
vo 

0.7 
Z(3)RUN 12:2(4) R U N  14 

Fig. 4. Response surface from Run 12 in Z(3) and Z(4) with Z(1) 
and Z(z) a t  estimated partial optimums, and similar points from 
Run 14: - contour lines; - - - - - - optimum Z(3) a t  given 

Z(4);* extensive extrapolation. 

in the same way as in run 12 except that the directions are 
at right angles. Contour lines were not plotted from run 
14, but comparing values in Table 3 with the locations in 
Figure 4 it can be seen that all the points correspond rea- 
sonably well with the estimated contours, except points 
24 and 25 and 8A and 9A, all of which involved extensive 
extrapolation. Similar plots could be made of vs. Z(z, 
and Zcz) vs. 

Opt imizat ion o f  Other Functions 

This method was applied to two other functions for 
testing and evaluation, a 2-variable function used by 
Rosenbroclc ( 1960), and a 4-variable function similar to 
the Rosenbrock function. The Rosenbrock function is a 
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TABLE 4. OPTIMIZATION OF ROSENBROCK FUNCTION A N D  4-vARIABLE ROSENBROCK TYPE FUNCTION 

Rosenhrock function ROl = - Y = - 100(X12 - Xz2)z - ( X i  - 1 ) 2  
4-Variable Rosenhrock-Type function ROI = - Y = - lOO(X12 = X22)2 - ( X i  - 1)* - 2O(X:? - Xi2)’ - ( X  - 1 ) 2  

Run Object func. 

15 Ro5rnbrock XI = -2 + 42( 1) 
.4CC = 0.001 X;! = -2 + 42(2) 
Exact solution 

ACC = 0.001 Xz = 4Z(2)  
E u c t  sollition 

ACC = 0.0005 

16 Rosenbrock Xi = - 2  + 42(1)  

!7 Samc a* 16 

18 &\Tar. Rosenhrock 
XI = 2Z(1) Xp = 2Z(2)  
X.I = 2Z(3) 

X I  = 2Z(4) 
X:I = 2Z( 3)  

Xi = ZZ(4) 

X1 = 22(4)  

Xp = 2Z(2)  
& = 2Z( 1) 

Xz = Z Z ( 3 )  

19 4-Var. Rosenhrock 

20 4-Var. Rosenbrock 

x1= ZZ(2)  XI = ZZ(1) 

Z ( 1 ) = 2 ( 3 ) = 0 . 2 5  
Z ( 2 )  = 2 ( 4 )  =0.75 
Eyact solution 

Z(1) = 2 ( 2 )  ~ 0 . 7 5  
Z(3) = Z(4) = 0.25 

Z ( 1 )  = Z ( 3 )  =0.75 
Z(2) = Z(4)  = 0.25 

ROI 

-0.001 
0 

0.000 
0 

0.000 
0.000 

0 

-0.001 

0.000 

sharp ridge following two parabolas symmetrical about 
the x1 axis, through the 0,O point with a minimum of 0 at 
XI = 1, x~ = 1 or x1 =1, x2 = -1. The ridge is very 
sharp and it was found that accuracy limits had to be 
small to locate the ridge sufficiently for this method to be 
consistent. The Rosenbrock function and the 4-variable 
Rosenbrock type function are given in Table 4. 

The starting point used by Rosenbrock is the x1 = 
-1.2, x2 = 1 point, To follow the ridge to the optimum, 
the search must proceed down the parabola approximately 
to x1 = x2 = 0, then up the parabola to xI = x2 = 1.0, or 
down the mirror image parabola to x1 = 1, x2 = - 1. 

Run number 15 shows that if x2 can be negative, the 
search using this method, with ROI = -y, proceeds to 
the 1, -1 point in 127 iterations. However, Rosenbrock‘s 
method located the optimum at 1,l so the relation of x2 to 
Zc2) was changed to eliminate negative x2 values in run 
number 16. In this run the search proceeded to near 0,0 
and then up to 1,1 in 243 iterations. Rosenbrock‘s method 
located the optimum more accurately in 200 iterations. 
Thus this function can be adequately optimized without 
an excessive number of iterations. If desired, it could pro- 
vide additional information on the effect of the variables. 

Table 4 shows that the actual accuracy of this method 
is not equal to the desired accuracy ACC used in the pro- 
gram. Thus ACC should only be considered as approxi- 
mately the desired accuracy and should be programmed 
somewhat smaller than desired. 

A 4-variable function similar to Rosenbrock‘s was used 
to test the effect of interaction among variables. As can be 
seen by inspection x1 and x2 are highly interacting, while 
x1 and x3 moderately interact, and there is no interaction 
between x4 and other variables. 

Runs number 18, 19, and 20 show the effects of chang- 
ing the order in which the variables are optimized. By 
inspection, there appears to be a slight benefit in associat- 
ing the initially optimized variables with the least inter- 
active process variables. I t  should be noted that although 
this 4-variable optimization required only a few more 
iterations than the %variable optimization, the difference 
in starting points makes comparison invalid. 

This program has been used successfully by senior 
classes for optimizing a 3-variable vapor recompression 
evaporator and a 2-variable recovery heat exchanger, and 
4 variables of the 1967 AIChE contest problem. 

NOTATION 

ACC = accuracy limits for partial optimum location 
FA, FB, FD, FG, FR, FRA, FRB,  FRC, F R E ,  FRP, PHI,  SALE, 
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Z i l )  

0.744 
0.75 

0.755 
0.75 

0.751 
0.508 

0.5 

0.501 

0.195 

Optimum 
U 2 )  

0.256 
0.25 or 0.75 

0.255 
0.25 

0.252 
0.507 

0.5 

0.493 

0.495 

Z(3) 

- 

- 

- 
0.508 

0.5 

0.494 

0.495 

Z ( 4 )  

- 

- 

- 
0.498 

0.5 

0.494 

0.501 

No. 
trials Comparison 

Rosenbrock 200 
127 more accurate 

Rorenbrock 200 
243 more accurate 

Rosenbrock 200 
260 ~ameaccuracy 
290 

261 

T, V, Vr, Z K ~ ,  ZK2, ZK3 = variables in Williams- 
Otto plant calculation, four of which are inde- 
pendent 

K = constant 
Pv = independent process variable 
RJ = ratio of a change in to the change in an- 

other variable 
ROI = return on investment, objective function to be 

maximized, or -objective function to be minimized 
xl, x2 = dependent variables in Williams-Otto plant and 

independent variables in Rosenbrock function 
x3 = dependent variable in Williams-Otto plant and 

independent variable in 4-variable Rosenbrock 
type function 

x4 = independent variable in 4-variable Rosenbrock 
type function 

ZCJ, = independent variable number j ,  limited to a 
range of 0 to 1.0, used to define independent 
process or objective function variables 

Z(J)m = optimum value of Z(i) under certain conditions 
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