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z=f(yl,t)
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These restrictions allow us to say
on C: g T - p = (g an)T @B (ag - )
_ o
oy?
where from Equation (6)
T = [y + (x — ¢) divio) v(] 't + 2¢ D@ (B3)

T py (B2)

Using Equation (A9), we can calculate that

Do :yl (1),(0') + dueto? ) (B4)
22 ay2

The definition for the surface divergence of a vector given in
Equation (A10) may alternatively be written

divegy v9 = tr D@
= qll D@ 22 Do)
n Te Dy (B5)
We can consequently state that, because v(®? = 0 at the pore
wall,

on C: divey) v = gt Dillf)

div(gy v(@)gll = Dlo)s
From Equation (B3), this means
on C: TO@% = [y + (k4 €) divie) v(] all (B7)

Let us now observe that

all yy = p (BS8)
ayt

Equations (B7) and (B8) permit us to express Equation (B2)

in the form of Equation (7).
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Modified One-af-a-Time Optimization

An optimization method has been developed that searches one variable

at a time under the conditions that previously searched variables are at
their approximate optimum and variables to be searched later are constant,
This method provides the optimum and also information on the effects of
the variables. The method is based on the Partan and Powell methods and
on assuming linear partial derivatives of the objective function with respect
to any given variable. The procedure involves searching each variable
separately with other variables either constant or varied so that they remain
at their estimated optimum for the given conditions. This method provides
useful information on the effects of independent variables as well as locat-
ing the overall optimum and a number of partial optimums and requires
a comparable number of trials.

SCOPE

later Z

This paper reports on a study undertaken to develop and I

M. E. FINDLEY

Department of Chemical Engineering
University of Missouri—Rolla
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are held constant. A partial optimum in this

evaluate a search method of optimization that would pro-
vide information not only on the location of the optimum,
but also on the effects of the individual independent varia-
bles on the objective function to be maximized or mini-
mized. The principle of the method is to search one vari-
able Z;=k, at a time, with previously searched variables

Z(J<K) at their estimated partial optimum for any given

search point in Z;_x,, while variables to be searched
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paper is taken to mean the optimum of 1 or more variables
at given nonoptimum values of other variables. That is,
the best value of Z(;, at given constant nonoptimum val-
ues of Z(sy, Zc3), Zcsy would be a partial optimum of Zy,.
The information obtained in this type search of 4 variables
would provide the overall 4-variable optimum plus a num-
ber of 3-variable, 2-variable, and I1-variable optimums
under various conditions. It would also show the effects
of each variable, combined with interaction effects of that
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variable, on the objective function as the variable is
searched.

The technique used was based on the method of Powell
(1962) described by Beveridge and Schechter (1970) and
the Partan method described by Buehler et al. (1964).
These methods in 2 dimensions involve searching along
2 parallel lines to determine 2 partial optimums, each the
optimum along one of the parallel lines. It can be shown
that searching a third line connecting the first two local
optimums will locate the overall optimum, if the system
is second order.

It can also be shown that with a second-order objective
function the partial optimum of one or more variables
will have a linear relationship with the other variables.
While the Powell and Partan methods generally search in

a direction related to steepest ascent methods, changing
all variables simultaneously, this method attempts to keep
changes to one variable at a time, under the conditions
that other variables are at estimated partial optimums,
or held constant. The estimated optimums are based on
assuming a linear relationship between the partial opti-
mum of each variable and the other variables. When
changes are sufficiently small that a second-order equation
can approximate the objective function, the method will
rapidly reach the optimum.

This method was developed in order to obtain the
optimum and the effects of independent variables in a
single run for preliminary design evaluations and to
obtain as much information about a system as possible in
a single run.

CONCLUSIONS AND SIGNIFICANCE

An optimization method that searches one variable at
a time but uses previous variable searches to maintain
previously searched variables at their estimated optimums
has been developed and tested. Each independent vari-

able Z(J= X, 1 searched under the conditions that Z(J<K)

are optimum. Thus in one run, the search produces a
number of partial optimum points, and as Zy-x, is
searched, the effects of Z;-x), combined with interaction

effects of Z and Z can be obtained from the
(J=K) WT<K)

search results. In addition, of course, as the final variable
is searched, the overall optimum is obtained. With the ex-
ception of dynamic programming and one-at-a-time meth-
ods, other optimization methods would require one run
for each partial optimum desired or additional calculations
to determine the effect of each variable.

Some of the advantages of this method are as follows:

1. It is similar to one-at-a-time optimization plus com-
mon sense utilization of previous resulits.

2. It is simple and based on the type of procedures used
in design calculations. The principles should be easily
understood by design engineers, and any problems in
application should be more easily corrected.

3. It is similar to dynamic programming but is not
restricted in the way dynamic programming is.

4. It is essentially the Powell or Partan method with
movements restricted to one variable at a time so that
the effects of each variable combined with some inter-
actions of that variable can be observed.

Disadvantages are as follows:

1. This method has not been tested on more than 4
variables and it could be less favorable with additional
variables. The method can be easily reprogrammed and
tested if desired and, in any event, can be useful in pre-
liminary design optimizations.

2. At present, the method is not programmed to
handle implicit inequality constraints on dependent vari-
ables unless they can be related to independent variables.
It seems probable that this could be done for most cases
by testing for exceeded limits in the object program and
reversing the search when limits are exceeded.

In general this method could be useful in design and
control studies for finding optimum conditions, finding
partial optimums for alternative and contingency condi-
tions, and finding the sensitivity of the objective function
to changes in independent variables, all from a single run
and printout.

The number of trials required in this study was more
than the complex and Rosenbrock methods and less than
a gradient method.

SEARCH PROCEDURE

The procedure is based on assuming that a partial
optimum value of one variable is a linear function of the
other independent variables. If a response surface can be
represented by an objective function containing first and
second-order terms only in the independent variables, then
the partial derivative of the objective function with re-
spect to any given variable is first order. Solving the
partial derivative set equal to O for the given variable will
give a linear relationship with the other variables. This
equation will apply whether the other variables are at
their optimums or not, and thus 2 partial optimums of
one variable at 2 different values of a second variable,
with others held constant, will determine the relationship
of the partial optimum location of the first to the second
variable. In searching for an optimum of a more com-
plicated objective function, application of these principles
should lead toward the optimum but require repetition
until the optimum is within a small enough region to be
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represented by a second order function.

This assumption permits the variables to be searched
more or less one at a time, except that as the second is
searched, the first is also changed to keep it at its esti-
mated partial optimum for the value of the second. As the
third variable is searched, the first two are changed to
maintain both at their estimated optimums for the value
of the third, etc. This allows the procedure to follow a
sharp ridge rather than oscillate across it or stop on a
false optimum, If it is desired to study the effect of one
variable with all other variables constant, that variable
should be the first variable. If it is desired to study the
effect of one variable with all others at their estimated
partial optimums, then that variable should be the last
variable.

This method was developed for maximizing the return
on investment in a 4-variable plant design problem, and
for this reason the objective function is termed ROI, and
the problem will be considered to be maximization. The
independent variables were termed as Z, through Z,
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varying from 0 to 1.0. Four independent process variables
can be equated to functions of Zy, through Z,, accord-
ing to the expected range of the variables and the in-
equality constraints, For example, a process variable Py,
can be related to Z¢) by Pvi = Pyvmin + Zy (Pvmax —
Pvmin), Where Pypax and Pypy, are maximum and mini-
mum expected or allowed values of the process variable
and can be a function of other variables previously de-
fined or calculated.

In this method the first variable Z(y, is searched, with
the other variables Z(s, Z(s), and Z4) held constant. If
Z 1 represents the value of the variable Z(;, at the Ith
trial level of Z;, then the starting point is Z¢y1, Zeon,
Zyt, Zewr. I Z¢yy is searched with the other variables
constant until ROI is a maximum we have the point Z(ym,
Z(%1, Zsyt, Zayy where m represents the level of Z,
giving the maximum ROI as shown in Figure 1, at point
(a).

The second variable is searched with Z, and Zy,
constant, but with Z, at the optimum or the estimated
optimum for each value of Z;, searched. Thus for each
value of Zz), Z¢;) must be searched for the optimum or
the optimum must be estimated. In Figure 1, Z, is
changed to Z), and a second search of Z, is made,
starting at Z(;)m from point (a), until a new optimum Z,
is found, Zymmy, Zere, Zar, and Z4);. After this search,
the optimum Z,, can be estimated for any value of Z,
if a linear relationship between Z;)m and Z¢,) is assumed.
If

Z1ymwy — Zeryma)
R1 =

Zsyy — Zion
then

Zpymenyest. = Zepmin—1 + BilZyiny — Zigyn—1y)

After R, is determined, Z(sy can be searched further with
Z1)m estimated at each point until a Z, is found giving
maximum ROI, at point (¢) in Figure 1, with Z1ym, Zaym,
Zsyy, Ziyr

The search for optimum Z) is not, strictly speaking,
one variable at a time since Z(;, may be changing also,
possibly by a considerable amount. However, at each
value of Z(,), the estimated best value of the objective
function (with Z, at a partial optimum) is obtained for
that Z,, at constant Z, and Z4,. Thus the results would
show the effect of changes in Z(, on the objective func-
tion optimized with respect to Z,, but with Z;, and
Z(4) constant. In some cases these effects might be more
important than the effects of Zs), with Z(yy, Z(3), and Z 4,
constant as in a true one-at-a-time search.

At this point, Z3, is changed to Z(s), and the entire pro-
cedure shown in Figure 1 is repeated to obtain point d in
Figure 2. Then the following calculations are possible:

Z(l)m(d) - Z(l)m(c)
R1 =

Zays — Zan

Zosmeay — Zzymier

R2 =
Zayy — Zsn

Zymn = Ziymin-1 + Ri(Z@yoy — Zayim—1>)

Zgymny = Zeoymin—13 + RolZsyany — Zayn—1))

Zs)y can then be searched for its optimum, with Z;, and
Z(s) at estimated optimums and Z4, constant, as shown in
Figure 2 as point (e), Zc1ymce), Zizymeer Z@rmieds Ziart.
After point (e) is found, Z«, can be changed to Z(4s
and the entire procedure in Figures 1 and 2 can be
repeated to find optimum Z(l), Z(Q), and Z(g) at Z(4)2
which is point (f) in Figure 3. At this point R;, R, and
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Fig. 1. Search in Z¢1) and Z(2) with Z(3) and Z 4, constant.
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Fig. 2. Search in Z(o) and Z(3) with Z(y) at estimated optimum
and Z¢4) constant.

Rz can be calculated as previously, and optimum Z,,
Zs), and Z3) can be estimated at any value of Z,.
Searching Z4y with other variables optimized leads to an
approximate overall optimum in four variables, point (g)
in Figure 3. Since this point is based on a number of
assumptions of linearity, it can be checked by repeating
the entire procedure.

The search method used in each direction was first
open-ended starting with small steps, with the step
length 1.62 times the previous step after each successful
step. If the first step produces a decrease in ROI, the
direction is reversed, but after the first step, a decrease
in ROI indicates the optimum has been passed and a
closed-end search is initiated between the 2 points on
each side of the maximum by the Golden Section or Modi-
fied Fibonacci technique described by Wilde (1964) and
Beveridge and Schechter (1970). When an upper or
lower limit is reached, Z¢, < .001 or Zyy > .999, a
closed-end procedure is also initiated.

On searching the 2d, 3d, and 4th variables, the first
change in values of the variables is 10 times the small

AIChE Journal (Vol. 20, No. 6)
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initial step size so that more accuracy can be obtained in
determining the ratios of the optimums of previous vari-
ables to the change in the variable searched. The open-end
search begins from that one of the first two points which
produces the highest ROL.

Each search in each direction ends when the range of
the optimum is reduced to approximately 2 times the
desired accuracy, ACC. When each overall optimum is
reached, it is compared with the previous overall optimum,
and the entire search is repeated if any variable is more
than 3 times the desired accuracy from the previous over-
all optimum.

10
d
ZAp s S
.
z4R
Z@M©) / g

z4)
T
X

TESTING AND EVALUATION

Williams-Otto Plont Optimization

The procedure was tested primarily by using the
Williams-Otto plant problem (Williams and Otto, 1960)
with equations as presented by Adelman and Stevens
(1972). This problem has four independent variables to
optimize, and Christensen (1970) has presented a method
of straightforward solution of the 8 basic equations. The
solution used in this study is shown in Table 1. The first
four equations use the optimization variables Z, through
Z4) to establish the four independent process variables T,
FRE, FRC and PHI = FD/(FR - Fp - FG). As shown by
Mason (1971), the response surface for this system has a
sharp curved ridge near the nonfeasible region and is also
bimodal in at least the two variables Frz and PHI. Since
this search procedure and most others are based on a
unimodal surface, some consideration should be given to
problems due to bimodality in comparing search tech-
niques.

Runs 1 and 2 in Table 2 give results of optimizing from
the best and worst of Adelman and Stevens’ starting points
in a Complex optimization method.

Runs 3 and 5 combined are a 3-variable optimization at
constant Zy), followed by a 4-variable optimization start-
ing from the 3-variable optimum. The number of trials is
less than the equivalent 4-variable optimization, run 4,
but due to bimodality which misled both searches, the
results only indicate the 2-step procedure is comparable,
in number of trails to the 4-variable search.

Adelman and Stevens used Fg as an independent vari-
able which requires much more complicated calculation
of the objective function than using PHI as in the program
in Table 1. For this reason the comparison of trials with
their Complex optimization is not appropriate for runs 1
through 5. Equation (3) in Table 1 was changed as shown
in Table 1 for runs 6 through 13. This change makes
Z3) approximately proportional to Fg even though it de-

TABLE 1. EQUATIONS USED FOR WiLLIAMs-OTTO PLANT SOoLUTION

o Z(3MIE) || Z3MIF)
0] 1.0
ZQ3)
Fig. 3. Search in Z(3) and Z4) with Z(2) and Z(1) at estimated
optimums.
Runs 1-5
1. T=Z(4)%100.4580.
2. FRC==Z(2)*20000.
3. PHI=Z(3)
4, FRE=(Z(1)%*2.41.)*11910./PHI
5. X2=PHI*FRE*.5
6. FRP=.1*FRE }-4763.
7. X3=(X2—PHI*(FRP—4763.) —4763.)*2,
8. X1=(PHI*FRC+X3)/2.+X2
9. ZK1=.59755E10*EXP( —12000./T)

10. ZK2=.25962E13*EXP( —15000./T)
11. ZK3=.96283E16*EXP( —20000./T)
12, VF=X3/(ZK3*FRP*FRC*50.)

13. FRB=X2/(ZK2*FRC*VF*50.)

14. FRA=X1/(ZK1*FRB*VF*50.)

15. FG=300.X3/200.

16. FR=FRA+FRB+FRC+FRE+4FG4-FRP
17. FB=X14-PHI*FRB4X2

18. FA=X1+4PHI*FRA

19. V=VF®FR®*®2,

20. FD=PHI*(FR-4763.—FG)

21. SALE =1955.52°4763.

Other runs if different

1. Run14 T=Z(3)"100.4580.
3. Run 6-13 PHI=25000/(475000°Z(3) +25000)
3. Run14 PHI=25000./(475000.*Z(4)+25000.)

Return on investment equations

Adelman and Stevens (A&S)

ROI=(84."FA-201.96*FD —336.*FG+SALE —2.22*FR—V*3000.)/300./V

Sriram and Stevens (S&S)
DIV=150.*V4.13*FR

ROI=(84."FA—201.9629*FD—336.*FG{SALE —3.52°FR—1500.°V ) /DIV

AIChE Journal (Vol. 20, No. 6)
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fines PHI and makes the search more comparable to Adel-
man and Stevens’ search.

In runs 6 and 7 the number of iterations required is
considerably less than runs 1 and 2 and these runs require
only about twice the number of iterations required by
Adelman and Stevens and have the advantage of more
usable information on the effects of variables.

In run 8, the effect of requiring higher accuracy (ACC
= 0.005) decreased the number of trials compared to run
7. This was probably due to better accuracy in locating
partial maximums and the following better estimated
maximums in succeeding trials. Normally this would be
true only for fairly sharp ridges, and higher accuracy
would require more trials.

Runs 9, 10, and 11 compare results with those of Sriram

and Stevens’ (1972) who used a gradient search method
and a different ROI. In all three runs fewer iterations
were required by this method, but more importantly, the
nonoptimum information is more usable with this method
than with a gradient method.

In order to show what type of information can be ob-
tained in addition to the optimum, runs 12, 13, and 14
were made, again using the same equations as runs 6
through 8. Run 12 was used to plot 7 points in Figure 4
from the printout of the optimization, with points given
in Table 3. Four of these points allow a line to be plotted
which locates the optimum Zs, for a given Z,, when Z,
and Z,, are at estimated optimums for the given Z3, and
Z(4y. From the printout, optimums for Zs) and Z;, would
also be available at these values of Z,. To determine

TasLe 2. OPTIMIZATION OF WILEIAMS-O1TO PLANT

Starting Optimum No. Comparison
Run No. Remarks ROL point RO1 Z(1) Z(2) Z(3) Z(4) PHI1 Fr/10% trials trials
1 PHI = Z(3) AMS  AaS #1 1209 0.108 0.434 0.003 0942 0.093 0.398 343 ASS = 124
2 PHI = Z(3) ASS  A&S 2 1214 0.114 0.374 0.104 0.953 0.104 0.358 326 A&S = 124
3 PHI = Z(3) A&S ALLZ =105
OPT.3 VAR,
2(4) = CONSTANT 68.5 0.075 0.617 0.112 0.5 0.112 0.314 218° —
4 PHI = Z(3) A&S 1212 0.115 0.373 0.105 0.95 0.105 0.353 474° —
5 P = 4(3) ASS 1215 0.111 0.388 0.099 0.956 0.099 0.373 159
345 PHI = Z(3) ASS 1215 0.1i1 0.388 0.099 0.956 0.099 0.373 377° Run 4 = 474
25000
6 POl = — 2 A&S 1214 0.115 0.385 0473 0.957 0.103 0.369 188 A&S = 124
475000Z(3) + 25000
25000
7 PHl = ASS  A&S #2 1212 0.108 0.395 0477 0.952 0.099 0.376 246 ASS = 124
4750007.(3) + 25000
25000
PHl = —— A&S % 21.3 . 392 472 .93 . 371 2 E = 12
8 A0 T 500 A&S #2 121.5 0.113 0.39 0.47 0953 0.100 0.370 204 AKS = 124
ACC = .005
9 PHI = 25000 S&8 S&S #1 30.8 0.105 0.175 0.161 0.546 0.24 3 26! &S
€ = m S&S S # 50, 105 175 .16 54 246 0.145 269 S&S$ = 313
10 PHI = 25000 S&S S&S #2 5 7 545 2 5
= m S&S S&S #2 50.8 0.108 0.177 0.166 0.545 0.241 0.148 206 S&S = 332
1 PHl = —— S&S S&S #3 5 5 5 44 5 S&S =
TR T 33000 S&S 8K #£53 508 0.105 0.171 0.163 0.547 0.244 0.145 139 S&S = 236
12 PHI = — " _ A&S L2 =075 : :
TR T 25000 & ALLZ = 075 1213 0.109 0.409 0.481 0.948 0.099 0378 199 —
25000
PHI = — > ' _ e - :
13 TR 1 25000 A&S ALLZ = 0.25 1215 0111 0.398 0.474 0.951 0.100 0.372 204 —
25000
14 PHl = — o~
4750007(3) + 25000
7(3). Z(4) reversed ASS  ALLZ =075 121 4 0.109 0.394 0.951 0477 0.099 0.375 203 —
ACC = 0.01 in all runs except run 8.
Starting points Z(1) Z(2) 7(3) Z(4)
Run 6-14 A&S #1 0.01 0.16 027 0.76
Run 6-14 A&S #2 001 0.1 0.38 0.42
Run 6-14 S&S #1 0.01 0.9 0.66 0.08
Run 6-14 S&8 #2 0.1 075 0.99 095
Run 6-14 $&S #3 0.01 0.34 033 048
Run1-5 A&S #1 0.01 0.16 0.07 0.76
Run1-3 A&S #2 0.01 0.1 005 0.42
® Number of trials i ased signi! due to bi
TaBLE 3A. Data Usep To PLot CoNTOURs FROM RUN 12 IN FiGURE 4
Z1) and Zg)y at Estimated Partial Optimums
T = f1(Zw), PHI = f2(Z)
Symbol
Point no. Description Z(3) Z(4) ROI Figure 5
1 Overall Opt. 0.481 0.946 121.34 O
2 Opt. Z(3) for Z(4) = 0.864 0.467 0.864 117.99 O
3 Opt. Z(3) for Z(4) = 0.939 0.480 0.939 121.30 O
4 Opt. Z(3) for Z(4) = 0.856 0.464 0.856 117.50 @)
5 Opt. Z(3) for Z(4) = 0.570 0.424 0.570 79.58 O
6 Other conditions 0.562 0.939 119.52 @)
7 Other conditions 0.530 0.864 117.04 )
8 Calc.Z(3) atZ(4) = 0.939 at ROI = 120 0.550 0.939 120 .
8A Cale. Z(3) at Z(4) = 0.939 at ROI = 120 0.410 0.939 120 °
9 Calc. Z(3) atZ(4) = 0.939 at ROI = 118 0.591 0.939 118 °
9A Cale. Z(3) at Z(4) = 0.939 at ROI = 118 0.369 0.939 118 *®
10 Calc. Z(4) along Opt. Z(3) at ROI = 120 see figure 0.894 120 Iy
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TabLE 38. DaTa Usep 10 CHECK CoNTOURS IN FIGURE 4 FROM RUN 14

Z(1) and Z¢2) at Estimated Partial Optimums
T = f1(Z3)), PHI = f2(Zco)

Point no. Description

11 Overall Opt.

12 Opt. Z(3) for Z(4) = 0.540

13 Opt. Z(3) for Z(4) = 0.465

14 Opt. Z(3) for Z(4) = 0.448

15 Opt. Z(3) for Z(4) = 0.523

16 Other conditions

17 Other conditions

18 Calc. Z(3) atZ(4) = 0.540 at ROI = 120

19 Calc. Z(3) at Z(4) = 0.448 at ROI = 120

20 Calc. Z(3) at Z(4) = 0.540 at ROI = 118

21 Calc. Z(3) atZ(4) = 0.448 at ROI = 118

22 Cale. Z(4) along Opt. Z(3) + direction
at ROI = 120

23 Calc. Z(4) along Opt. Z(3) + direction
at ROI = 118

24 Calc. Z(4) along Opt. Z(3) — direction
at ROI= 120

25 Cale. Z(4) along Opt. Z(3) — direction
at ROI = 118

partial optimums such as given in points 2, 3, 4, and 5
at four different values of Z, as well as the overall opti-
mum would require 5 different runs using optimization
techniques that do not move one variable at a time. Points
1, 2, 8, 4, and 5 permit determination of the effect of Z,
with Z¢,, through Z;, optimized for the given Z4,. Part
of these effects may be due to changes in Z;, through
Zs), but the changes will be either effects of Z 4, or inter-
action effects of Z4) with other independent variables. The
points do represent the best values that can be obtained
at the various values of Z;. Such data will permit the
rapid estimation of optimums of Z, through Z, if for
some reason (process troubles, material changes, other
contingencies) Z4) must be at a nonoptimum value.

Inherent in the procedure and printout® are points such
as 1 through 7 in Table 3 and Figure 4, and these can
be used to estimate points on an ROI contour line, at least
in one quadrant. However, a linear extrapolation is not ap-
propriate since the partial of ROI with respect to Zs,
must change. A second-order extrapolation or interpola-
tion, AROI = KA[Z3), — Z3,u]? is more appropriate and
points 8 and 9 were calculated this way at ROI = 120
and ROI = 118.

A similar relationship applies to Z4, along the optimum
Z3) line, and Zy, corresponding to ROI = 120 was cal-
culated as point 10. Point 2 is close enough to 118 to be
used directly for a 118 contour. From points 2, 8, 9, and
10, plus the fact that the contour at points 2 and 10 will
be paralle] to the Z, axis, the contour lines can be esti-
mated reasonably well for approximately ¥4 of their cir-
cumference. If it is assumed that the slopes are similar on
both sides of the optimum, a complete contour could be
drawn, but this is very questionable in a complicated sys-
tem. In Figure 4, this assumption is applied and points
8A, and 9A are used to estimate the contours on the left
side of the graph.

In run 14, Z() and Zy, were exchanged in the objec-
tive function system so that a different approach would
occur, and points 11 through 25 were obtained and plotted

% Supplementary material may be obtained by writing to the author.
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Symbol
Z(4) Z(3) ROI Figure 5
0.477 0.951 121.37 v
0.540 0.955 120.40 v
0.465 0.950 121.31 v
0.448 0.948 121.31 v
0.523 0.957 120.59 v
0.540 0.900 119.06 v
0.448 0.907 120.41 v
0.540 0.925 120 v
0.448 0.898 120 v
0.540 0.881 118 v
0.448 0.870 118 v
0.552 See fig. 120 v
0.594 See ﬁg. 118 v
0.339 See fig. 120 A Ad
0.260 See fig, 118 ve
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Fig. 4. Response surface from Run 12 in Z¢3) and Z4) with Z()

and Z(3) ot estimated partial optimums, and similar points from

Run 14: contour lines; ------ optimum Z¢3), at given
Z4);* extensive extrapolation.

in the same way as in run 12 except that the directions are
at right angles. Contour lines were not plotted from run
14, but comparing values in Table 3 with the locations in
Figure 4 it can be seen that all the points correspond rea-
sonably well with the estimated contours, except points
24 and 25 and 8A and 9A, all of which involved extensive
extrapolation. Similar plots could be made of Z¢, vs. Zca)
and Z(g) \AD Z(l).

OQptimization of Other Functions

This method was applied to two other functions for
testing and evaluation, a 2-variable function used by
Rosenbrock (1960), and a 4-variable function similar to
the Rosenbrock function. The Rosenbrock function is a
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TaBLE 4. OpTIMIZATION OF ROSENBROCK FUNCTION AND 4-VARIABLE Rosensrock TypE FuncTioN

Rosenbrock function ROl = — Y = — 100(X;2 — X22)2 — (X; — 1)2
4-Variable Rosenbrock-Type function ROl = — Y = — 100(X;2 = X22)2 — (X1 — 1)2 — 20(X3?2 — X2)2 — (X5 — 1)2
Optimum No.
Run Object func. Start point Z(1) Z(2) Z(3) Z(4) trials Comparison
15 Rosenbrock  X; = —2 4 42(1) Z{1) =02, X; = —1.2 Rosenbrock 200
ACC = 0.001 Xy = ~2 + 4Z(2) Z(2) = 075, Xy = 1 —0.001 0.744 0.256 — — 127 more accurate
Exact solution 0.75 0.25 or 0.75
16 Rosenbrock X; = —2 + 4Z(1) Z{1) =02, X; = —12 Rosenbrock 200
ACC = 0.001 X» = 4Z(2) Z(2) =025 X, =1 0.000 0.755 0.235 _— — 243 more accurate
Exact solution 0.75 0.25
17 Same as 16 Rosenbrock 200
ACC = 0.0005 3.000 0.751 0.252 — — 260 same accuracy
18 4-Var. Rosenbrock Z(1) = 2(3) =025 0.000 0.508 0.507 0.508 0.498 290
Ny = 2Z(1) Xo = 2Z(2) Z(2) =Z(4) =075
X3 = 2Z(3) X4 = 2Z(4) Exact solution 0.3 0.5 0.5 0.5
19 4-Var. Rosenbrock
Xy = 22(4) Xo = 2Z(2) 2(1) = Z(2) = 0.75 —0.001 0.501 0.493 0.494 0.494 261
Xy = 22(3) Xy = 2Z(1) Z(3) = Z(4) = 0.5
20 4-Var. Rosenbrock
Xy = 2Z(4) Xo = 2Z(3) 2(1) = Z(3) = 075 0.000 0.495 0.495 0.495 0.501 258
Xa = 2Z(2) Xy = 2Z(1) 2(2) = 7(4) = 0.25
sharp ridge following two parabolas symmetrical about T,V, Ve, Zg1, Zxs, Zgs = variables in Williams-
the x; axis, through the 0,0 point with a minimum of 0 at Otto plant calculation, four of which are inde-
% = 1, % = 1 orx; =1, xp = —1. The ridge is very pendent
sharp and it was found that accuracy limits had to be K = constant
small to locate the ridge sufficiently for this method to be Py = independent process variable
consistent. The Rosenbrock function and the 4-variable R; = ratio of a change in Z)m to the change in an-
Rosenbrock type function are given in Table 4. other variable
The starting point used by Rosenbrock is the x; =  ROI =retwrn on investment, objective function to be

—1.2, x, = 1 point, To follow the ridge to the optimum,
the search must proceed down the parabola approximately
to x; = xp = 0, then up the parabola to x; = x, = 1.0, or

down the mirror image parabola to x; = 1, x = ~1.
Run number 15 shows that if x, can be negative, the
search using this method, with ROI = —y, proceeds to

the 1, —1 point in 127 iterations. However, Rosenbrock’s
method located the optimum at 1,1 so the relation of x; to
Z(5) was changed to eliminate negative x, values in run
number 16. In this run the search proceeded to near 0,0
and then up to 1,1 in 243 iterations. Rosenbrock’s method
located the optimum more accurately in 200 iterations.
Thus this function can be adequately optimized without
an excessive number of iterations. If desired, it could pro-
vide additional information on the effect of the variables.

Table 4 shows that the actual accuracy of this method
is not equal to the desired accuracy ACC used in the pro-
gram. Thus ACC should only be considered as approxi-
mately the desired accuracy and should be programmed
somewhat smaller than desired.

A 4-variable function similar to Rosenbrock’s was used
to test the effect of interaction among variables. As can be
seen by inspection x; and x, are highly interacting, while
%1 and x; moderately interact, and there is no interaction
between x4 and other variables.

Runs number 18, 19, and 20 show the effects of chang-
ing the order in which the variables are optimized. By
inspection, there appears to be a slight benefit in associat-
ing the initially optimized variables with the least inter-
active process variables. It should be noted that although
this 4-variable optimization required only a few more
iterations than the 2-variable optimization, the difference
in starting points makes comparison invalid.

This program has been used successfully by senior
classes for optimizing a 3-variable vapor recompression
evaporator and a 2-variable recovery heat exchanger, and
4 variables of the 1967 AIChE contest problem.

NOTATION

ACC = accuracy limits for partial optimum location
F4, Fp, Fp, Fg, Fr, Fra, Fry, Frc, Fre, Frp, PHI, SALE,

Page 1160 November, 1974

maximized, or -objective function to be minimized
xy, x3 = dependent variables in Williams-Otto plant and
independent variables in Rosenbrock function
X3 = dependent variable in Williams-Otto plant and
independent variable in 4-variable Rosenbrock
type function
x4 = independent variable in 4-variable Rosenbrock
type function
= independent variable number j, limited to a
range of 0 to 1.0, used to define independent
process or objective function variables
Z(5ym = optimum value of Z(j) under certain conditions

Z)
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