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Oy° = infinitely dilute   ;· with species j dilute
a¡j* = ideal al; defined by eq 12
B = coefficient in eq 1

D = self-diffusion coefficient
Dij = binary mutual diffusivity
D¡j° = infinitely dilute Di; with species j dilute
F = self-friction coefficient
F¡j = multi-component friction coefficient
K = constant in eq 2
R = gas constant
S = pure liquid transport group, eq 5

S,j = mixture transport group, eq 8
T = absolute temperature
Tc = critical temperature
Tr = reduced temperature, T/Tc
V = molar volume
Vc = critical volume
Vq = ultimate volume
X = mole fraction

Greek Letters
a = activity coefficient
ß = thermodynamic factor = 1 + d In a/d In X
y = thermodynamic correction factor
  = viscosity

  = reduced mole fraction, eq 16
  = fluidity = 1/ 
  = ultimate volume function, eq 13
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Mass Transfer in Dispersed and Continuous Phases for Creeping
Flow of Fluid Spheres through Power Law Fluids

Türker Gürkan and Robert M. Wellek*

Department of Chemical Engineering, University of Missouri—Rolla, Rolla, Missouri 65401

The diffusion equation was numerically solved by an implicit finite-difference method for the purpose of calcu-
lating the continuous phase Sherwood number, Sh, for mass transfer from an internally circulating Newtonian
droplet traveling through a non-Newtonian power-law-type continuous phase in the creeping flow regime. The
Mohan stream functions were used in the calculations in order to approximate the velocity profile inside and
outside the droplet. The calculated Sh is presented as a function of the Peclet number, Pe, power-law index, n,
and a viscosity ratio parameter, X. Sh increases as n decreases in the pseudoplastic region. The dependence
of Sh on n is important when Pe is greater than 102, except when both X > 1 and Pe > 104. When used with
the Mohan stream functions, the Baird and Hamielec short-range diffusion equation provides a close approxi-
mation for Sh when X < 3, provided that Pe > 104. The mass transfer model for the dispersed phase was also
numerically solved in order to determine the effect of continuous phase pseudoplasticity, n. Although a slight in-
crease in the total amount of mass transferred, Amt, with a decrease in n was determined, it is concluded that
the power-law behavior in the continuous phase does not affect to any appreciable extent the internal mass
transfer, either with or without chemical reaction in the fluid sphere. Amt increases with decreasing X, and this
dependency is particularly important when mass transfer occurs with chemical reaction in the dispersed phase.

Introduction

Mass transfer from bubbles and drops for which both the
continuous and dispersed phases are Newtonian in charac-
ter has been extensively investigated because of its impor-
tance in chemical engineering processes. Recently, more at-
tention has been given to the case in which the continuous
phase is non-Newtonian. The types of non-Newtonian
phases that are encountered in industrial operations are:

polymer melts and solutions, such as rubber in toluene; lu-
brication oils; cellulose esters in organic solvents; elasto-
mers; emulsions; paints; food products, such as apple sauce

and ketchup; liquid sludge in activated sludge processes;
and fermentation broth for penicillin production. Many of
these systems require purifying operations in which inter-

phase mass transfer is important. In some cases, one of the
phases is dispersed.

The problem of mass transfer from bubbles in non-New-
tonian fluids was studied experimentally by Calderbank
(1967), Barnett et al. (1966), and Calderbank et al. (1970).
Wellek et al. (1975) and Ramanan (1973) experimentally
studied mass transfer from liquid droplets in non-Newto-
nian fluids.

Theoretical studies of mass transfer to dispersed phases
in non-Newtonian systems have also been made. Shirotsu-
ka and Kawase (1973) used their own approximate stream
functions to describe unsteady-state mass transfer to fluid
spheres in non-Newtonian systems at high Reynolds num-

bers for both the dispersed and the continuous phases.
Dang et al. (1972) considered the case of unsteady-state
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continuous phase mass transfer when there is a chemical
reaction between bubbles and slightly non-Newtonian liq-
uids at low Reynolds numbers. Ramanan (1973) extended
the boundary layer analyses of earlier workers (Griffith,
1960) to cases in which the continuous phase is non-Newto-
nian, and he obtained relationships describing the continu-
ous phase mass transfer coefficient.

Hirose and Moo-Young (1969) developed a theoretical
relation, which describes the continuous phase mass trans-
fer mechanism for a fully circulating gas bubble that moves

in the creeping flow regime through a non-Newtonian liq-
uid continuous phase described by the power-law rheologi-
cal model. Wellek and Huang (1970) numerically solved the
diffusion equation for the purpose of calculating the con-
tinuous phase mass transfer coefficient for creeping flow of
a Newtonian type gas bubble or liquid droplet in a power-
law type, non-Newtonian fluid. In order to consider the
wide range of fluid sphere to continuous phase viscosities,
Wellek and Huang used the Nakano and Tien (1968) con-
tinuous phase stream functions.

In order to estimate fluid sphere drag coefficients more

accurately, Mohan (1974) recently reconsidered the case in
which a power-law fluid moves over a Newtonian sphere in
the creeping flow regime. In the process, he established a

new set of stream functions, which take into account the
energy dissipation in both the continuous and dispersed
phases. This is in contrast to Nakano and Tien (1968) who
in their analyses had neglected the dispersed phase energy
dissipation. Mohan’s primary intention was to evaluate the
true upper bound on sphere drag. A comparison of Mohan’s
results with those of Nakano and Tien show that the upper
bound on drag calculated by Mohan is significantly lower,
especially when values of the relative viscosity ratio param-
eter are approximately near unity. The comparison
suggests that the use of the Nakano and Tien stream func-
tions may produce errors in liquid-liquid extraction mass
transfer studies.

A considerable quantity of experimental and theoretical
studies involving mass transfer that occurs with and with-
out chemical reaction inside single droplets and gas bub-
bles when both the dispersed and continuous phases are

Newtonian has been published. Johns and Beckmann
(1966) solved the diffusion equation for the purpose of cal-
culating the amount of mass transfer inside fluid droplets.
Wellek et al. (1970) and Watada et al. (1970) calculated the
rate of mass transfer when a first-order chemical reaction
occurs inside fluid spheres. Brunson and Wellek (1971)
solved the problem of mass transfer that is accompanied by
a second-order chemical reaction inside fluid spheres. No
study which attempts to predict the effect of the non-New-
tonian continuous phase on the dispersed phase mass

transfer mechanism has been published.
The objectives of the present work are (1) to use the con-

tinuous phase stream functions of Mohan (1974) with the
diffusion equation to obtain more accurate continuous
phase mass transfer coefficients for a power-law type non-

Newtonian continuous phase flowing over a Newtonian
fluid sphere in the creeping flow regime, (2) to compare the
mass transfer coefficients obtained by using the Mohan
continuous phase stream functions to those obtained by
using the Nakano and Tien (1968) stream functions, and
(3) to determine the effect of a non-Newtonian continuous
phase on the dispersed phase mass transfer mechanism
when the dispersed phase is Newtonian.

Continuous Phase Mass Transfer Studies
Mass Transfer Model. The mathematical model for

mass transfer to spherical droplets or bubbles moving in

the creeping flow regime is described by the following di-
mensionless partial differential equation and boundary
conditions; spherical coordinates with the origin at the cen-
ter of the sphere are used

y £^a _j_
^6 sCa

_

2  s2Ca +
2 áCAl

y
ay y ad Pe L ay2 y ay J

(1)

The boundary conditions are

CA = 0 at y = 1 (2a)

CA = 1 aty -*  (2b)

—^ = 0 at   = 0
a6

(2c)

The following assumptions are made. (1) The flow is axially
symmetric and isothermal, and steady state has been
reached. (2) The dispersed phase is a Newtonian fluid,
whereas the continuous phase obeys a power-law model, i.e.

Tj‘ = — µ / (for dispersed phase)

,· r. /I \(n-l)/2
T>

— A Akm Akm)  / (for continuous phase)

(3) The natural convection, the molecular diffusion in the
angular direction, and the resistance to mass transfer in-
side the sphere are negligible. (4) The solute concentration
is dilute, and the solute diffusivity and density of both
phases are constant.

To complete the description of the forced-convection
mass transfer model, the velocity components, Ve and Vy,
have to be specified. The following continuous phase veloc-
ity components are derived from the Mohan (1974) stream
functions

Vy = (—1 + 2A1ya~2 + 2A2y-3) cos   (3a)

Ve = (1 -      ~2 + A¿y~3) sin   (3b)

The coefficients, A\ and A2, and the exponent,  , are
tabulated for different values of the flow behavior index, n,
and a viscosity ratio parameter, X, which is defined in eq 4
as

These coefficients were chosen by Mohan so that for the
Newtonian case,   = 1, the Mohan stream functions would
become identical with the Hadamard (1911) stream func-
tions for continuous and dispersed phase Newtonian fluids.

The velocity components based on the Nakano and Tien
(1968) stream functions are used in this work in order to
reexamine the accuracy of the earlier work of Wellek and
Huang (1970). The components given by Wellek and
Huang are

Vy = (—1 + 2Fiyy~2 + 2F2>’~3) cos   +

(Eiy~2 + E2y~4)(2 cos2   — sin2  ) (5a)

Ve = (1 — Fiyyy~2 + F^y-3) sin   +

(Eiy-3 + 2Ezy~4) cos   sin   (5b)

By using eq 3a and 3b, the boundary value problem con-

taining eq 1 and 2 can be solved numerically for the solute
concentration profiles in the continuous phase around the
bubble or droplet. The continuous phase Sherwood number
is then calculated as

Sh = ^= C (—) sinSdfl (6)D Jo \ dy />- = i

in which kc is the average of the local mass transfer coeffi-
cients over the entire outer surface of the sphere. As al-
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ready indicated, eq 5a and 5b are used with the boundary
value problem described by eq 1 and 2. The details of the
numerical solution of the boundary value problems in
which the Crank-Nicolson (1947) implicit numerical meth-
od is used are given by Wellek and Huang (1970) and by
Gürkan (1976).

When Mohan’s (1974) continuous phase velocity profiles
are inserted into the following short-range diffusion equa-
tion of Baird and Hamielec (1962)

[2
r* "| 1/2

-FeJo (Vfl)y=i sin2   dfl
J

(7)

the following expression is obtained for the continuous
phase Sherwood number

Sh = V—   -     +A2)1/2Pe1/2 (8)
3tt

The above equation is theoretically applicable only for
fully circulating gas bubbles and liquid droplets; however,
we have determined to what extent this restriction can be
relaxed for moderately large values of the viscosity ratio
parameter, X.

Results and Discussion
The boundary value problem represented by eq 1 and 2

for the forced-convective mass transfer system was solved
numerically for various values of Peclet numbers ranging
between 1 and 106. The results are presented in terms of
Sherwood numbers as a function of the Peclet number, the
continuous phase flow behavior index, n, and the viscosity
ratio parameter, X. The coefficients of the stream func-
tions were presented by Mohan (1974) for discrete values of
X and n, ranging from 0.001 to 1000 and 0.6 to 1.0, respec-
tively. The values of the coefficients of the Mohan stream
functions are presented in Table III. (See the paragraph at
the end of the paper regarding supplementary material.)

Prior to obtaining the final numerical solution of the
mathematical model, the number of radial and angular in-
crements and the size of the radial and angular increments,
Ay, and A9 had to be determined. The number of radial in-
crements was set at a value of 16. Angular increments of 2°
were found suitable. A reduction of the angular increment
by a factor of 2 did not result in a significant change in the
calculated values of the Sherwood numbers.

As expected, we observed that as the Peclet number in-
creases the concentration boundary layer becomes thinner.
This necessitated the determination of a specific value of
Ay for each value of the Peclet number. At each Peclet
number, several values of Ay were used to calculate the
Sherwood number at a certain set of values of X and n. An
analysis of the results indicated that the calculated Sher-
wood number is a minimum at a certain value of the radial
increment size, and the Sherwood number steadily in-
creases for larger or smaller values of Ay. This value of Ay
gives, in practically all cases, the most reasonable concen-
tration profile. That is, only at this value of Ay, the concen-
tration at the grid point farthest from the drop surface
reaches a value of unity for   equal to zero, which is the
front stagnation point. Of course, at higher values of Ay the
same condition is also met, but in these cases, the concen-
tration profile is greatly suppressed. For smaller values of
Ay, the round-off error associated with the finite-differ-
ences numerical method probably becomes more important
as indicated by a sharp increase in the value of Sh. For
larger values of Ay, the truncation error probably becomes
more important as indicated by a gradual increase in values
of Sh, the continuous phase Sherwood number. Therefore
in our judgment, the minimal value of the Sh corresponds

to the minimum total computational error, and the corre-

sponding value of Ay can be used for other values of X and
n. The values of Ay that we used are presented in Table IV
for each value of the droplet Peclet number. (See the para-
graph at the end of the paper regarding supplementary ma-

terial.)
The Mohan (1974) stream functions are applicable to ei-

ther spherical liquid droplets or gas bubbles, which travel
in the creeping flow regime through a non-Newtonian con-

tinuous phase described by a power-law type constitutive
equation. The average continuous phase Sherwood number
(kc2a/D) was calculated as a function of the sphere Peclet
number, Pe, the power-law flow behavior index, n, and the
viscosity ratio parameter, X. (See Table V in the supple-
mentary material.) Mass transfer results, which use the
Mohan (1974) stream functions, are presented as a function
of Pe in Figure 1 for values of n equal to 1.0, 0.8, and 0.6,
respectively. Four values of the viscosity ratio parameter,
X = UdlK)(a/Va>)n~l, are employed: 0.001, 1.0, 10, and
1000. The Sherwood number relations are also presented in
Figure 2 in order to describe more clearly the effect of the
viscosity ratio parameter, X, and the power-law index, n.

As can be seen in Figure 1, the Sherwood number in-
creases as the Peclet number increases for both non-New-
tonian and Newtonian continuous phases. The droplet
mass transfer rates are less dependent on the Peclet num-

ber when it is less than about 102.
The effect of the power-law index, n, on mass transfer in

the continuous phase becomes important when the Peclet
number is greater than about 100. As n decreases from
unity, the Sherwood number increases; i.e., increased pseu-
doplasticity results in an enhancement of mass transfer
when all other variables are held constant. Although the
dependence of the Sherwood number on n is important for
Peclet numbers larger than 102, this dependence becomes
smaller as the viscosity ratio parameter becomes larger
than unity. The region in which the variation of Sh with n

is important for all values of X occurs for Peclet numbers
around 100. For X =a 0.001, the dependence of Sh on n

seems to be nonlinear. For example, about two-thirds of
the increase in the value of the Sherwood number occurs

when n decreases from 1.0 to 0.80.
The dependency of the continuous phase Sherwood

number on the viscosity ratio parameter, X, is noticeable
when Pe t 5, and the effect is very pronounced when the
Peclet number is greater than about 100. As can be seen in
Figure 2, the Sherwood number is most sensitive to changes
of X for values of the viscosity ratio parameter between 0.1
and 10.0. The effect of the viscosity ratio parameter asymp-
totically diminishes as X approaches either 0.001 or 1000.
These asymptotes reflect the behavior of the “fully” circu-
lating and the slightly circulating droplet systems, respec-
tively.

Although it is expected that the Mohan (1974) stream
functions are superior to those of Nakano and Tien (1968),
the earlier calculations of Wellek and Huang (1970) and
Hirose and Moo-Young (1969) were reexamined. These re-
sults are then compared with the results presented above.

Hirose and Moo-Young (1969), in a study of drag and
mass transfer characteristics of a spherical gas bubble mov-

ing in creeping flow through a power-law non-Newtonian
fluid, derived the following continuous phase velocity com-

ponents

6n(n — 1)

(2n + 1)

1
y + -

6

1

6 (9a)
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Figure 1. Sherwood number as a function of the Peclet number
and the viscosity ratio parameter, based on Mohan (1974) stream
functions, (a)   = 1.0; (b)   = 0.8; (c)   = 0.6.

3n(n — 1)

(2n + 1) Ly
sin   (9b)

Figure 2. Effect of the viscosity ratio parameter X on Sherwood
number for representative values of power-law index, n, and Pe,
based on Mohan (1974) stream functions.

In their derivation of the above relations, it was assumed
that the gas phase can be regarded as inviscid relative to
the external liquid phase (i.e., X ca 0) and that the devia-
tion from Newtonian behavior is small. Upon application of
Baird and Hamielec’s (1962) relation for short-range diffu-
sion from fully circulating spherical bubbles, Hirose and
Moo-Young obtained the following relation between the
Sherwood number, Peclet number, and power-law index, n

Sh = 0.65  1 -

4n(n ~

4)11/2Pe1/2 (10)
L (2n + 1) J

The viscosity ratio parameter, X, is not considered in the
above derivation. Hence, situations in which the dispersed
phase viscosity is not negligible compared with the contin-
uous phase non-Newtonian fluid will probably not be prop-
erly described by eq 10, as for example, in the case of liq-
uid-liquid extraction.

Wellek and Huang (1970) numerically solved the bound-
ary value problem (eq 1 and 2 of this work) by using the
Nakano and Tien (1968) stream functions. Their results
agree with those of Hirose and Moo-Young (1969) up to a

Peclet number of about 5 X (10)3 for very small values of
the viscosity ratio parameter (X 0.001). However, for
higher values of the Peclet numbers, their results are con-

sistently lower than the results of Hirose and Moo-Young.
They were unable to determine the reason for the deviation
at high Peclet numbers. Moo-Young and Hirose (1972)
later showed that the Sherwood number expression, which
they had developed by use of the thin-boundary-layer ap-
proximation, for bubbles in power-law non-Newtonian
fluids (i.e., eq 10) gives the minimum value for the Sher-
wood number.

We have determined that the relatively large values of
the radial increment size used by Wellek and Huang (1970)
probably account for the previously observed deviation, at
higher Peclet numbers, between their work and that of Hir-
ose and Moo-Young (1969). At higher Peclet numbers, the
concentration gradient near the drop’s surface is very
steep. Wellek and Huang (1970) used a linear approxima-
tion to calculate the concentration gradient at the inter-
face. This linear approximation, coupled with a large radial
increment size, underestimated the continuous phase con-

centration gradient at the surface and, thus, underestimat-
ed the Sherwood number. In the present work, smaller
values for the radial increment sizes have been used, and
the concentration profile has been approximated by a sec-

ond order curve-fit near the interface. The derivative of
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Table I. Comparison of the Numerical Results Obtained by
Using Mohan Stream Functions with the Results Using
Nakano and Tien Stream Functions

X n

(Sh)NT /(Sh)M
Pe = 1 Pe = 102 Pe = 104 Pe = 106

0.001 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0

10.0 1.0 1.0 1.0 1.0 1.0
0.001 0.9 1.00158 1.02663 1.05629 1.3076
1.0 0.9 1.00381 1.06826 1.09418 1.09816

10.0 0.9 1.00081 1.01455 1.00960 1.00544
0.001 0.8 1.00033 1.00482 1.00594 1.00606
1.0 0.8 1.00581 1.09911 1.16010 1.47089

10.0 0.8 1.00249 1.04169 1.03727 1.07750
0.001 0.7 1.00164 1.02345 1.02875 1.02931
1.0 0.7 1.00491 1.07994 1.10778 1.11184

10.0 0.7 1.00230 1.03739 1.03410 1.01991
0.001 0.6 1.00257 1.03620 1.02633 0.85336
1.0 0.6 1.00276 1.04220 1.05345 1.05469

10.0 0.6 1.00303 1.04841 1.04454 1.02372

this second-order curve was determined at the interface,
and this derivative has in turn been used to calculate the
Sherwood number. These corrected results are denoted as

(Sh)iyT in the following comparison of results for continu-
ous phase Sherwood numbers for which different stream
functions are used.

The present results in which the stream functions of
Mohan (1974) have been used are compared with those of
Hirose and Moo-Young (1969) for circulating gas bubbles
(see Figure 3). As can be seen in the figure, the Hirose and
Moo-Young results are consistently lower, and the two
curves approach each other at higher Peclet numbers as ex-

pected.
A comparison of the Sherwood numbers obtained by

using the Mohan (1974) and the Nakano and Tien (1968)
velocity profiles is shown in Table I for different values of
X, n, and Pe. Both of these velocity profiles were originally
derived so that they would converge with the Hadamard
(1911) velocity profiles for n equal to unity. Thus, a value
of unity for SIint/SIim is expected for n equal to unity; this
was obtained. As already pointed out, Mohan’s analysis in-
cludes the internal circulation effects; thus, one should ex-

pect lower Sherwood numbers when his velocity profiles
are used. It can be seen in Table I that this is always true,
except at one point (Pe =   6; X = 0.001;   = 0.6) where we

have reason to believe that the Nakano and Tien (1968)
stream functions are in error. It is seen in Table I that the
differences in continuous phase Sherwood numbers can be
quite important at higher Peclet numbers. The results we
obtained by using the Mohan velocity profiles are smoother
than those obtained with the Nakano and Tien stream
functions. At every value of the Peclet number, when the
value of n decreased, the value of the Sherwood number in-
creased. This is an expected trend and is confirmed by sev-
eral workers (Hirose and Moo-Young, 1969; Ramanan,
1973).

Detailed analysis of the results indicates that as X in-
creases the differences with respect to n decrease, especial-
ly at high Peclet numbers. This condition can best be seen
in Figure 2. One can observe that as the Peclet number in-
creases the concentration boundary layer becomes thinner.
The concentration gradient becomes restricted to a very
small distance from the drop’s surface, and the degree of
mobility of the interface becomes a major factor. The inter-
face mobility effect becomes so important that the varia-
tion with n is not detectable at higher Peclet numbers, par-
ticularly when the viscosity ratio parameter, X, is larger
than 10.

It should be recalled that in this analysis molecular dif-

Figure 3. Effect of non-Newtonian behavior on mass transfer from
circulating gas bubbles. Comparison of present work with Hirose
and Moo-Young (1969) results.

Figure 4. Effect of the viscosity ratio parameter X on Sherwood
number. Comparison with eq 8,   = 0.8.

fusion in the angular direction has been neglected. The im-
portance of diffusion in the angular direction increases as

Pe approaches a value of unity. For example, if one com-

pares the value of Sh predicted in this work (at Pe = 1 and
n = 1) with those values obtained by Yuge (1956), Woo and
Hamielec (1971), Dennis et al. (1973), and Oellrich et al.
(1973), who have taken into account the effect of the angu-
lar diffusion component, the analysis in this work is found
to overestimate Sh by about 9%. However, this effect rapid-
ly loses its importance for Peclet numbers equal to or

greater than 10.
Equation 8, which we developed primarily for fully circu-

lating gas bubbles and liquid droplets, was examined to de-
termine its usefulness at higher values of the viscosity ratio
parameter, X. A comparison of the results obtained by eq 8
with the results of the boundary value problem is shown in
Figure 4 for n - 0.8 and Peclet numbers larger than 102.
This figure is representative of results obtained for the
other values of n that have been used in this work. Figure 4
indicates that although eq 8 has been derived for fully cir-
culating gas bubbles and liquid droplets (X < 0.01) it can
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be safely used for X values up to about 3, provided Peclet
numbers are larger than about 104. The mass transfer rate
in the continuous phase can be estimated with eq 8 for dif-
ferent values of X and n, if the coefficients Ai, A2, and  

are correlated as a function of X and n.

Wellek and Huang (1970) compared their results with
other works when the continuous phase is Newtonian.
They concluded that their results agree well with the vari-
ous solutions of previous workers up to Peclet numbers of
about 103 and that they were lower than the results of other
studies for Peclet numbers greater than 1Ó3. However, the
results obtained in the present work compare favorably
with the results of previous workers, all of whom used
boundary layer analyses, and the values of the Sherwood
numbers obtained are higher than those of other workers
even at Peclet numbers of 104. We conclude that the dis-
crepancy between the Wellek and Huang results and the
boundary layer analyses presented in the literature for the
Newtonian continuous phase when the Peclet numbers are

around 104 occurred because of the reasons which were
found to be applicable in the discussion of the discrepancy
between the Hirose and Moo-Young (1969) results and the
Wellek and Huang results when the continuous phase is
non-Newtonian. Therefore, the results of the present work,
which are an improvement over the Wellek and Huang re-

sults especially for higher Peclet numbers, can be used to
calculate the continuous phase mass transfer coefficient
when the flow behavior is either Newtonian or non-Newto-
nian.

Dispersed Phase Mass Transfer Studies
Mass Transfer Model. The mathematical model for

mass transfer with second-order chemical reaction inside a

circulating fluid sphere which travels in the creeping flow
regime can be described by the following dimensionless dif-
ferential equations and initial and boundary conditions

aCA
_

32Ca 2 aCA 1 a2CA cot 0 aCA
aT ay2 y ay y2 802 y2 80

Pe ZVy + Yi^£a\ _ kuCACB (11a)
2 X

'

ay y ad )
aC%

_ |~82Cb
2 aCs 1 82CB cotflaCel

aT D
L ay2 y ay y2 802 y2 ay J

^ Pe   Vy + — —^1 — Pc^rCaCb (12a)
2 L ay y ad J

The initial conditions are

CA(O,y,0) = 0 (lib)
CB(O,y,0) = 1 (12b)

and the boundary conditions are

— (T,O,0)=O (11c)
ay

— (T,O,0) = 0 (12c)
ay

CA(T, 1,0) = 1 (lid)
— (T,1,0) = O (12d)
ay

— (T,y,0) = 0 (He)
80

— (T,y,0) = 0 (12e)
80

^%(7>, ) = 0 (Ilf)
80

—^(T,y,7r) = 0 (12f)
du

The following assumptions are made. (1) All solutions are

dilute so that the flow and diffusion equations are uncou-

pled. (2) The dispersed phase is a viscous sphere in linear
or creeping motion. (3) The continuous phase resistance to
solute diffusion is negligible. (4) Heat of reaction is low
enough so that heat effects do not cause variations in any
of the physical properties of the solutions. (5) The dis-
persed phase is a Newtonian fluid, whereas the continuous
phase obeys a power-law model.

To complete the description of the model, the velocity
components, Ve and Vy, were derived for the present work
from the Mohan (1974) stream functions

Vy = 2Ki(y2 — 1) cos 0 (13a)

Ve = 2Ki(l - 2y2) sin 0 (13b)

Equations 11 and 12 were solved by an explicit finite-dif-
ference numerical method. The numerical technique used
is similar to that used by Brunson and Wellek (1971), and
details concerning the method are contained in that refer-
ence and in Gürkan (1976).

Results and Discussion
Equations 11a and 12a were numerically solved with the

initial and boundary conditions given in eq 1 lb—f and
12b-f. The total amount of mass transferred, Amt, was cal-
culated as a function of the time of contact, T,  , X, Pe,
Rd, Rc, and *r. For most computer solutions of the finite
difference equations, the increments used were AT = 2 X
10~4, Ay = y40, and  0 =  /31. To perform calculations for
Peclet numbers as high as 1000, the angular and radial in-
crements were kept as originally stated, and the dimension-
less time increment was reduced to 5 X 10~°.

When the reaction number is 0 and the flow behavior
index is 1, the solution reduces to mass transfer without
chemical reaction for a Newtonian continuous phase as

presented by Johns and Beckmann (1966). This reference
solution was used as a check for the computer program of
this section.

The ranges of the variables considered in the study are

given in Table II. The complete results of the computations
are given by Gürkan (1976). Because the dependence of
Amt on variables Pe, Rr>, Rc, and /ír is discussed in detail
in an earlier study (Brunson and Wellek, 1971), the discus-
sion will not be repeated here.

The main objective of this portion of the present investi-
gation was to determine the effects of the continuous phase
flow behavior index, n, and the viscosity ratio parameter,
X, on the dispersed phase mass transfer mechanism. Typi-
cal results showing these effects are given in Figure 5 and
Figure 6. Figure 5 indicates that the variation of Amt with n

is a function of the dimensionless second-order reaction
rate constant, &r. The maximum variation of Amt with n

occurs when /?r has a value of about 40. This is the region
where both the diffusion effects and the chemical reaction
effects are important. Figure 5 shows that a decrease in the
value of the flow behavior index, n (increased pseudoplasti-
city in the continuous phase), results in an increase in the
total amount of mass transferred, Amt, when all other vari-
ables are held constant. Figure 6 indicates that the varia-
tion of Amt with X is also a function of &r. In this case,
however, the variation of Amt with X is important for
values of &r > 0. Figure 6 clearly shows that as the viscosi-
ty ratio parameter decreases the total amount of mass

transferred, Amt, increases when all other variables are held
constant.
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Table II. Values of Variables Used for The Dispersed Phase
Mass Transfer Studies

Rn 1.0
Rc 0.2
n 0.6 0.9 1.0
X 0.001 1.0 10
Pe 1 400 800 1000
kR 0 40 160 640

The results of the calculations indicate that the maxi-
mum variation of Amt with n occurs for Peclet numbers of
about 400 and also for X values around unity when &r
values are about 40. The variation of Amt with n was very
much suppressed for X values of 10 except when the sec-

ond-order reaction constant &r values were around 640. It
was not possible to go to values of the Peclet number high-
er than 1000 for X < 1 because of instability problems in
the computer calculations.

The results of the calculations revealed that the total
amount of mass transferred, Amt, inside the droplet varies
very little with the continuous phase flow behavior index,
n, for all combinations of the variables studied. The effect
of the viscosity ratio parameter, X, on the total amount of
mass transferred is important, however, except for the case

of mass transfer without chemical reaction, kn = 0. It
should be stressed that these results are based on the as-

sumption of the validity of the Mohan (1974) stream func-
tions.

It should be noted that when the value of the second-
order reaction rate constant, kn, is set equal to zero the
problem reduces to mass transfer without chemical reac-

tion inside the droplet. The results of the solution for &r =

0 can be used to calculate the total amount of mass trans-
ferred in the case of mass transfer with a first-order chemi-
cal reaction when the superposition method (Danckwerts,
1951; Stewart, 1968; Wellek et al., 1970) is used. Therefore,
the conclusion that the effect of the continuous phase non-

Newtonian behavior on the dispersed phase mass transfer
mechanism is insignificant is general, and it covers mass

transfer and mass transfer with first- and second-order re-

action inside the droplet.

Conclusions
The analysis of mass transfer rates in the pseudoplastic

continuous phase leads to the following conclusions.
(1) The Sherwood number, Sh, calculated using the

Mohan (1974) stream functions, increases as the power-law
flow behavior index, n, decreases in the pseudoplastic re-

gion. Although the dependence of Sh on n is important for
sphere Peclet numbers, Pe, larger than 102, this depen-
dence becomes smaller as the viscosity ratio parameter, X,
becomes larger than unity for Pe > 104. The variation of Sh
with n is important for all values of X when Pe has values
around 100.

(2) Mohan’s stream functions are found to be more reli-
able than those of Nakano and Tien (1968).

(3) The application of the short-range diffusion equa-
tion presented by Baird and Hamielec (1962) is shown to
be useful not only at very low values of X, but also for
values of X as high as about 3, if the Peclet numbers are

larger than about 104.
The following may be concluded for mass transfer inside

the Newtonian fluid sphere based upon the application of
the Mohan stream functions.

(1) The total amount of mass transfer in the dispersed
phase, Amt, increases slightly with decreases in the continu-
ous phase flow behavior index, when all other variables are
held constant. This suggests that the degree of pseudoplas-

Figure 5. Total mass transferred Amt as a function of dimension-
less time T for parametric values of the continuous phase flow be-
havior index n and the reaction number Hr.

Figure 6. Total mass transferred Amt as a function of dimension-
less time T for parametric values of the viscosity ratio parameter
X and the reaction number Ur.

ticity of the continuous phase does not play an important
role in the dispersed phase mass transfer mechanism.

(2) Amt increases with decreases in the viscosity ratio
parameter, X, when all other variables are held constant.
This dependence becomes particularly important when a
chemical reaction is accompanying mass transfer in the dis-
persed phase.

Acknowledgment
Türker Gürkan thanks the Turkish Scientific and Tech-

nical Research Council for their support in the form of a

NATO Scholarship during this investigation.

Nomenclature
a = spherical radius of dispersed phase, cm

A, = coefficients in eq 3a and 3b
Amt = total mass transferred, dimensionless
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ca = concentration of component A, mol/1.
cb = concentration of component B, mol/1.
Ca = concentration of component A, ca/cas, for the dis-
persed· phase and ca/ca» for the continuous phase, dimen-
sionless
Cb = concentration of component B, cb/cbo, dimension-
less
D = diffusivity of solute in the continuous phase, cm2/sec
Da = diffusivity of component A in the dispersed phase,
cm2/sec
Db = diffusivity of component B in the dispersed phase,
cm2/sec
Ei, Fi = coefficients in eq 5a and 5b
kc = continuous phase mass transfer coefficient, cm/sec
ki = second-order reaction constant, l./mol-sec
kji = reaction number, &2<*2cbo/Da, dimensionless
K = consistency index of power-law fluid
Ki = coefficient in eq 13a and 13b, % — (  /2)(  + 1), di-
mensionless
  = flow behavior index
Pe = Peclet number, 2a V„/Da, for dispersed phase and
2a V=oID, for continuous phase, dimensionless
r = radial distance, cm

Rc = concentration ratio, zcas/cbo, dimensionless
Rd = diffusivity ratio, Db/Da, dimensionless
Sh = continuous phase Sherwood number, kc2a/D, di-
mensionless
t = contact time, sec
T = time, DAt'/a2, dimensionless
UT = radial velocity, cm/sec
Ue = tangential velocity, cm/sec
Vy = radial velocity, UJV*,, dimensionless
V$ = tangential velocity, Uo/Va, dimensionless
V«, = relative velocity between sphere and continuous
phase fluid, cm/sec
X = (pd/K)(a/Va,)n~1, viscosity ratio parameter, dimen-
sionless
y = radial displacement from center of sphere, r/a, di-
mensionless
z = stoichiometric coefficient, A + zB —  products
Greek Letters
  = angular displacement from front stagnation point
µ = viscosity, P
p = density, g/cm3
  = exponent in eq 3a and 3b
  = exponent in eq 5a and 5b
Tjl = stress tensor

 / = rate of deformation tensor
Ay = radial increment in finite difference equations
   = angular increment in finite difference equations

Subscripts
A = component A
B = component B
c = continuous phase
d = dispersed phase
  = Mohan
NT = Nakano and Tien
0 = initial
s = surface

= infinity
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Supplementary Material Available: Tables III, IV, and V,
containing data for the mass transfer of bubble flow through
fluids (nine pages). Ordering information is given on any current
masthead page.
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