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An Exa m i nation of the Adaptive 
Random Search Technique 

Random search procedures have recently been successfully applied to 
the optimization of a variety of chemical engineering problems, including 
optimization of chemical processes by flow sheet simulation. These pro- 
cedures represent the independent variables as random variables described 
by probability distributions. The adaptive random search procedure centers 
the distribution for each variable about the best search point found and 
examines this region for a better point. Thus, this technique has the ability 
of continuously moving the search region toward the optimum, which is 
particularly advantageous in following constraints. 

This study examines the efficiency of the adaptive random search tech- 
nique as applied to six different problems, which have been previously 
solved by various other techniques. 
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and 
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SCOPE 
Recently, random search techniques have been applied 

to the optimization of chemical processes (Luus and Jaa- 
kola, 1 9 7 3 ~ ;  Gaines and Gaddy, 1976). A random search 
procedure is characterized by random determination of the 
independent variables in a given search region. Unlike 
many techniques, the random search does not require 
approximations, auxiliary functions, or an extensive knowl- 

edge of the problem under study in order to obtain an 
optimum solution. The success of a random procedure is 
not jeopardized by a nonlinear objective function or non- 
linear implicit constraints. 

The adaptive or pseudo random search selects new 
search points by sampling a probability distribution cen- 
tered about the best known value of the objective func- 
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tion (Gall, 1966). This method was found to have attrac- 
tive constraint following capabilities in an earlier study of 
optimization by flow sheet simulation (Gaines and Gaddy, 
1976). The objective of this study was to evaluate the 
search method by applying it to example Problems which 
had previously been solved by other methods so that a 

direct comparison of efficiency was possible. The examples 
chosen were the  me as those solved by LUUS and Jaakola 
(1973~) using a different random search procedure. Varia- 
tions of the technique and search parameters were studied 
in order to insure good efficiency and reliability while 
maintaining the general applicability to any type of op- 
timizationproblem. 

CONCLUSIONS AND SIGN I FICANCE 
The adaptive random search procedure was found ef- 

fective in solving a variety of optimization problems. As 
expected, the efficiency of the adaptive random technique 
was not always as good as for other methods, for some of 
the example problems. The procedure is reasonably effi- 
cient and very reliable in reaching 0.17' of the global 
optimum, although multiple optima exist in many of the 
examples. Convergence to tighter tolerances such as O . O l ~ o  
of the optimum i s  slow and not recommended. Many of 
the examples were heavily constrained, and the adaptive 
random search was found to be effective in following 
constraints to the optimum. 

Variations such as reducing the search region and 
skewing the probability distribution as the search pro- 
ceeds are effective means of improving both the efficiency 
ot the search and convergence to tight tolerances. The 

number of evaluations of the objective function during 
the search, used as an indication of efficiency, was not 
affected significantly by the choice of starting values for 
the search or by the choice of an initial search region. 

The adaptive random search technique presented herein 
may find wide application in process optimization prob- 
lems. The method is easily programmed and applied on 
the computer, and convergence to 0.1% of the optimum 
can be achieved for many problems with 1 to 5 s of com- 
putation time on an IBM 370/165 computer. Perhaps 
the most promising feature of the method is its good 
reliability, due in part to an ability to effectively handle 
nonlinear constraints. Although not demonstrated in this 
paper, the method is also applicable to problems with 
discrete variables, discontinuous functions, or stochastic 
inputs. 

In recent years, significant strides have been made in 
applying optimization techniques to complicated process 
optimization problems. Optimization of chemical processes 
represents a difficult test for any optimization procedure. 
The relationships involved are almost always nonlinear, 
often discontinuous or discrete, and sometimes even sto- 
chastic. 

In many cases, the success of process optimization 
studies has depended upon modification of the search pro- 
cedure to suit a particular problem (Friedman and Pin- 
der, 1972; Umeda and Ichikawa, 1971) or upon modifica- 
tions (such as linearization) of the problem to suit a 
particular search algorithm (Dibella and Stevens, 1965; 
Sauer et al., 1964). In fact, the application of optimiza- 
tion to industrial problems by the practicing engineer has 
probably been limited by the lack of a general optimiza- 
tion procedure suitable for all problems. 

Several recent studies (Luus and Taakola, 1973~;  
Gaines and Gaddy, 1976; Fan and Mishra, 1974) have 
successfully applied random search procedures to optimi- 
zation of chemical processes. Random search procedures 
represent the independent variables as random and search 
for the optimum by random sampling. Such a procedure 
would appear to be very inefficient and inappropriate by 
comparison with techniques that move in a definite pat- 
tern toward improving an objective function (Himsworth, 
1962). This comparison may be valid for problems that 
exhibit unconstrained and well-behaved surfaces. How- 
ever, a random search has specific advantages for proc- 
ess optimization studies as discussed below. 

One of the foremost difficulties in process optimization 
is the handling of implicit nonlinear constraints. Such 
constraints are responsible for the reported failure of 
many optimization algorithms to successfully converge 
(Keefer, 1973; Friedman and Pinder, 1972; Gaines and 
Gaddy, 1976). Since most search procedures are designed 

to follow a definite pattern in improving the objective 
function, repeated constraint violations occur when a 
constraint is encountered. Without knowledge of the shape 
or location of the constraint, the procedure cannot readily 
follow the constraint to the optimum. The use of penalty 
functions helps this problem with some algorithms (Gott- 
fried et al., 1970; Keefer, 1973), but collapse and fail- 
ure are often the results. 

A random search procedure is not limited to a fixed 
pattern of movement. When a constraint is encountered, 
sampling in the valid region is still probable, and move- 
ment toward the optimum is possible. In the region of a 
constraint, a random move may be more efficient than a 
predetermined or programmed move. 

Random search procedures have other advantages. They 
are easy to program and to apply. Discrete variables 
occur frequently in chemical processes and also in re- 
liability and synthesis problems. Discrete variables can be 
readily accommodated with a random search by sampling 
from a discrete distribution (Briggs and Evans, 1964) or 
by an adjustment in the significant figures of random 
numbers used with continuous distributions. Discontinu- 
ous functions often occur with chemical process equip- 
ment, and discontinuities pose no threat for a random 
sampling procedure. Also, treating the independent vari- 
ables as random variables seems an appropriate approach 
for stochastic optimization problems (Berryman and Him- 
melblau, 1971). Since a broader region is examined by 
random search, this method is more likely to locate the 
global optima than methods that follow a fixed direction 
(Luus and Jaakola, 1 9 7 3 ~ ) .  

The purpose of this paper was to evaluate the prop- 
erties of the adaptive random search technique, proposed 
originally by Gall (1966). The specific objectives were 
to determine the success of this method in solving sev- 
eral different problems and to compare the efficiency 
of this method with other procedures. 
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Fig. 1. Probability distributions of independent variables. 

ADAPTIVE RANDOM SEARCH PROCEDURE 

The adaptive random search procedure, suggested by 
Gall (1966) for multifactor optimization, chooses new 
search points in the vicinity of the best known objective 
function. The basic equation for determining new values 
of the independent variables is 

xi = xi+ + ~ ~ ( 2 8  - i l k  (1) 
The search is conducted by determining new values of 
the independent variables from Equation (1)  and by 
evaluating the objective function. When a value of the 
objective function is found to be better than the last y", 
the xi' are replaced in Equation (1)  with the improved 
values and the search continued, Thus, the adaptive 
random search moves toward the optimum in much the 
same manner as a hill climbing technique. 

The quantity Ri represents the range of allowable posi- 
tive or negative deviations about xi". Since xi is random, 
determined by 8, Equation (1) corresponds to a sto- 
chastic (Monte Carlo) sampling from a probability dis- 
tribution of xi .  This distribution is.centered about xi* and 
is determined by the quantity Ri(28 - l )k.  

Figure 1 shows typical distribution functions of xi. 
The variance of the distributions are seen to be depend- 
ent upon k. A uniform distribution results with k = It, 
and the variance about xi* decreases with increasing k. 
Thus the sampling region can be controlled by the se- 
lection of k and, of course, the range Ri. It  should be 
noted that the independent variable always retains some 
probability of achieving extreme values xi" f Ri, although 
this probability diminishes with increasing k. With an 
exponent larger than one, the probability density is a 
maximum at xi"; consequently, the sampling is concen- 
trated in the region that has produced the best objective 
function. Since the search probability density can be 

With k = 1, this search is similar to the procedure used by Luus 
and Jaakola (1973). 
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shifted as the search proceeds, the method is accurately 
described as a pseudo random search, with an ttxhaustive 
random search performed only when the exponent k is one. 

The search is begun by specifying the range R,, initial 
values of the xiQ, the corresponding value OJ yQ, and 
the exponent k. The steps in the search procedure are 
described as follows: 

1. Obtain a random number 6. 
2. Calculate the value of x, from the Equation (1) .  
3. Check the explicit constraints (maximum and mini- 

mum bounds) of %. If xi exceeds its bounds, return to 
step 1. 

have been generated for each vari- 
able, check the implicit constraints gj. If a constraint 
is violated, return to step 1. 

4. When valid 

5. Evaluate the objective function y. 
6. If the value of the objective function y is not 

better than y", return to step 1. 
7. Replace the xi" with the last x, values arid replace 

yo with the improved y. Continue the search for yeOpt 
with step 1. 
Execution of step 4 is counted as an iteration, and execu- 
tion through step 5 is counted as a function evaluation. 

The strategy of the search is controlled by the choice 
of the exponent k. With no knowledge of the search 
region, the best approach is to start with an exhaustive 
random search and successively narrow the region as 
the optimum is approached. Thus k would generally be 
unity initially, increasing to 3, 5, 7, etc., as rhe search 
proceeds and y* improves. Therefore, the basic strategy 
is to increment k either with the number of iterations 
(step 4) or with the number of improvements in the 
objective function (step 7).  

There is a hazard in this strategy when multiple optima 
are present. If the search region is narrowed too soon, 
convergence to a local optimum may occur. Periodic 
reduction of k would enable the search to move away 
from a local optimum. This procedure would decrease the 
efficiency of the search, however, when local optima are 
not present. A number of strategies were employed and 
are explained later, 

EXAMPLE PROBLEMS 

The six examples used in this study have each been 
solved previously and reported in the literature, most 
recently by Luus and Jaakola ( 1 9 7 3 ~ ) .  Consequently, a 
direct compaiison of results can be made, in sctme cases. 
Since a detailed description of these problems is avail- 
able elsewhere, only a brief description is included here. 

Power Plant Fuel Allocation 
The objective of this problem is to minimize the cost 

of fuel for a power plant. The objective function is non- 
linear, with four independent variables, one equality con- 
straint, and a nonlinear inequality constraint. Hovanes- 
sian and Stout (1963) solved this problem by lineariza- 
tion and the simplex method. 

Concave Programming Problem 
This is a mathematical example with four independ- 

ent (unbounded) variables and three irnplicit inequality 
constraints. This problem was proposed by Rosen and 
Suzuki (1965) as a test for nonlinear programming 
algorithms and has also been solved by Gould (1971). 

Chemical Species Allocation 
The objective of this problem is to minimizo the free 

energy of a mixture of ten gases at equilibrium. resulting 
from the combustion of hydrazine and oxygen. There are 
ten independent variables and three equality constraints. 

AlChE Journal (Vol. 22, No. 4) 
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TABLE 1. OPTIMUM VALUE OF OBJECTIVE FUNCTION FOR EXAMPLE PROBLEMS 

optimum 
Minimum Optimum by reported by 

Example or adaptive Luus and 
No. maximum random Jaakola (1973~) 

Optimum reported 
by another author 

1 
2 
3 

4 
5 
6 

min. 3.0519 
min. -43.999 
min. -47.761 

max. 1162.0 
max. 172.49 
max. 121.53 

White, Johnson, and Danzing (1958) solved this prob- 
lem by steepest descent and sectional linearization, 
Bracken and McCormick (1968) also report solution 
of this example. 

Alkylatbn Process 
The objective of this nonlinear example is to maximize 

the profit from an alkalation process. There are ten inde- 
pendent variables, seven of which can be eliminated by 
equality constraints. This problem was proposed by Payne 
(1958) and has been solved by Sauer et al. (1964) and 
Keefer (1973). 

Drying Process 
Chung (1972) presented this problem, which is con- 

cerned with maximization of the moisture removal rate 
in a dryer. This nonlinear example has only two inde- 
pendent variables but three inequality constraints. 

Williams-Otto Process 
This process model was originally introduced for in- 

vestigation of computer control by Williams and Otto 
(1960) and has been studied extensively by numerous 
investigators, including Dibella and Stevens ( 1965), Adel- 
man and Stevens (1972), and Findley (1974). LUUS 
and Jaakola (197327) showed that not all of the equa- 
tions describing the process are independent; thus there 
are eight equations in thirteen unknowns, leaving five 
independent variables. 

RESULTS AND DISCUSSION 

The first question to be considered in evaluating a new 
optimization technique is whether convergence to the 

Stout, 1963) 3.05 3.17 (Hovanessian and 
-44.0000 -44.03 (Gould, 1971) 
-47.7611 -47.7611 (White, Johnson, and 

1162.009 
172.49 172.5 (Chung, 1972) 
121.534 

Danzig, 1958) 
1162.94 (Sauer et al., 1964) 

121.33 ( Adelman and Stevens, 1972) 

optimum value will be achieved. Table 1 presents the 
results of the optimum objective function for each of 
the six examples found by previous investigations com- 
pared to the results of this study. The optimum values 
found by the adaptive random search procedure are 
essentially the same as those found by the other in- 
vestigators. 

The beginning values of the independent variables 
used in this study were the same as those used by the 
other authors. The values of the independent variables 
at the optimum were nearly identical with those found 
earlier. In example 6, it was found, as previously shown 
by Luus and Jaakola (1973b), that at the optimum the 
values of the independent variables are not uniquely 
determined. 

These results show that the adaptive random search 
procedure is effective in locating the optimum of a variety 
of different problems. 

Efficiency of the Basic Search Method 
The computational requirements to reach the optimum 

are a primary concern in evaluating the effectiveness of 
a search method. The efficiency of a search procedure 
can be best measured by the number of iterations or 
function evaluations required to achieve the optimum. 

Table 2 represents the minimum number of iterations 
and function evaluations to reach 0.1% of the optimum yo 
for each sample (as shown in Table 1) by using the basic 
adaptive random search procedure. I t  should be noted 
that the computational requirements of a random search 
procedure are also random. Therefore, the number of 
iterations and function evaluations varies from one run 
to another, even though the starting points are the same. 

TABLE 2. COMPUTATIONAL REQUIREMENTS OF THE ADAPTIVE RANDOM SEARCH 

Basic adaptive random search 
,(to 0.1% of optimum) 

Min. 
Example Min. function 

No. itera€ions evaluations 

1 820 519 
2 728 353 

3 210 98 
4 342 82 

5 241 120 
6 87 85 

Avg. 
function 

evaluations 

9 533 
3 332 

688 
607 

509 
1819 

Min. 
interations 

280 
310 

132 
331 

22 
100 

Adaptive random search 
with range reduction 

(to 0.1% of optimum) 
Min. 

function 
evaluations 

154 
162 

52 
95 

15 
97 

Avg. 
function 

evaluations 

9 394 
1 948 

387 
462 

484 
607 

Function 
evaluations 

other studies 

1952' 
17590 

9121 
394' 
919' 

3 487' ' 
336" 

1244' 
l24t t 
343'"" 

' Luus and Jaakola (1973~). 
t Gould (1971). 

O 0  Keefer (1973). 
t t  Adelman and Stevens (1972). 

Oo0 Findley (1974). 
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TABLE 3. COMPUTATIONAL REQUIREMENTS OF ADAPTNE RANDOM SEARCH WITH SKEWING 

Skewing alone Skewing with range reductmn 
Mill. Mill. 

iterations Function evaluations iterations Function e *.ahations 
Example to reach 0.1 % to reach 0.1% of optimum to reach 0.1 % to reach 0.1% of optimum 

No. of optimum Minimum Average of optimum Minimum Average 

1 
2 

363 
457 

255 4 709 97 
187 1 788 475 

65 3 874 
188 1 754 

Consequently, several runs are required to establish the 
range of computational requirements. 

The average number ot function evaluations for con- 
vergence to 0.1% of the optimum, shown also in Table 2, 
was found to be five to twenty times greater than the 
minimum. It is this average computational requirement 
that should be reported and used for comparison with 
other algorithms. 

A direct comparison with the results of the random 
search of Luus and Jaakola is not possible, since only one 
run was made in their study. Comparison of the com- 
putational requirements with other studies is difficult 
because, in many cases, auxiliary functions, such as gra- 
dients, are required. Computational requirements were 
reported for other methods only for examples 2, 4, and 6. 
The basic adaptive random search exhibits, on the aver- 
age, a better efficiency in solving example 4 but is 
worse for examples 2 and 6. The computational times 
foi the results of Table 3 ranged from 1 to 5 s on the 
IBM 370/165, which is comparable to times reported 
by other investigators. It should be noted that the adap- 
tive random search exhibits a perfect reliability for each 
of the examples; that is, convergence to 0.1% of the 
optimum was always achieved, a characteristic not al- 
ways available with other methods. 

Luus and Jaakola reported the number of function 
evaluations to reach 0.01% of the optimum as about 
three times as many as required to reach 0.1%. This 
same level of effort was found to be required by the 
adaptive random search in reaching 0.01% of the opti- 
mum. Therefore, it is concluded that convergence to very 
tight tolerances is inefficient with random procedures at 
their present level of development. Of course, 0.1 % 
accuracy is considered quite good for most problems, 
and convergence to closer tolerances is not considered a 
serious limitation of the adaptive random search. Closer 
convergence might be achieved more efficiently by using 
another type of algorithm once the search is near the 
optimum. Also, modifications to the basic technique, as 
described later, are helpful in convergence to closer 
tolerances. 

Two methods of increasing the exponent k in Equation 
(1) were tried. The first involved incrementing k by 2 
after a certain number of iterations between improve- 
ments in the objective function. A better procedure is 
to increase k with the number of better values of the 
objective function that are found. Thus, the procedure 
followed was: initially k = 1, after five new y*, k = 3; 
after fifteen more yo, k = 5; and after ten more yo, k = 
7 .  Values of k larger than 7 were found to slow con- 
vergence and be ineffective in reaching 0.1% of the 
optimum. 

Another variation that proved effective was to reduce 
k by 2 when convergence slowed. This periodic increase 
in the search region helps to avoid local optima and 
speeds convergence. 

Alterations to the Basic Search Method 

There are two alterations to the basic adaptive random 
search method given in Equation (1) that were found 
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to improve the efficiency: systematic range reduction 
and skewing. 

Systematic Range Reduction 
In Equation (l), the range Ri about xio is constant, 

although the probability of achieving extreme values of xio 
becomes less as k increases. It would seem logical that 
as the search gets closer to the optimum, certain por- 
tions of the search region should be excluded from fur- 
ther sampling. Such a reduction can be achieved by 
dividing the range RI by k as shown in Equation (2 ) :  

Table 2 also presents the results of the computational 
requirements to reach the optimum by using the range 
reduction scheme of Equation (2) .  A redu\.tion in the 
minimum number of function evaluations IS noted in 
most every example. However, a significant improvement 
in the average number of function evaluations was 
achieved by range reduction. These averages are com- 
parable to the single values found by Luus and Jaakola. 
By comparison with efficiencies reported for other op- 
timization methods, the adaptive random search requires 
about twice as many function evaluations, except for 
example 4, where the random search was superior. Range 
reduction is considered an important extension of the 
basic method. 

Skewing 
As noted in Figure 1, Equation (1) produces a sym- 

metrical distribution about each xi*. When the search 
has reached an inequality constraint, a large proportion 
of the random values of the independent variables will 
be invalid when we sample with a symmetrical distribu- 
tion. The number of valid samples could he increased 
with a distribution skewed along the constraint in the 
direction toward improving the Objective function. This 
procedure should accelerate constraint following. The 
distribution given in Equation (1) can be skewed by 
modifying the random numbers as follows: 

xi = xio + Ri[B(AO - l ) l k  (3) 
A number of values of A were tried on the various 

problems, and a value of 1.5 was found to be most 
efficient. Figure 2 shows the resultant distributions for k 
= 1, 3, 5 with negative skew ( B  = +l). Positive skew 
would be the reflection of Figure 2 and is achieved with 
B = -1. 

The question of when to skew the distributions is 
handled quite readily. When the xio produce values of 
any implicit inequality constraint gj close to its bound, 
the distributions about the x,* are skewed. The direction 
of skew is determined by the movements of the inde- 
pendent variables from their initial values. If the average 
of xi* is greater than the initial value of xt, the search 
is generally proceeding in the direction of increasing xt; 
thus, the distribution of xt is skewed positive (and vice 
versa). 
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1 
L 1 

INDEPENDENT VARIABLE 
Fig. 2. Skewed probability distributions of independent variables. 

Table 3 presents the results of skewing on examples 1 
and 2, the two problems involving difficult implicit con- 
straints. The minimum number of iterations and function 
evaluations to reach 0.1% of the optimum is significantly 
better than with no skewing and about the same as 
with range reduction. Skewing would be expected to in- 
crease the number of valid samples; thus a greater re- 
duction is achieved in iterations than in function evalua- 
tions as noted between Tables 2 and 3. An improvement 
in the average efficiency is achieved with skewing, al- 
though the average number of function evaluations is 
still greater than with other methods, where comparable. 
Still further improvement is noted if range reduction is 
combined with skewing; however, the average number of 
function evaluations is not much better than with skew- 
ing alone. Further practice with skewing and range re- 
duction will be required to define the improvements pos- 
sible with these methods. 

I t  was noted that, with the combination of skewing and 
range reduction, convergence to within 0.01% of the 
optimum was considerably more efficient in some cases. 
For example, a minimum of 284 function evaluations 
was required to reach 0.01%. of the optimum in problem 
2. Therefore, skewing . is an attractive modification of 
the basic method which improves the efficiency and 
might prove to be an effective means for convergence to 
close tolerance when the optimum lies near an implicit 
constraint. 

Another method of skewing is to modify the exponent 
of the distribution. An even integer produces a one-sided 
distribution, and noninteger values also change the shape 
of the distribution. These modifications were not devel- 
oped in this study. 

Different Starting Values 
The initial values of the independent variables might 

have a pronounced influence upon the convergence effi- 
ciency of a search procedure. The effect of different 
starting values was examined in example 6. The search 
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in this example was conducted with initial values of each 
of the variables at its minimum bound, maximum bound, 
midpoint, and even 10% above the maximum and 10% 
below the minimum. With each of these starting points, 
convergence was achieved with about the same efficiency 
as reported earlier. It is important to note that converg- 
ence was achieved with initial values which were invalid, 
a significant advantage in many applications. 

Initial Range 
The effect of different starting ranges ( R i )  was ex- 

amined in example 2. Initial ranges of 5.0 and 0.5 for 
the independent variables were tested. It was found that 
the number of function evaluations required to reach 
0.1% of the optimum was essentially the same with both 
ranges. However, the number of iterations required for 
convergence with initial ranges of 5.0 was on the average 
five times greater than with initial ranges of 0.5. This 
was expected, since with a larger region of search, there 
would be a greater number of invalid points; consequently, 
a greater number of iterations was required for an equal 
number of function evaluations. 

SUMMARY 

It can be concluded from the results of this study that 
the adaptive random search procedure is effective in solv- 
ing a variety of optimization problems. This method ex- 
hibited perfect reliability in solving the example problems; 
however, the efficiency was generally poorer by com- 
parison (where possible) with other methods used for 
solving these same problems. The procedure results in 
reasonable efficiency in converging to within 0.1% of 
the optimum; however, convergence to closer tolerances 
is quite slow. Impiovements in the basic method are 
possible with range reduction and skewing. Continued 
development of the method should lead to further im- 
provements in efficiency. The starting point in one ex- 
ample was found to have no effect on the reliability 
of the procedure, even when starting in the invalid region. 

In the example problems solved herein, the adaptive 
random method exhibited the same constraint following 
ability noted earlier by Gaines and Gaddy (1974) in 
studying a complex chemical proess. A primary advan- 
tage of this method is the ease with which it can be 
programmed and applied. Because of the good reliability, 
reasonable efficiency, constraint following capability, ease 
of programming, and applicability to mixed integer prob- 
lems, this method may find wide application in process 
optimization problems. 

N OTAT I0 N 

A = constant controlling the amount of skew 
B = & 1, determines the direction of skew from xio 
g j  = implicit constraint function 
k = distribution coefficient (odd integer 1,3, 5. . .) 
N = number of independent variables 
Ri = allowable search region about xio 
xi = new value of independent variable ( i  = 1, N )  
xio = value of variable xi which has produced the 

Y = value of the objective function 
yo = highest value of the objective function 
yoopt = final optimum value of the objective function 
e = random number between zero and one 

highest objective function 
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Relationships Between Velocity Profiles and 
Drag Reduction in Turbulent Fiber 
Suspension Flow 

Analytical relationships between velocity profiles and flow resistance 
data are developed for suspensions of papermaking fibers in turbulent 
shear. The relationships apply to suspensions of synthetic fibers. The wall 
layer appears to  be unaffected by the presence of fibers, and the cause of 
drag reduction can be attributed to the turbulent core region. 

SCOPE 
The turbulent flow of fiber suspensions is possibly 

unique. When fibers in suspension are subjected to high 
shear rates, and when there is insufficient volume for the 
fibers to move freely, they agglomerate by mechanical 
entanglement. Both free fibers and agglomerates are ef- 
fective in damping turbulence and reducing energy dis- 
sipated by viscous shear to below that of the suspending 
medium flowing alone under the same conditions. The 
phenomenon of drag reduction in turbulent fiber sus- 
pensions has stimulated considerable interest in recent 
years and is of significant practical importance to the 
papermaking industry. 

Correspondence concerning this paper should be addressed to P. F. W. 
Lee, now with The Institute of Paper Chemistry, Appleton, Wisconsin. 

PETER F. W. LEE 

and 
GEOFFREY G. DUFFY 
Department of Chemical and 

Materials Engineering 
University of Auckland 

Auckland, New Zealand 

Most previous investigations of the drag reducing be- 
havior of fiber suspensions have been limited to measure- 
ments of friction loss data because of the lack of suitable 
instrumentation for the determination of velocity profiles 
and turbulence parameters. An annular purge impact 
probe was developed by Mih and Parker (1967) to mea- 
sure velocity profiles in the flow of macroscopic fiber 
suspensions. Their data and data obtained subsequently 
by Seely (1968) were limited to a small range of flow 
conditions. 

The purpose of this work was to extend the range 
of velocity profiles and to investigate the relationships 
between flow resistance and velocity profiles for fully 
developed turbulent flow. 
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