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PHYSICAL REVIEW B

VOLUME 3, NUMBER 6 15 MARCH 1971

Calculation of Anisotropic Hyperfine Constants for Lattice Nuclei near a Shallow Donor*

Edward B. HaleT and Robert Lee Mieher
Depavtment of Physics, Puvdue University, Lafayette, Indiana 47907
(Received 19 October 1970)

A method is presented for calculating the magnetic anisotropic (dipolar) hyperfine constants
for lattice nuclei near a shallow-donor impurity, The method assumes that the wave function
of the donor electron can be expressed in an effective-mass form, i.e., a slowly varying en-
velope function times conduction-band Bloch functions. For each dipolar hyperfine constant,
two separate calculations are performed. One calculation is for a local region about the lat-
tice nucleus of interest. The greatest part of the interaction occurs in this region (about 85
+10%). The second calculation is for the more distant region. The dipolar constants in the
distant region are calculated without considering the details of the Bloch functions and are
evaluated by an integration involving only the envelope function. In the local region, the de-
tails of the Bloch functions must be considered. The Bloch functions are expressed in terms
of equivalent orbitals. Symmetry arguments using the properties of these orbitals simplify
the calculation. The final results show that the local contribution can be expressed as products
of a few intrinsic lattice parameters, which are the dipolar matrix elements between equiva-

lent orbitals, and a set of coefficients that is not difficult to evaluate,
constants vary a great deal from one lattice site to another.
computed for the shallow donors — arsenic, phosphorus, and antimony — in silicon.

The resulting dipolar
Numerical results have been
Compari-

son of theoretical values with experimental values shows qualitative and semiquantitative

agreement.

I. INTRODUCTION

Many properties of shallow impurity centers in
semiconducters can be understood through the ef-
fective-mass model as formulated by Kohn and
Luttinger.'~® - An example is the calculation of the
isotropic or Fermi contact hyperfine interaction
between the unpaired impurity electron and a lattice
nucleus, which has been discussed in detail by
Feher? and, more recently, by Hale and Mieher.>®
Their essential conclusions were that these isotrop-
ic constants can be qualitatively understood interms
of the effective-mass theory, but that refinements
are still necessary to obtain quantitative agreement
with the experimental results. The anisotropic or
dipolar hyperfine interactions have not even been
qualitatively understood. Understanding the physi-
cal origin of these interactions in detail has become
more important recently since new electron-nuclear
double-resonance (ENDOR) measurements in sili-
con® have determined more than 40 independent
dipolar hyperfine constants for each of the three
impurities: arsenic, phosphorus, and antimony.
This paper presents a calculation, ” based on the
effective-mass model, which explains the observed
qualitative features for these hyperfine interactions
and yields semiquantitative agreement with the ex-
perimental results, *°

The anisotropic hyperfine interactions are com-
puted as matrix elements involving the operator of
the dipole-dipole interaction between a nucleus and
the electron and the wave function of the impurity
electron. To obtain this wave function, the standard
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Kohn-Luttinger approximation!~ is assumed, i.e.,
the total wave function is an appropriate ground-
state sum of the degenerate valley minima wave
functions, where each valley function is a slowly
varying envelope function times the conduction-band
minimum Bloch function of that valley.

When performing the integrations necessary to
obtain the above-mentioned matrix elements, the
principal difficulty lies in including the details of
the Bloch function throughout the entire crystal. It
is assumed that the integration over a “distant” re-
gion far away from the nucleus of interest can be
performed without including the Bloch-function de-
tails since an average value over each distant unit
cell of the crystal can be used. However, in the
“local” region such an averaging technique is not
valid and a reasonable approximation for the Bloch
function must be used. ‘

In the present paper, the Bloch function is ex-
pressed in terms of equivalent orbitals that were
first used in solids by Hall.®° The Bloch functions
are formed by taking appropriate sums of the equiv-
alent orbitals. The major advantage in the use of
these orbitals is that the four orbitals associated
with a lattice-site transform into one another under
the lattice-site point-group operations T, of the
crystal. When the above symmetry requirements
are combined with the symmetry properties of the
dipole-dipole operator, substantial simplifications
result in evaluating the local-region integrations.
These integrations can then be reduced to a deter-
mination of three intrinsic crystal parameters, each
parameter being multiplied by an easily evaluated
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“local” coefficient which depends on the location of
the conduction-band minimum in & space and on the
location of the nucleus of interest relative to the
impurity.

In Sec. II, the form of the total ground-state wave
function is presented. In Sec. III, the theoretical
expressions for the anisotropic hyperfine interac-
tions are developed. Section IV gives a comparison
of the theoretical and experimental results for the
group-V impurities in silicon.

1. EFFECTIVE-MASS GROUND-STATE WAVE FUNCTION
A. Total Wave Function

The effective-mass ground-state wave function in
silicon can be written as®~

P(r)= ‘[6 EFj(r)fﬁ(r) (1)

where the sum is over the six degenerate conduc-
tion-band minima - one along each of the (100)
k-space axes; (I:,-(;) is the conduction-band Bloch
function at the jth minimum and F;(r) is the slowly
varying envelope function appropriate to the jth
minimum.

B. Envelope Function

A form for the effective-mass envelope function -
4,6

F,(r)=F,(r)ata, /a***"?

is
X exp(={[(x%+v2)/n2a?] + (z%/n%a ?)}'?)

x[exp (= 7/na*)]?, (2)
where
Fio) =AW, 1,5(27/n)/(27/n) . 3)

The above expression is for the z valleys; the x-
and y -valley expressions can be obtained from sym-
metry considerations. In Egs. (1) and (2), a,, a,,
and a * are the transverse, longitudinal, and iso- -
tropic radii’®; A is a normalization constant for the
Whittaker function W, y,,(27/5) and the index n is
donor dependent10 because of the different donor
ionization energies.

C. Bloch Functions Expressed in Terms of Equivalent Orbitals

The Bloch functions can be expressed in terms
of the equivalent orbitals as shown by Hall.®*® A
typical Bloch function is

4 =4 P4 - >
&,(T)= Z;Cm(k) e TIE ) g Tmym(E o), (4)
= m

where x7(T - T,) is the ath equivalent orbital as-

sociated with the s th primitive cell; ;m is the vec-
tor to the corner site of the wth cell; the sum over
® is a sum over the four orbitals in a given cell;
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the C,(K) are appropriate normalization and phase
constants; and the T are translation vectors de-
fined as

TI:O y

=%(:L:+5)a ) (5)

-~

TSZIE(z +£)a b

T4 = %(] "'E )a )
where a is the lattice constant and 7, j, and k are
unit vectors along the (100) directions.

Figure 1 illustrates the numbering of the four
orbitals labeled by the subscript . The orbitals
are “equivalent” because (i) the four orbitals as-
sociated with a given site transform into one another
when the point-group operations are applied at that
site, and (ii) like-numbered orbitals in different
primitive lattice cells transform into one another
for the crystal-translation operations.

In addition to the “equivalence” requirements,
the crystal symmetry also places restrictions on
the C,( K) coefficients. For example, in silicon
with a conduction band of symmetry 4, and for k
along [100],

C1=C4=~-Cy=-Cy, (6)

with the C’s independent of Ik|.
For the lowest conduction band in s111con, Eq.
(4) may be simplified to

& (k) = CI(E e FoIm[(y™ 4y M) - eif 2 (x7 +X:'an)]) ’
(7)

where f=3kea and k, is the position of the conduc-
tion-band minimum. Similar derivations yield

®(k,)=C{ (2 e m[(xT+x]) -T2 (xF+x D))
(8)

and
&(k,)=C (2 pe™oim[(xI'+x ) =P 2 (x P+ xD)])
(9)

(40,0)

FIG, 1, Schematic illustration of the equivalent orbit-
als and their numbering. The primitive cell located at
the donor site (0, 0, 0) is shown,
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where C and C{’ are possibly different normaliza-
tion constants. In the ground state each valley

contributes equally to the wave function, thus
Cc,=Ci=C{. (10)

Furthermore, let
1
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Cy=Coe'®, (11)

where C, is a real constant and ® will eventually
be appropriately chosen.

The ground-state wave function of Eq. (1) may
now be written as

WF)=(2Co/VB) L wiX I [Fy cOslgxp + )+ FyCOS(kgyp+ &) + Fy cO8gap )]

+xP[ ~F,coslkoxp+3sf+®) —F,cos(koym +5f+®) +F, cos(kyzp,+®) ]

+ X[ - F,cos(koxp+5f+®)+F cos(koyn+®) - F; cos(kozp+5f+3)]

+XT[F, coslkorp+®) —Fycos(koypm+5f+®) ~F coslkoz,+5f+®)] },

where the orbitals are considered to be real. For
brevity of notation it is convenient to rewrite this
equation as

P(r)=(2Co/V6)
X0 (WEXT+WEXG+ Wiy + Wixy) , (13)

where the W™ coefficients are defined by Egs. (12)
and (13).

It is convenient to visualize the equivalent orbitals
as similar to bonding and antibonding molecular
orbitals between lattice sites for the valence and
conduction bands, respectively. However, the ap-
plication of equivalent orbitals to solids has been
criticized!**? and Hall® has commented on the criti-
cism. Part of the criticism seems to be based on
the association of equivalent orbitals with molecular
orbitals formed by a linear combination of atomic
orbitals (MO-LCAO). Indeed, the MO-LCAO rep-
resentation has been used in the few applications13
of equivalent orbitals in the literature. However,
we shall avoid a detailed representation of the
equivalent orbitals (expect for order-of - magnitude
estimates) and we shall formulate the theory in
terms of a few constants to be fit to the experi-
mental data.'* Such an approach is not inconsistent
with other widely used band theories, such as pseu-
dopotentials15 and LCAO’s, 16 which also use adjust-
able parameters.

Although we shall not use a detailed expression
for the equivalent orbitals in this paper, we believe
that it may be possible to calculate such orbitals.
Indeed, a procedure for just such a calculation may
have already appeared in the literature. Anderson'’
has proposed a pseudopotential method for calcu-
lating “ultralocalized functions” for energy bands.
These “ultralocalized functions” seem to us to be
similar to, and possibly identicalwith, the equivalent
orbitals of Hall.

(12)

!
III. CALCULATION OF ANISOTROPIC HYPERFINE
INTERACTIONS
A. Anisotropic Tensor
The anisotropic part of the hyperfine tensor may
be written as

§=ggNuBHN( IJ»\'_D' ] by,

-where the magnetic constants are defined in the
standard manner; zl)(i") is the the wave function of
the unpaired electron; and D is the dipole-dipole
tensor operator whose components are

(14

Dy;=Bux;x; =720, /r?, (15)

where 7 is measured from the nuclear site of in-
terest; x; represents x, y, or z fori=1, 2, or 3,
respectively; and J;; is the Kronecker 6 func-
tion. It is convenient to consider the tensor ex-
pressed in the cubic-crystal-axes coordinate sys-
tem. The x, y, 2z axes are measured from an ori-
gin located at the nucleus on the lattice site of in-
terest. The coordinate system centered on the
donor will be designated by a subscripted d, e.g.,
7;. The lattice-site coordinates (ny, n,, ng) will
be designated in the standard manner as shown in
Fig. 2. The dipole-dipole tensor for nuclei in the
first and third quadrants of the (110) plane will be.
computed, i.e., those lattice sites with coordinates
ny=n,. Inspection of Eqs. (14) and (15) shows that
3

2:B;;=0 (16)
i=1
and
By;j=Byy , 17
and, furthermore, for sites with »ny =n,,
B,,=B,, and B,=B,, . (18)

As a consequence of Egs. (16)-(18), the dipole

tensor for any nucleus under consideration can be
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expressed by at most three independent components
which are chosen as B,,, B,,, and B,,.

The anisotropic hyperfine tensors are given by
Egs. (14) and (15), with § given in Eq. (13).
Therefore,

Bi;=(52gg,upin | Col) 2 (WLx| D, wrxmy

I,moa,n
(19)
where the summations over [ and # run over the
entire lattice. The above equation will be evaluated
by dividing the problem into a local and a distant
contribution.

B. Distant Contributions

If the integration in Eq. (14) is considered as a
summation over all primitive cells of integrations
over each cell, then it is clear that the details of
the Bloch function within the cell are unimportant
for cells so distant from the nuclear site of interest
that D,; varies little over the cell. Also, the effec-
tive-mass theory assumes that the envelope function
F; [see Eqs. (1) and (2)] is slowly varying over a
primitive cell. Therefore, using the approxima-
tions that F; and D;; are slowly varying for distant
cells and using the orthonormality properties of the
Bloch function one obtains

3 .

Byy(distant) = 3gg, babn L (Fol Dy | Fr) ,  (20)
where we have now replaced the sum over all prim-
itive cells of F?,,D,-]- by an integration over the entire
“distant” region. In calculating the above, we have

found the distant contribution to be only a small
percentage of the total dipole interaction. To save

044 TZ 444.
Nt

|LATTICE CONSTANT=543 8 |
; !

FIG. 2. Tetrahedral lattice with donor at coordinate
origin. The figure shows 17 neighboring nuclei which
are members of seven different shells. The dipole tensors
are expressed with reference to the x, y, and z directions
shown in the figure.
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TABLE I. Typical distant dipole interactions for dif-
ferent donors. The interactions vary with donor as shown
because of properties of the donor-dependent envelope
function. The symbol * means the value is zero by sym-
metry. The symbol ** means the calculated value is zero
but is not required by symmetry.

BZZ Bxy sz

Site Donor (kHz) (kHz) (kHz)
(0, 0, 4) As 13.1 *ok *
P 7.5 ok *

Sh 6.6 *ok *

3, 3, 3) As * 4,1 B,,
P * 2.7 By

sb * 2.2 B,

(4, 4, 0) As - 3.7 5.5 o
P - 2.4 3.7 *%

Sb - 2.0 3.1 *k

computer time, we have thus used only the isotropic
part of the envelope function, so that

B,;(distant) = gg,kphy ( Fiso| Dij| Fig) - (21)

In the central-cell region, centered on the donor,
Fis 1s not slowly varying and thus Eq. (21) might
not be valid. Therefore, we have considered this
region in detail'® and have concluded that the cen-
tral-cell region contributes only a small fraction
to B;; (distant) and can be well enough estimated
by extending the integration in Eq. (21) over this
region.

In addition, we have found that the integration in
Eq. (21) isinsensitive to the position of the boundary
between the local region centered on the nucleus of
interest and the distant region provided the local
region is less than two primitive-cell volumes, !
Thus, we have calculated B;; (distant) by performing
the integration in Eq. (21) over the entire crystal.
Table I shows the results of our distant calculations
for a few sites for the different donors in silicon.
Table II shows a more extensive list of sites for an
arsenic donor. Note that the distant contribution
is small compared to the experimental values given
in parentheses.

C. Local Contribution

1. Approximations

In evaluating the local contribution using Eq.

(19), we have restricted the calculations to the four
equivalent orbitals associated with the particular
lattice site of interest at R;, i.e., we neglect the
contributions of next-nearest and more-distant x’s.
We believe this is a valid approximation for several
reasons. If the contributions of next-nearest or-
bitals are estimated!® using an sp® hybrid approxi-
mation for the x’s, then the contributions are small
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TABLE II. Distant dipole interactions for various

sites about an arsenic impurity. Sites are grouped into

~ various classes for ease of comparison with experimental
data, Values in parentheses are fotal experimental
values based on site correlations using the Fermi con-
tact interactions. Inversion-related sites have the same
distant interaction in this approximation. The symbol *
means the value is zero by symmetry. The symbol **
means the value is zero but not required by symmetry.

B B,, B

g2 xz
Class Site (kHz) (kHz) (kHz)
foo1] (0, 0, 4) 13,1 (57.0) ** (+55,8) *
axis (0, 0, 8) 5.4 (16.0) ** (x£7,6) *
class (0, 0, 12) 2.9 *ok *
(111 (@, 1, ) * 17 (1258) B,
axis (3, 3, 3) * 4,1 B,,
class (4, 4, 4) * 3.0 B,,
5, 5, 5) * 2.3 B,,
(1100 (2, 2, 00 —9.0 13.4 Hok
plane (1, T, 3) 10.8 2.0 6.0
class (3, 3, 1) -—-4.4 7.3 2.5
@, 2, 4 5.1 2.5 4.8
(1, 1, 5) 9.0 0.6 1.5
(4, 4, 0) —3.7(—41,6) 5.5 (148.2) ** (72,2)
(3, 3, 5) 2.6 2.2 3.6
G5, 5 1) -=2.7 4.1 0.8
6,6 0 —2.2 3.7 *k
i 5.8 0.3 0.4
5,5 3 -1.4 3.2 1.9
3, 3,7 2.9 1.0 2.3

compared to the contributions of the nearest orbi-
tals. Also, recent calculations'® have compared
equivalent orbital results with dipolar calculations
using pseudopotential Bloch functions. These com-
parisons show that the nearest-equivalent-orbital
approximation of the Bloch function is probably
better than the effective-mass-theory approxima-
tion of the shallow donors. '

A further simplification can be made in evaluating
the local integrals in Eq. (19). Namely, since
F(r)is a slowly varying function over a unit cell
(the effective-mass theory assumes this), F(r) can
be assumed to have the value F(R,) near the R,
lattice site.
as the first term in a Taylor series expansion of
F(r) about R,. Detailed estimates'® of the second-
and higher-order Taylor series terms show that
they are even less important than the contribution
of the more-distant equivalent orbitals mentioned
above.

2. Reduction of Local Intevaction to Thvee Intvin-
sic Parvameters

According to the above discussion, the “local”
part of the dipole interaction will be restricted to
those terms in the summation over 7, n, @, U in
Eq. (19) that correspond to the four equivalent or-

This approximation can be considered .
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bitals associated with the lattice site of interest.
For each B;; term one obtains 16 integrals of
the form

Iij(a?“):%zc(zlggn“BI‘%(XOL‘DHIXu)y (22)
where, clearly,
Iij(ay p‘):Iij (“’, a) ’ (23)

since D and the x’s are real. The tetrahedral
equivalence of the orbitals permits other simpli-
fications and was one of the motivating reasons for
using the equivalent orbitals. 'Thus for the D,,
integrals, Appendix A shows

Izz( a, @)=0 ’ | (24)

Iﬂz(l’ 3) ::Iu(l’ 4) :sz(z’ 3) :Iu(Z: 4)= “%In(l, 2) s
(25)

and
133(3; 4) '_‘Izz(ls 2) . (26)

These results show that all the D,, integrals can be
expressed in terms of one inivinsic parameter which
is chosen as I,,(1, 2) and will hereafter be referred
to as simply I,,. For the D,, integrals,

1,(2,2)=-1,.3,3)=-1,4,4)=1,01,1, (27

I,(3,4)=-1,1,2), (28)
and

I,(1,3)=1,(1,4)=1,(2,3)=1,,(2,4)=0 . (29)
For the D,, integrals,

I,(1,1)=1,(1,1), (30)

1..(2,2)=-1,(3,3)=1,(4,4)=-1,1,1), (31)

I.(1,2)=1,1,4)=1,2,3)=1,(3,4=0, (32)
and finally,

I,1,3)=-1,02,4=1,01,2). . (33)

The results are that all the D, and D,, integrals
can be expressed in terms of two intvinsic param-
eters which we have chosen as I,,(1, 1) and I,,(1, 2)
and which will hereafter be referred to as simply
I, and I,, respectively.

Thus, the many integrals in the local interaction
have been reduced to three intrinsic integrals, I,,,
I, and I,. In general, these three integrals are
independent, but for an oversimplified model they
can be shown to be related. Possible relationships
between the three integrals are discussed in Ap-
pendix B.

3. Final Derivation of Local Contvibution

Before the local contributions to the dipole tensor
can be evaluated, it is necessary to know the val-
ues of k, and & that appear in Eq. (12). The term
® was introduced in Eq. (11), and it determines the
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phase of the Bloch function [Eqgs. (7)-(9)]. The
linear combination of Bloch functions given'in Eq.
(1) as the ground state assumes that the Bloch func-
tions are phased to be real at the donor site. We
shall assume that only the four equivalent orbitals
associated with the donor site contributed to the
Bloch function at this site, i.e., we neglect any
contributions from more distant orbitals. This
approximation in the determination of & seems to
be consistent with the neglect of distant orbitals in
the evaluation of the local part of the dipole inter -
action discussed above. These considerations lead
to

(34)

The location®® of the conduction-band minimum in
silicon is on the A, axis, between 80% and 90% of
the distance to the X point, i.e., 0.8<ak/27<0.9.
Because of this uncertainty in 2, we have calculated
the B tensors for several values of kg. Thus the
final theoretical predictions will be given as a range
of values corresponding to the above range of k.

Equation (12) is expressed in terms of T, the
corner positions of the primitive cells of the lat-
tice. However, it is desirable to express the final
theoretical B (local) values in terms of the lattice
site positions ﬁm. This change may be made for
the a sites, the odd-numbered lattice sites, by the
substitution T,,= R, =@ +j +%)a,. For the b or
even-numbered sites, ﬁm is the same as F,,,. How -
ever, when Eq. (13) is substituted into Eq. (19) and
only the x,’s associated with the b sites are re-
tained from the summation over [ and », it must
be kept in mind that the four x,’s associated with
the b sites come from four different primitive cells
with origins located at r,,=R, - T,.

We now write the final expression for the local
contribution®:

1 1
b=3f-2m

B, (local)=W,,I,, , (35)

B, (local) =W I) + W, 1, , (36)

B, (local)= W, I + Wy, (37)

where .

W oo = 2Wy Wy + 2Wy Wy — Wy Wy — Wy W,

- Wy Wy — W, W, , (38)

Wy = Wi+ Wi -wi-wi, (39)

Wyo=2(Wy Wy - Wy W) , (40)

Woy=WE-WE+WE-W§ | (41)

Woo=2(Wy Wy =W, W,) (42)

and
W,=F,C; +F,Ci+F,C}, (43)

Wy=~F,C;~F,C;+F,C,, (44)

E. B. HALE AND R. L. MIEHER 3

Wy= ~F,C;+F,C,~F,C; (45)

Wy=F,C; -F,C;-F,C;, (486)
and

Ci=coslkyX;~3m+%f) . (47)

The above results are for the b (even-numbered) sites,
the corresponding results for the a (odd-numbered)
sites are obtained by interchanging the + and -
superscripts of the C coefficient in Eqgs. (43)-(46).
The F; envelope functions in Eqs. (43)-(46) are to
be evaluated at the corresponding lattice site R;.

Considering the complexity of the problem, the
relative simplicity of the above equations for the
local dipolar hyperfine integration should not be
overlooked. The three parameters I,,, I;, and
I, are intrinsic parameters that depend only on the
host lattice and are independent of donor. The five
W factors are the parameters which depend on the
donor impurity through the envelope function and
on the location of the nuclear site of interest through
the envelope function and cosine functions. In ad-
dition, the W parameters depend also on the host
lattice through the location of the conduction-band
minimum k.

To complete the local-region calculations, values
for the intrinsic parameters must be obtained.
Ideally, these could be calculated from first prin-
ciples using Eq. (22); however, an accurate detailed
form for the equivalent orbitals is not known at this
time. Therefore, we shall obtain the integral pa-
rameters by fitting to the experimental values. In
the present case, we shall use three independent
experimentally measured anisotropic -hyperfine con-
stants and then attempt to predict the more than
100 other experimental constants for the three
common group-V donor impurities in silicon.

IV. EXPERIMENTAL RESULTS AND THEORETICAL
PREDICTIONS

A. Review of Experimental Results

The most recent and complete data on the shal-
low-donor hyperfine interactions are given in Ref.
5. Table III lists the experimental hyperfine con-
stants in a form that is convenient for comparison
with the theoretical predictions. In addition to the
values of the constants, the experimental results
also give the symmetry class to which a shell be-
longs. The shells A and K must be associated with
a (001) axis class. The shells C, E, H, J, O, and
N must be associated with a (111) axis class. The
remaining shells must be associated with a {110}
plane class but not along either the (001) or (111)
axes.

Considerable difficulties occur when an attempt
is made to assign the experimental shells to spec-
ific lattice sites (see Ref. 6 for a discussion of
these difficulties). One motivation for the present



TABLE III. Experimental hyperfine interactions. All
values are in kHz., Absolute value signs occur because
the signs cannot be determined by ENDOR. The symbol
* means that the value is zero by symmetry. The experi-
mental error is typically +1 or 2 kHz. The values are
taken from Ref. 5.

< CALCULATION OF ANISOTROPIC HYPERFINE CONSTANTS...

Shell
class  Dovor | sal B, B,, | By, |
A As 3860 57.0 | 55.81 0*
{001) P 2981 41.4 | 41.4 ] 0*
axis Sb 3101 46.0 | 34.2]1 0*
B As 3000 —41.6 148.2 72.2
{110} P 2254 —34.0 106. 2 39.8
plane Sb 1833 —28.6 79.2 20. 2
c As 2037 0* 5.8 B,,
(111) P 1649 0* 5.0 B,
axis Sb 1397 0* 6.0 B,,
D As 1292 4.2 20.4 25.4
{110} P 1117 3.6 16.6 22.2
plane Sb 1003 0.0 17.4 17.4
E As 642 0% 1258 By
111y P 270 0* 700 B,,
axis Sb 293 0%* 522 B,
F As 1121  151.0 -41.2 4.6
{110} P 840  116.4 —28.2 11.8
plane
G As 806 7.0 - 1.0 5.6
{110} P 764 5.0 — 1.2 5.0
plane Sb 761 4.6 - 1,2 5.2
H As 801 0* 62.4 B,,
(111) P 689 0* 50.6 B,,
axis Sb 703 0% 44.6 B,
I As 718  —20.4 31.8 12.0
{110} P 685. =—17.4 27.8 13.8
plane Sb 643 —14.0 22.6 14.4
J As 694 0* <5 B,,
{111) P 739 0* 5.4 B,
axis
K As 758 16.0 17.6] 0*
{001) P 663 14 <112] 0%
axis
L As 741  -14.6 9.8 8.2
{110} P 582 —11.2 2.6 7.6
plane Sb 425 - 5,8 3.8 4.4
M As 777  —-60.8 65.2 41.4
{110} P 612 —40.6 49,6 35.6
plane Sb 559 —-37.2 44.0 30.6
N As 607 0* 4.2 B,,
(111) P 612 0* 3.4 B,,
axis
0 As 739 0* 35.8 B,
{111y’ P 598 0* 32.6 B,
axis Sb 670 0* 31.4 B,
P As 696 — 4.8 0. 4.2
{110} P 662 — 6 <6 <6
plane Sb 629 - 5.8 — 4.6 4.8

1961
TABLE 1. (continued)
Shell -
class Donor |3al B, B,, | B, |
) As 566 -—48.0 101.6 27.6
{110} P 524 —40.2 84,0 22.8
plane Sb 387 -—-36.0 78.6 31.6
R As 428  24.8 0.0 25.0
{110} P 379 21,0 0.2 19.4
plane Sb 332 15.0 -2.8 12.0
) As 377 - 5.4 9.2 0.0
{110} P 410 - 5.4 7.4 0.0
plane
T As 364 0.0 4.4 4,4
{110} P 398 0.0 3.8 4.2
plane
b'g As 242 40 30 soe
{110} P 317  29.4 23.6 32,2
plane Sb 437  20.4 19.0 20.8

calculation was to assist in this assignment. At
first it seems somewhat surprising that the largest
Fermi contact interaction (shell A) or wave-function
density must occur at the fourth (0, 0, 4), twenty-
second (0, 0, 8), or more remote neighbor shell;
however, the effective-mass theory predicts that
the (0, 0, 4) site is expected to have the largest
wave -function density.* ¢ Thus, because of the
remoteness of all the other (001) axis shells and
because of the theoretical prediction, there is no
doubt that shell A is the (0,0, 4) shell. Similar
arguments strongly suggest that shell K is the

(0,0, 8). Contact calculations suggest that the group
of six observed (111) axis-class shells is contained
in the group of lattice shells (1,1, 1), (3,3, 3),
(4,4,4), 4,4,9), (5,5,5), and (7,7,7). The quite
large dipolar constant for shell E indicates that it
is the (1,1, 1) nearest-neighbor shell. The contact
calculations slightly favor shell C as the (3, 3, 3)
shell, but this is not certain and the remaining
(111) axis-shell assignments are not known from
contact-interaction considerations.

The majority of the experimental and nearby lat-
tice shells are of the {110 } plane class. The con-
tact calculations strongly suggest that shell B is
the (4, 4, 0) shell. They suggest no other specific
assignments but they do restrict, to some extent,
the possible lattice sites to which an experimental
shell can be assigned. Based on the above assign-
ments, the three intrinsic parameters will be chosen
and predictions will be made for the other shell di-
polar constants.

B. Predictions for B,, Dipolar Constants

The equation used to predict the B,, dipolar con-
stants is
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B,,(theory) = B,,(distant) + B,,(local) , (48)

where B, (distant) is computed from Eq. (21) with
typical values given in Tables I and II; B,,(local)
can be computed using Eq. (35) once I,, is obtained
by a fitting procedure. The most reliably known
B,, constant is that for shell 4, the (0,0, 4) shell.
Thus, from this constant, I,, may be obtained as

Izz(k 0) = [Bzz(eXp) _Bzz(diStant)] /sz(ko) (49)

for the (0, 0, 4) shell. To evaluate Eq. (49), a spe-
cific donor must be chosen. The dipolar constants
and ENDOR signals are largest in arsenic and thus
these constants have the smallest percent error.
Furthermore, the arsenic spectrum has been
studied in greatest detail. For these reasons, I,,
is evaluated using the arsenic data and the results
are used for the other donors. Table IV contains
the results for I,, using Eq. (49) and various as-
sumed values of kg.

C. Predictions for B, and B, Dipolar Constants

The B,, and B,, dipolar constants have been cal-
culated together since the two intrinsic parameters
I, and I,, necessary to predict B,,, must also be

used to predict B,, [see Egs. (36) and (37)]. There -

are several known values which may be used to
obtain I; and I, such as B,,(1,1,1), B,(0,0,4),
B,,(4,4,0), B,(4,4,0), and B,,(0,0,8). The first
of these values we are reluctant to use because
several of the approximations in the theory could
possibly be very poorly satisfied for the nearest-
neighbor shell. Unfortunately, there exists no
choice of I, and I, which is completely compatible
with the other dipolar constants. The most dis-
turbing incompatibility is that of B,,(0,0,4) and
B,,(4,4,0). Since, for the local contribution,

B,,(0,0,4)=W(0,0,4)(I; +I,) (50)
and
B,,(4,4,0)=W,(4,4,0)(I; +I,) (51)

for all three donors, the following result should be
valid for the local contribution:

B.,(0,0,4)/B,,(4,4, 0) = W,4(0,0,4)/W,,(4, 4, 0)
N2FF (52)

TABLE IV. TFitted values for the integral parameters.
[See Eqs. (49), (50), and (54).]

ko/kmax 0. 80 0.83 0.85 0.86 0.89
L, (kg 1.37 1.67 2.01 2,25 3.40
Ii(ky) 3.89 4.66 5.54  6.15 9.20
I(kg) -3.07 —3.84 —4,69 —5.27 —8.20

and the ¥% is due to the uncertainty in #,. The mea-
sured ratios for the different donors varies from
about |31 to 11%|. These measured ratios and the
ratio of Eq. (52) should all be equal since the dis-
tant calculations for the two dipolar constants of
interest are zero. The conclusion we draw from
this discrepancy is that a factor of 2 or 3 uncer-
tainty will have to be tolerated in the numerical
calculations of the dipolar constants at present, as
is also the case for the Fermi contact calcula-
tions. 8

The ratio

B,,(0,0,4)/B,,(0,0, 8) = W,(0,0,4)/W,(0,0,8) (53)

can be matched to the experimental ratio. We have
chosen, however, not to use the B,(0, 0, 8) value
for fitting because of its strong %k, dependence.

Another expression for I; and I, is obtained from
B,, for the (4, 4, 0) shell:

I - I,=[B,,(exp) — B,,(distant)]/ W, (54)

After considerable study of these relationships, as
well as others concerned with the (111) axes-class
shells, the choice of I; and I, has been determined
by using Eqgs. (50) and (54). In addition, since the
sign of the experimental value of B,, for the (0,0, 4)
shell is not known, we assume this value as nega-
tive, based on recent calculations. % This fit gives
the values of I; and I, presented in Table IV.

D. Comparison of Experiment and Theory

All of the B,,, B,,, and B,, constants can now be
calculated. Table V shows the comparison of cal-
culated and experimental values for the three shal-
low donors for the few sites that can be definitely
identified. The agreements for the dipole constants

" are as good as for experimental and theoretical

Fermi contact interactions. ®

The predictions for other sites which are as yet
uncorrelated with the experimental data are given
in Table VI. Ideally, it should be possible to as-
sign all experimental shells to actual lattice shells
on the basis of the predictions presented in Table
VI; however, as discussed above, discrepancies
occurred in the fitting procedure even before the
predictions were evaluated. Thus the predictions
must be considered as having only qualitative ac-
curacy. Despite this limitation, a number of
worthwhile features concerned with the shell as-
signments have been revealed by the calculations.

One feature is the additional confirmation of
shell K as the (0, 0, 8) shell — not only because of
the exclusion of the (0, 0, 12) and more remote
shells - but also because of the actual B,, and B,,
predicted values. The predictions also confirm
shell E to be the (1,1, 1) shell since it is (i) pre-
dicted to have an order of magnitude larger dipolar
constant than any other shell and (ii) the predicted
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TABLE V, Comparison of the total dipolar constants
(in kHz). The three * values were used for fitting. The
first number refers to ky=2m(0. 85)/a. The upper sign
is for ky=2m(0. 80)/a and the lower for ky=2m(0.90)/a.

As P Sb

Site (0, 0, 4)

Cale * 43+1 39=+1
B,, Exp 57 413 46

Calc * —46+0 —-40£0
B,, Exp 1561 14131 1341
Site (0, 0, 8)

Cale 18F9 15F9 14F8
B,, Exp 16 14 ces

Calc —-12+6 —-12+6 —-11+6
B, Exp 731 <1121 seo
Site (4, 4, 0)

Calc -32+0 -28+0 -25+0
B,, Exp —41% -34 -28%

Calc * 130+0 115+0
B,, Exp 148 160 79

Cale —27+4 —24+4 —22+4
B,, Exp 1721 1401 1201
Site (1, 1, 1)

Cale 1500 F700 1000 ¥ 500 850 F400
B,, Exp 1260 700 520

value of this constant is reasonably correct. The
prediction of Table VI, when used in conjunction
with the Fermi contact calculations, strongly sug-
gests shells Hand O areto be chosen from the
(3,3,3), (4,4,4), and (4,4, 4) lattice shells,

Some of the lattice shells are related by inver-
sion. Examples of these are (4, 4,4) and (4, 4, 4),
(8,8,8) and (8,8, 8), (2,2,4) and (2,2,4), and
(2,2,8) and (2,2, 8). Because of the approximations
made in obtaining the effective-mass envelope
functions, the Fermi contact constants and the B,,
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constants are predicted to be equal for the inver-
sion-related shells. However, inversion is not a
symmetry of the shallow-donor problem and the
experimental results show no such features. On
the other hand, even with the approximations made,
the B,, and B,, constants are nol equal (see Table
VI) for inversion-related sites.

There are two other general features of the the-
oretical values that agree with the experimental
results: (i) The magnitude of the B;; values for
a given site varies from donor to donor in the same
way that the Fermi contact constant varies, i.e.,
through the donor dependence of the envelope func-
tion. (ii) For a given lattice site, the magnitudes
of the Fermi contact constant and the three B;;
values are seemingly uncorrelated because the in-
terference effects between the cosine terms are
different for all four hyperfine constants.

In addition to the discrepancy discussed in con-
nection with Eq. (52), there is another feature of
the experimental results that is not explained by
our dipole theory. Shell F has large negative val-
ues of B,, (see Table III) and none of the values
predicted in Table VI have this feature.

V. CONCLUSIONS

A theory has been developed for the anisotropic
(dipolar) hyperfine constants of lattice nuclei in-
teracting with a shallow-donor electron that is de-
scribed by the effective-mass approximation. When
applied to the ground state of the shallow donors
in silicon, the basic features of the experimental
results can be qualitatively and semiquantitatively
understood for the first time. However, it is not
possible at this time to assign all of the experi-
mental shells to definite lattice sites using both the
Fermi contact and the B;; values. We believe that
this is due to the inadequacy of the effective-mass

TABLE VI. Theoretical predictions of the By, values for the arsenic donor. Three numbers are given for each By;.
The first number refers to %y a/2m=0.85, the upper sign refers to ko a/27=0.80, and the lower sign refers to ky a/2m

=0.90. The theoretical values are based on fitting to the three starred (*) values.

Site 0,0,4) 0,0,8) 0,0,12) 1,1,1) @3,3,3) 4,4,4) 4,4,9 6,55 @,7,7
B,, 57,0% 18F9 5F2 0 0 0 0 0 0
B,, —55.8% -12 £6 -1+3 1500 F700 200 F150 95+6 125F 7 10¥ 8 1+8
B, 0 0 0 B,, B,, B, B,, B,, B,
Site (8,8,8) ®,8,8) (2,2,0) @i,ni,53) (3,3,1) (2,2,4) 2,2,9 (@1,1,5) (4,4,0)
B, 0 0 -407F5 —-60%15 417F8 24F2 24F2 -54%18 —-32+0
B, 25F15 22F20 165+ 30 650 F 250 250 F150 95 + 20 55410 320F150 148, 2%
B, By, B, —-15¥1 —450+250 —320+150 —120F15 -95%8 75F100 — 27+4
Site (3,3,5) (5,5,1) 1,7 (,5,3) 3,3,7 (6,6,0) 2,2,8 (2,2,8) (8,8,0)
B, ~-17+9 33F10 —35x20 12F7 -144+15 -1845 6F9 6F9 —8415
B,, 120 ¥80 0F25 200F100 10F30 80 F50 85 F30 40+2 18+10 35F 25
B, —50£50 60 F60 10 +£50 —36+40 10 ¥30 615 —45+10 —30+£20 —2+2
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approximation in accurately describing the ground
states of the shallow donors,*

The theory presented in this paper is based on
the equivalent-orbital formulation. The theory re-
quires only three constants I,,, I, and I, to explain
a large number of experimental results. We are
well aware that the dipole theory could also be
formulated in terms of a LCAO or a Wannier-func-
tion representation of the Bloch functions. Also,
it is possible to extend the theory to next-nearest
equivalent orbitals. However, recent calculations®
using pseudopotential Bloch functions have shown
that the equivalent orbitals give surprisingly good
fits with just the three constants. We believe that
any improvement in the theoretical hyperfine con-

stants must wait for better ground-state wave func- -

tions for the shallow donors. A
APPENDIX A: PROOF OF SOME INTEGRAL RELATIONSHIPS

'i‘he proofs of Egs. (24)-(33) are based on the
symmetry properties of the equivalent orbitals and
the operators involved in the integrals as discussed
below. Equation (24) can be proven by observing
that

(Kol 28/7] X = (e /7% Xa ) = | 9%/7° | X ) -
Thus, . '
I“(Q, a)a(xal?,za_'rz/rslxa)Eo .

To prove Eq. (25), it is noted that all but the last
equality follow by a careful consideration of Fig. 1,
where, with site (1,1, 1) as an origin, the direc-
tions -y, —x, +x, and +y, respectively, are in-
distinguishable for the four respective integrations
of Eq. (25). The last equality follows because the
first four integrals are equivalent to I,.(1, 2)

=1,,(1, 2) as essentially explained above; but

Ixx(l, 2) +Iyy(1; 2) +Iez(1; 2)=0 s

since we know the diagonal components of the di-
pole operator have the property
D,.+Dy,+D,, =0,
|

n=~Ig/Il=—[<s+(-—x—y+z)p+(xy;—yz-xz)dlDw|s+(x+y+z)p+(xy+yz+xz)d) ]

E. B. HALE AND
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[

and hence
Ixx(la 2) = —%Isz(la 2) .

The validity of Eq. (26) can again be seen by in-
spection of Fig. 1 and realizing that under the
transformation z-~ -z, D,, remains invariant.

The proofs of Eqs. (27)—(33) can be obtained
using similar symmetry arguments which are fully
discussed in Ref. 18.

APPENDIX B: RELATIONS BETWEEN THE INTEGRAL
PARAMETERS

It is of interest to consider possible relations be-
tween the integral parameters I,,, I, and I,. We
shall discuss these relations in terms of two new
parameters 7 and £, defined as

EL.=n]i=~1,.

It will be shown that when a nidive model of the
equivalent orbitals is used, 7 and £ are simple
fractions.

If the ‘equivalent orbitals are approximated by
MO-LCAOQ,

XI(x; ¥, Z)= (CI’,,:&: <I>a)/ZI\T ’
where N is a normalization constant and
B, =S, )+(x+y+2)pyr) + (xy +yz+x2) dyr) 4+ ¢+

where s,(r), p,(), and d,{r) are radial functions
centered on site b. (We consider only o-type or-
bitals.) Since the conduction band of silicon is
composed primarily of »=3 atomic states, we shall
ignore f and higher angular momentum states.

We have examined the results of the MO-LCAO
approximation in detail for sp® hybrids formed from
silicon-atom wave functions. !®* These calculations
show that the main contribution comes from the
atomic orbitals located on the site of interest and
contributions involving orbitals on the nearest-
neighbor sites are about 1% of the total.

These approximations yield.

X[{s+x+y+2)p+(xy +yz+xz)d|Dn,} s+(x+by +2)p+(xy+yz+x2)d) |7

=((p|3x%y%/r%|p ) +(d|3x2222/¥5|d) - (s |3x292/r"|d))

x(p|3x%?/r*|p) +(d|3x2y%22/r5| d)y +(s|3x /S a))

=(P*++D?*-SD) (P*+4D?*+SD)? |

where
R
P2=fokpafrd1', Dazj; d¥%dr ,

and

_ SD:foderdr .
Similarly, we obtain -

§= =/l = (P +} D% - SD)($ P £ DV,
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The approximation of sp® hybrids is obtained by
setting d=0. In this case, we have £=%and n=1.
The fact that the sp3-hybrids approach is a poor
approximation is illustrated by noting that this pre-
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dicts B,,(0, 0, 4) to be zero when, in fact, it is
large (see Table IITI). [It was noted by Feher* that
d character was needed to explain B,/ (0, 0, 4).]

*Work supported in part by Army Research Office and
National Science Foundation. ’
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Longitudinal Optical Phonons in Thin Films of CdS, CdSe, and Their Mixtures
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LO phonon energies have been determined by means of electron tunneling in Sn-SnO-semi-

conductor-Sn junctions.

For mixtures of CdS and CdSe, we find two distinct structures in the

tunneling data which occur at lower energies than the LO phonons for pure CdS and CdSe.
These results agree with infrared spectroscopic data on bulk crystals. This agreement pro-
vides strong evidence that only short-range forces are important in determining the optical -

phonon spectra.

In recent experiments, Giaever and Zeller! ™3 as
well as MacVicar et al., * have demonstrated that
it is possible for electrons to tunnel through thin
layers of semiconducting materials which are sand-
wiched between two metal films. By examining the
current-voltage (I-V) curve of such tunneling junc-
tions, Giaever and Zeller?® found a resistance de-

crease in such devices at applied voltages corre-
sponding to the longitudinal optical (LO) phonon en-
ergy of the semiconductor material. Such resis-
tance changes are usually observable when first-
or second-derivative measurements are made of
the I-V curve. The decrease in resistance can be
explained by considering the interaction of the tun-
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