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Calculation of Anisotropic Hyperfine Constants for Lattice Nuclei near a Shallow Donor*

Edward B. Hale)' and Robert Lee Mieher
Department of Physics, Purdue University, Lafayette, Indiana 47907

(Received 19 October 1970)

A method is presented for calculating the magnetic anisotropic (dipolar) hyperfine constants
for lattice nuclei near a shallow-donor impurity. The method assumes that the wave function
of the donor electron can be expressed in an effective-mass form, i.e. , a slowly varying en-
velope function times conduction-band Bloch functions. For each dipolar hyperfine. constant, ,
two separate calculations are performed. One calculation is for a local region about the lat-
tice nucleus of interest. The greatest part of the interaction occurs in this region (about 85
+10%). The second calculation is for the more distant region. The dipolar constants in the
distant region are calculated without considering the details of the Bloch functions and are
evaluated by an integration involving only the envelope function. In the local region, the de-
tails of the Bloch functions must be considered. The Bloch functions are expressed in terms
of equivalent orbitals. Symmetry arguments using the properties of these orbitals simplify
the calculation. The final results show that the local contribution can be expressed as products
of a few intrinsic lattice parameters, which are the dipolar matrix elements between equiva-
lent orbitals, and a set of coefficients that is not difficult to evaluate. The resulting dipolar
constants vary a great deal from one lattice site to another. Numerical results have been
computed for the shallow donors —arsenic, phosphorus, and antimony —in silicon. Compari-
son of theoretical values with experimental values shows qualitative and semiquantitative
agreement.

I. INTRODUCTION

Many properties of shallow impurity centers in
semiconductors can be understood thr ough the ef-
fective-mass model as formulated by Kohn and
t.uttinger. ' 3 An example is the calculation of the
isotropic or Fermi contact hyperfine interaction
between the unpaired impurity electron and a lattice
nucleus, which has been discussed in detail by
Feher4 and, more recently, by Hale and Mieher. '6
Their essential conclusions were that these isotrop-
ic constants can be qualitatively understood in terms
of the effective-mass theoryq but that refinements
are still necessary to obtain quantitative agreement
with the experimental results. The anisotropic or
dipolar hyperfine interactions have not even been
qualitatively understood. Understanding the physi-
cal origin of these interactions in detail has become
more important recently since new electron-nuclear
double-resonance (ENDOR) measurements in sili-
con have determined more than 40 independent
dipolar hyperfine constants for each of the three
impurities: arsenic, phosphorus, and antimony.
This paper presents a calculation, based on the
effective-mass model, which explains the observed
qualitative features for these hyperfine interactions
and yields semiquantitative agreement with the ex-
perimental results. '

Theanisotropic hyperfine interactions are com-
puted as matrix elements involving the operator of
the dipole-dipole interaction between a nucleus and
the electron and the wave function of the impurity
electron. To obtain this wave function, the standard

Kohn-I uttinger approximation is assumed, i.e. ,
the total wave function is an appropriate ground-
state sum of the degenerate valley minima wave
functions, where each valley function is a slowly
varying envelope function times the conduction-hand
minimum Bloch function of that valley.

When performing the integrations necessary to
obtain the above-mentioned matrix elements, the
principal difficulty lies in including the details of
the Bloch function throughout the entire crystal. It
is assumed that the integration over a, "distant" re-
gion far away from the nucleus of interest can be
performed without including the Bloch-function de-
tails since an average value over each distant unit
cell of the crystal ean be used. However, in the
"local" region such an averaging technique is not
valid and a reasonable approximation for the Bloch
function must be used.

In the present paper, the Bloch function is ex-
pressed in terms of equivalent orbitals that were
first used in solids by Hall. ' The Bloch functions
are formed by taking appropriate sums of the equiv-
alent orbitals. The major advantage in the use of
these orbitals is that the four orbitals associated
with a lattice-site transform into one another under
the lattice-site point-group operations T~ of the
crystal. When the above symmetry requirements
are combined with the symmetry properties of the
dipole-dipole operator, substantial simplifications
result in evaluating the local-region integrations.
These integrations can then be reduced to a deter-
mination of three intrinsic crystal parameters, each
parameter being multiplied by an easily evaluated



"local" coefficient which depends on the location of
the conduction-band minimum in k space and on the
location of the nucleus of interest relative to the
impurity.

In Sec. II, the form of the total ground-state wave
function is presented. In Sec. III, the theoretical
expressions for the anisotropic hyperfine interac-
tions are developed. Section IV' gives a comparison
of the theoretical and experimental results for the
group-V impurities in silicon.

u. EFFECTIVE-MASS mOUND-STATE WWVE FUNEST&ON

A. Total V4ve Function

The effective-mass ground-state wave function in
slllcon can be written as

8

g(r)= —
6

Z F(r) O, (r),
where the sum is over the six degenerate conduc-
tion-band minima —one along each of the (100)
k-space axes; 4;(r ) is the conduction-band Bloch
function at the jth minimum and F,(r) is t.he slowly
varying envelope fUIlctlon appropriate to the jth
mlnlmum.

B. Envelope Function

A form for the effective-mass envelope function
lS4, 6

F,(r) = F,„(~)(a ', a, /a. "') '"

x exp(-([(~'+ y')/n'a ', j+ (z'/n'a ', )]'")

the C (k) are appropriate normalization and phase
constants; and the T are translation vectors de-
fined as

1"4=5(j+$)a,
where a is the lattice constant andi, ~, and k are
unit vectors along the (100) directions ~

Figure 1 illustrates the numbering of the four
orbitals labeled by the subscript &. The orbitals
are "equivalent" because (i) the four orbitals as-
sociated with a given site transform into one another
when the point-group operations are applied at that
site, and (ii) like-numbered orbitals in different
primitive lattice cells transform into one another
for the crystal-translation operations.

In addition to the "equivalence" requirements,
the crystal symmetry also places restxictions on
the C (k) coefficients. For example, in silicon
with a conduction band of symmetry Al and for k
along [100],

Cl = C4= - C~ = -C3, (6)

with the C's independent of I k).
For the lowest conduction band in silicon, Eq.

(4) may be simplified to

e(a„)=c,(Z.e'"" [(X;+X4)-e"".(X)+XI)]),

&&[exp(-~/na")] '

The above expression is for the z valleys; the x-
and y -valley expressions can be obtained from sym-
metry considerations. In Eqs. (1) and (2), a„a„
and a * are the transverse, longitudinal, and iso-
tropic radii; A is a normalization constant for the
Whittaker function W„&&2(2x/n) and the index n is
donor dependent because of the different donox
ionization energies.

where f=-,'boa and ko is the position of the conduc-
tion-band minimum. Similar derivations yield

(0 )=Ci(Q e' 0 [(Xi +X3) ei (X~+X4)])

(4,2,2j

C. Bloch Functions Expressed in Terms of Equivalent Orbitals

The Bloch functions can be expressed in terms
of the equivalent orbitals as shown by Hall. ' A

typical Bloch function is
4

(r ) g. g (k) /if / TyaeiR i~
X

ttl(
) (4)

whirr~ X „(r—r ) ts the «h equivalent orbital as-
sociated with the n th primitive cell; r is the vec-
tor to the corner site of the n th cell the sum over
& is a sum over the four Orbitals in a given cell;

(0,0,0) (40,0)

FIG. 1, Schematic iBuatration of the equivalent orbit-
als and their numbering. The primitive cell located at
the donor Site (0,„00) l8 Bho&Q
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C, =C,'=C

Furthermore, let

(10)

where C 1 and C 1' are possibly different normaliza-
tion constants. In the ground state each valley
contributes equally to the wave function, thus

Cl = Coe $4

where Co is a real constant and 4 will eventually
be appropriately chosen.

The ground-state wave function of Eq, (I,) may
now be written as

q( r ) = (2 C, /$6) Q [y 1"[F„cos(k,x„+@)+ F, cos(koy +~ )&+ "'. c~&'(ko '~ &
' )]

+y2 [ —F„cos(k,x +-', t'+4) —F, cos(koy +~ f+@)+F,cos(koz +&&)]

yltp[ —F„cos(k,x +-," f+&I)+F,cos(koy„+@)-F, cos(ko~ +if+&~)]

+ g, [F„cos(k,x„+s) F, co-s(koy„+'2f+@)-F, cos(ko&., +~2 &+ ~)]),

where the orbitals are considered to be real. For
brevity of notation lt ls convenient to x'ewrlte this

equation as

(II'1 &1 + II'a Xs"+ Iys X3 + II'g X4 ), (13)

where the W" coefficients are defined by Eqs. (12)
and (13).

It is convenient to visualize the equivalent orbitals
as similar to bonding and antibonding molecular
orbitals between lattice sites for the valence and

conduction bands, respectively. However, the ap-
plication of equivalent orbitals to solids has been
criticized ' and Hall has commented on the criti-
cism. Part of the criticism seems to be based on

the association of equivalent orbitals with molecular
orbitals formed by a linear combination of atomic
orbitals (MO-I CAO). Indeed, the MO-I CAO rep-
resentation has beeri used in the few applications
of equivalent orbitals in the literature. However,

we shall avoid a detailed representation of the

equivalent orbitals (expect for order-of- magnitude
estimates) and we shall formulate the theory in

terms of a few constants to be fit to the experi-
mental data. Such an approach is not inconsistent
with other widely used band theories, such as pseu-
dopotentials and LCAO's, which also use adjust-
able pax'axneters.

Although we shall not use a detailed expression
for the equivalent orbitals in this papex, we believe
that it may be possible to calculate such orbitals.
Indeed, a procedure fox just such a calculation may
have already appeared in the literature. Anderson'

has proposed a pseudopotential method for calcu-
lating "ultralocalized functions" for energy bands.
These "ultralocalized functions" seem to us to be
similar to, and possibly identical with, the equivalent
orbitals of Hall.

III. CALCULATION OF ANISOTROPIC HYPERFINE
INTERACTIONS

A. Anisotropic Tensor

The anisotropic part of the hyperfine tensor may
be written as

P=M »«»«»(f'lD I ~) &
(14)

where the magnetic constants are defined in the
standard manner; g(r) is the the wave function of
the unpaired electron; and D is the dipole-dipole
tensor operator whose components are

D(, =(sx, x, —r'5„)/r',
where ~ is measured from the nuclear site of in-
terest; x& represents x, y, or s for j =1, 2, or 3,
respectively; and ~&; is the Kronecker 5 func-
tion. It is convenient to consider the tensor ex-
pressed in the cubic-crystal-axes coordinate sys-
tem. The x, p, 8 axes are measured f lorn an 011-
gin located at the nucleus on the lattice site of in-
terest. The coordinate system centered on the
donor will be designated by a subscripted d, e.g. ,

The lattice-site coordinates (nl, n2, ns) will
be designated in the standard manner as shown in
Fig. 2. The dipole-dipole tensor for nuclei in the
fll'st Bl1d third qlladrallis of tile ( 110) plalle will be.
computed, i.e. , those lattice sites with coordinates
nl =n, . Inspection of Eqs. (14) and (15) shows that

(16)

8Jld

and, furthermore, for sites with nl=nz,

&..=&y. and &:=&yy ~

As a consequence of Eqs. (16)-(18), the dipole
tensor for any nucleus under consideration can be
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expressed by at most three independent components
which are chosen as B„,B„„and8„,.

The anisotropic hyperfine tensors are given by
Eqs. (14) and (15), with g given in Eq. (13).
Ther efore,

a&&=(3 2gg. q&v & I col ) L ( w.'X.'ID;;I w„y,&,
l, fit, N, Q

(1S)
where the summations over / and m run over the
entire lattice. The above equation will be evaluated
by dividing the problem into a local and a distant
contribution.

B. Distant Contributions

If the integration in Eq. (14) is considered as a
summation over all primitive cells of integrations
over each cell, then it is clear that the details of
the Bloch function within the cell are unimportant
for cells so distant from the nuclear site of interest
that D&& varies little over the cell. Also, the effec-
tive-mass theory assumes that the envelope function
F; [see Eqs. (1) and (2)j is slowly varying over a
primitive cell. Therefore, using the approxima-
tions that I,. and D;; are slowly varying for distant
cells and using the orthonormality properties of the
Bloch function one obtains

B~;(distant)= —,'gg„P~P~Q (F~I 8,&IF„), (2. p)

where we have now replaced the sum over all prim-
itive cells of I' D;; by an integration over the entire
"distant" region. In calculating the above, we have
found the distant contribution to be only a small
percentage of the total dipole interaction. To save

TABLE I. Typical distant dipole interactions for dif-
ferent donors. The interactions vary with donor as shown
because of properties of the donor-dependent envelope
function. The symbol * means the value is zero by sym-
metry. The symbol **means the calculated value is zero
but is not required by symmetry.

Site

(0, 0, 4)

{3, 3, 3)

(4, 4, 0)

Donor

As
P
Sb
As
I'
Sb
As
P
Sb

(kHz)

13.1
. 7. 5
6.6

3 ~ 7
2.4
2. 0

axe
0 Hz)

4. 1
2. 7
2. 2

5.5
3.7
3.1

(kHz)

computer time, we have thus used only the isotropic
part of the envelope function, so that

8;q(distant) = gg„@~p.„(F;I D, q I F, ) . (21)

In the central-cell region, centered on the donor,
F, is not slowly varying and thus Eq. (21) might
not be valid. Therefore, we have considered this
region in detail and have concluded that the cen-
tral-cell region contributes only a small fraction
to 8,

&
(distant) and can be well enough estimated

by extending the integration in Eq. (21) over this
region.

In addition, we have found that the integration in
Eq. (21) is insensitive to theposition of the boundary
between the local region centered on the nucleus of
interest and the distant region provided the local
region is less than two primitive-cell volumes. '
Thus, we have calculated 8;, (distant) by performing
the integration in Eq. (21) over the entire crystal.
Table I shows the results of our distant calculations
for a few sites for the different donors in silicon.
Table II shows a more extensive list of sites for an
arsenic donor. Note that the distant contribution
is small compared to the experimental values given
in parentheses.

)LATTICE CONSTANT=5. 43 A

FIG. 2. Tetrahedral lattice with donor at coordinate
origin. The figure shows 17 neighboring nuclei which
are members of seven different shells. The dipole tensors
are expressed with reference to the x, y, and z directions
shown in the figure.

C. Local Contribution

1.. Appxorimations

In evaluating the local contribution using Eq.
(19), we have restricted the calculations to the four
equivalent orbitals associated with the particular
lattice site of interest at R„i.e. , we neglect the
contributions of next-nearest and more-distant X's.
%e believe this is a valid approximation for several
reasons. If the contributions of next-nearest or-
bitals are estimated" using an sp hybrid approxi-
mation for the g's, then the contributions are small
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Class Site
&gz

0 Hz) (knz)

[001] (o, o, 4)
axis (O, O, 8)
class (0, 0, 12)

13.1 (57. O) ++ (~55. 8)
5.4 (16.O) ++ (+7.6)
2, 9 Q &ac

TABLE II. Distant dipole interactions for various
sites about an arsenic impurity. Sites are grouped into
various classes for ease of comparison with experimental
data, Values in parentheses are total experimental
values based on site correlations using the Fermi con-
tact interactions. Inversion-related sites have the same
distant interaction in this approximation. The symbol *
means the value is zero by symmetry. The symbol **
means the value is zero but not required by symmetry.

o~

bitals associated with the lattice site of interest.
For each 8;, term one obtains 16 integrals of
the form

I&y (a& 0)= 32&o~Ãgn Pa Pn(XulDol &I ) ~

where, clearly,

I„(a,u)=I&, (V, &),

(22)

(23)

since D and the y's are real. The tetrahedral
equivalence of the orbitals permits other simpli-
fications and was one of the motivating reasons for
using the equivalent orbitals. '

Thus for the D„
integrals, Appendix A shows

[111] {1, 1, 1)
axis (3, 3, 3)
class (4, 4, 4)

(5, 5, 5)

(11O) (2, 2, O) -9.O

plane (1, 1, 3) 10.8
class (3, 3, 1) —4. 4

(2, 2, 4)
(1, 1, 5) 9. O

(4, 4, 0) -3.7
(3, 3, 5) 2. 6

(5, 5, 1) - 2. 7
(6, 6, o)

(1, 1, 7) 5. 8

(5, 5, 3)
(3, 3, 73 2. 9

(-41.6)

17 (1258)

3.0
2.3

13.4
2. 0
7.3
2, 5
0. 6
5.5 (148.2)
2. 2

4. 1
3.7
0.3
3.2

1.0

6. 0
2. 5
4. 8
1,5
(72 2)
3.6
0. 8

0.4
1.9
2. 3

I„(o,a)=0, (24)

I„(l,3) =I„(1,4) =I„(2,3) =I„(2,4) = --',I„(1,2),
(25)

I„(3,4) =I„(1,2) . (26)

(27)

(23)I„,(3, 4) = I„,(1, 2)—,

These results show that all the D„integrals can be
expressed in terms of one in'"insic parameter which

is chosen as I„(1,2) and will hereafter be referred
to as simply I„.For the D„,integrals,

I„,(2, 2) = -I„.,(3, 3) = -I„,(4, 4) =I„,(1, 1),

I,„(1,3) =I„,(1, 4) =I„,(2, 3) =I„(2,4) = 0 . (29)
compared to the contributions of the nearest orbi-
tals. Also, recent calculations' have compared
equivalent orbital results with dipolar calculations
using pseudopotential Bloch functions. These com-
parisons show that the nearest-equivalent-orbital
approximation of the Bloch function is probably
better than the effective-mass-theory approxima-
tion of the shallow donors.

A further simplification can be made in evaluating
the local integrals in Eq. (19). Namely, since
F(r ) is a slowly varying function over a unit cell
(the effective-mass theory assumes this), F(r) can
be assumed to have the value F(R, ) near the R,
lattice site. This approximation can be considered
as the first term in a Taylor series expansion of
F(r) about R, . Detailed estimates'8 of the second-
and higher-order Taylor series terms show that
they are even less important than the contribution
of the more-distant equivalent orbitals mentioned
above.

2. Reduction of I oca/ Interaction to Three Intrin-
sic P axarnetexs

According to the above discussion, the "local"
part of the dipole interaction will be restricted to
those terms in the summation over l, n, &, p, in

Eg. (19) that correspond to the four equivalent or-

For the D„integrals,

I„,(1, 1)=I„,(1, 1),

I„,(2, 2) = -I„(3,3)=I„,(4, 4) = -I„,(1, 1),
I„,(1, 2) =I„(1,4) =I„,(2, 3) =I„,(3, 4) = 0,

and finally,

I„,(1, 3) = —I„,(2, 4) =I„,(1, 2) .

(30)

(31)

(32)

(33)

The results are that all the D„,and D„,integrals
can be expressed in terms of two intrinsic param-
eters which we have chosen as I„,(l, 1) and I„,(1, 2)
and which will hereafter be referred to as simply
I& and I~, respectively.

Thus, the many integrals in the local interaction
have been reduced to three intrinsic integrals, I„,
Ij, and I2. In general, these three integrals are
independent, but for an oversimplified model they
can be shown to be related. Possible relationships
between the three integrals are discussed in Ap-
pendix B.

3. Final Derivation of Local Contribution

Before the local contributions to the dipole tensor
can be evaluated, it is necessary to know the val-
ues of ko and C that appear in Eq. (12). The term
C was introduced in Eq. (11), and it determines the
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phase of the Bloch function [Eqs. (7)-(9)]. The
linear combination of Bloch functions given'in Eq.
(1) as the ground state assumes that the Bloch func-
tions are phased to be real at the donor site. %e
shall assume that only the four equivalent orbitals
associated with the donor site contributed to the
Bloch function at this site, i.e. , we neglect any
contributions f1oIIl IIlore distBJlt orbltRls. This
RppI oxlmation ln the determination of 4 seeIQS to
be consistent m1th the Qeglect of distant olbitRls 1Q

the evaluation of the local part of the dipole inter-
action discussed above. These considerations lead
to

B„(local)= W,,I„,
&„,(local) =W»I, + W„,I, ,

&„,(local) = W,~I~+ W,2I2,

(35)

(36)

(3'f)

Wgg = 2%'1 WP + 2WS W4 —Wg Ws —W~ W4

—W2 W3 —W3 W4,

W~I = Wg+ wP —Ws —W4,

W,a = 2( Wi Wa - W3 W4},

W'gI = 8'1 —W3 + W~ —W4

W,2
= 2( Wg Ws —W2 W4),

and

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(34)

The location of the conduction-band minimum in
silicon is on the hq axis, between 80/0 and 90k of
the distance to the X point, i.e. , 0.8 &ak/2m & 0.9.
Because of this uncertainty in ko, we have calculated
the 8 tensors for several values of ko. Thus the
final theoretical predictions mill be given as a range
of values corresponding to the above range of ko.

Equation (12) 18 expressed 1n terms of r, the
corner positions of the primitive cells of the lat-
tice. However, it is desirable to express the final
theoretical 8 (local) values in terms of the lattice
site positions 8, . This change may be made for
the a sites, the odd-numbered lattice sites, by the
substitution r = R„--,'(i +j +k)ao. For the b or
even-numbered sites, H, is the same as r . How-
ever, when Ecl. (13) is substituted into Eq. (19) and
only the @'s associated with the b sites are re-
tained from the summation over l and w, it must
be kept in mind that the four g 's associated with
the b sites come from four different primitive cells
with origins located at r = 8, , —T .

%e now write the final expression for the local
contribution

8', = -F,C„-+F,C'„-F,C, ,

W, = F;C„'-F,C, -F', C, ,

(46)

(46)

C„'=cos(koX, --,'ma-,' f) .
The above results are for the b (even-numbered) sites,
the corresponding results for the a (odd-numbered)
sites are obtained by interchanging the + and-
superscripts of the C coefficient in Eqs. (43)-(46).
The F, envelope functions in Egs. (43)-(46) are to
be evaluated at the corresponding lattice site R, .

Considering the complexity of the problem, the
relative simplicity of the 'above equations for the
local dipolar hyperfine integration should not be
overlooked, The three parameters I„,I&, and

Iz are intrinsic parameters that depend only on the
host lattice and are independent of donor. The five
W factors are the parameters which depend on the
donor impurity through the envelope function and
on the location of the nuclear site of interest through
the envelope function and cosine functions. In ad-
dition, the W parameters depend also on the host
lattice through the location of the conduction-band
DllQlmum k O.

To complete the local-region calculations, values
for the intrinsic parameters must be obtained.
Ideally, these could be calculated from first prin-
ciples using Eq. (22}; however, an accurate detailed
form for the equivalent orbitals is not known at this
time. Therefore, we shall obtain the integral pa-
rameters 'by fitting to the experimental values. In
the present case, we shall use three independent
experimentally measured anisotropic hyperfine con-
stants and then attempt to predict the more than
100 other experimental constants for the three
common group-V donor impurities in sj.lieon.

IV. EXPERIMENTAL RESULTS AND THEORETICAL
PREDICTIONS

A. Rcvlc% Of EXPC1'1H1CHf31 RcsQltS

The most recent and, complete data on the shal-
low-donor hyperfine interactions are given in Ref.
5. Table IH lists the experimental hyperfine con-
stants in a form that is convenient for comparison
mith the theoretical predictions. IQ addition to the
values of the constants, the experimental results
also give the symmetry class to which a, sheD be-
longs. The shells A and K must be associated with
a (001) axis class. The shells C, E, II, Z, 0, and

N must be associated with a (111}axis class. The
remaining shells must be associated with a (110}
plane ~lass but not along either the (001}or (111}
axes.

Considerable difficulties occur when an attempt
is made to assign the experimental shells to spec-
ific lattice sites (see Ref. 6 for a discussion of
these difficulties). One motivation for the present
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TABLE III. Experimental hyperfine interactions. All
values are in kHz. Absolute value signs occur because
the signs cannot be determined by ENDOR. The symbol
* means that the value is zero by symmetry. The experi-
mental error is typically +1 or 2 kHz. The values are
taken from Ref. 5.

Shell
Donor ) ga )clRss

.Q
{110}
plane

566 --48.0
524 —40. 2
387 —36.0

101.6
84.0
78.6

TABLE III. (continued)

27.6
22. 8
31.6

Shell
class

A

(001)
axis

{,110}
plane

C

Rxls

{110}
plane

Donor

As
P
sb

As
P
Sb

As
P
sb

As
P
Sb

J 2a(

3860
2981
3101

3000
2254
1833

2037
1649
1397

1292
1117
1003

57.0
41.4
46. 0

—41.6
—34.0
—28. 6

0+
0+
pg

4. 2

3.6
0.0

I 55.8I
I 41.4 I

t 34.2l

148.2
106.2
79.2

5.8
5.0
6.0

20.4
16.6
17.4

p+
0+
0*

72. 2
39.8
20. 2

25.4
22. 2
17.4

8
{iso}
plane

S
{110}
plane

T
{110}
plane

{110}
plane

As
P
Sb

As
P

As
P

364
398

0.0
0.0

242 40
317 29.4
437 20.4

428 24. 8
379 21.0
332 15.0

377 —5.4
410 '- 5.4

0.0
0.2

—2. 8

9.2
7.4

4.4
3.8

30
23.6
19.0

25.0
19.4
12.0

0.0
0.0

4. 2

32. 2
20. 8

RxlS

{iso}
plane

G

{iso}
plane

axis

{iio}
plane

axis

&ooi&

axis

L
{tio}
plane

M
{110}
plane

N
(111)
axis

0
(iii&'
RXiS

As
P
sb

As
P

As
P
Sb

As
P
Sb

As
P

As
P
sb

As
P

As
P
Sb

642
270
293

1121
840

806
764
761

801
689
703

718
685.
643

694
739

758
663

741
582
425

777
612
559

607
612

739
598
670

p )j(

p+
0*

1258
700
522

7.0 — 1.0
5.0 — 1.2
4.6 —.1.2
0*
pg

p+

—20.4
-17.4
—14.0

p &ac

0+

62.4
50.6
44. 6

31.8
27. 8

22. 6

5.4

16.0
14

I 7.6 l

& fig

—14.6
11~ 2
5.8

—60.8
—40. 6

37 ~ 2

pg
pg

9.8
2. 6
3.8

65. 2
49.6
44. 0

4. 2
3.4

pg

p+

pg

35.8
32.6
31.4

151.0 -41.2
116.4 —28. 2

4.6
11.8

5.6
5.0
5. 2

12.0
13.8
]4,4

pg

0+

8.2
7.6

41,4
35.6
30.6

calculation was to assist in this assignment. At
first it seems somewhat surprising that the largest
Fermi contact interaction (shell A) or wave-function
density must occur at the fourth (0, 0, 4), twenty-
second (0, 0, 8), or more remote neighbor shell;
however, the effective-mass theory predicts that
the (0, 0, 4) site is expected to have the largest
wave-function density. '~ ' Thus, because of the
remoteness of all the other (001) axis shells and
because of the theoretical prediction, there is no
doubt that shellA is the (0, 0, 4) shell. Similar
arguments strongly suggest that shell K is the
(0, 0, 8). Contact calculations suggest that the group
of six observed (111)axis-class shells is contained
in the group of lattice shells (1, 1, 1), (3, 3, 3),
(4, 4, 4), (4, 4, 4), (5, 5, 5), and (V, V, V). The quite
large dipolar constant for shell E indicates that it
is the (1, 1, 1) nearest-neighbor shell. The contact
calculations slightly favor shell C as the (3, 3, 3)
shell, but this is not certain and the remaining
(111)axis-shell assignments are not known from
contact-interaction considerations. '

The majority of the experimental and nearby lat-
tice shells are of the f110}plane class. The con-
tact calculations strongly Suggest that shell B is
the (4, 4, 0) shell. They suggest no other specific
assignments but they do restrict, to some extent,
the possible lattice sites to which an experimental
shell can be assigned. Based on the above assign-
ments, the three intrinsic parameters will be chosen
and predictions will be made for the other shell di-
polar constants.

P
{11o}
plane

As 696
662
629

4.8
6
5..8

0.4

4.6

4. 2

4.8

B. Predictions for B„Dipolar Constants

The equation used to predict the B„dipolar con-
stants is



B„,(o, o, 4) = w„(o,o, 4)(I, +I,)

Rnd

B„,(4, 4, O) = W„(4,4, O)(I, +I,)

(5o)

for all three donors, the following result should be
valid for the local contribution:

B„,(o, o, 4)/B„,(4, 4, o) = w„(o,o, 4)/w„(4,4, o)

(52

TABLE IV. Fitted values for the integral parameters.
I:See Zqs. (48), (50), and (54). l

0. 80 0. 83 0. 85 0. 86
l. 37 1.67 2. 01 2. 25
389 466 554 615

—3.07 —3.84 —4. 69 —5, 27

ko/km„„
I g(ko)

If,(ko)

Ip(Ipp)

0. 89
3.40
9.20

—8.20

B„(theory)= B„(distant)+ B„(local), (48)

where B„(distant) is computed from Eq. (21) with

typical values given in Tables l and II; B„(local)
can be computed using Eq. (35) once I„is obtained

by a fitting procedure. The most reliably known

B„constant is that for shell A, the (0, 0, 4) shell.
Thus, from this constant, I„maybe obtained as

I„(a,) = [B„(exp)-B„(distant)]/W„(k,) (49)

for the (0, 0, 4) shell. To evaluate Eq. (49), a spe-
cific doQox' must be cI1osen. The dlpolRr constants
and ENDOR signals are largest in arsenic and thus
these constants have the smallest pex cent error.
Furthermore, the arsenic spectrum has been
studied in greatest detail. For these reasons, I„
is evaluated using the arsenic data and the results
are used for the other donox s. Table IV contains
the results for I„using Eq. (49)'and various as-
sumed vRlues of ko.

C. Predlct1ons for B~y and 8~x D1Polar Constants

The B„,and 8„,dipolar constants have been cal-
culated together since the bvo intrinsic parameters
Iq and I2, necessary to predict B„„mustalso be

used to predict B„,[see Eqs. (38) and (37)]. There
are several known values which may be used to
obtainI~ andI3 such as B„,(1, 1, 1), B„,(0, 0, 4),
B„,(4, 4, 0), B„,(4, 4, 0), and B„,(0, 0, 8). The first
of these values we are reluctant to use because
several of the approximations in the theory could

possibly be very poorly satisfied for the nearest-
neighbor shell. Unfortunately, there exists no

choice of I& and I3 which is completely compatible
with the other dipolar constants. The most dis-
turbing incompatibility is that of B„„(0,0„4)and

B„(4,4, 0). Since, for the local contribution,

Iq -I2= [B„(exp)-B„,(distant)]/W, q (54)

After considerable study of these relationships, as
well as others concerned with the (111) axes-class
SheH. S, the choice of I& and Ia has been determined
by using Eqs. (50) and (54). In addition, since the
sign of the experimental value of B„,for the (0, 0, 4)
shell ls not known~ we Rssuxne this VRlue Rs negR-
tive, bRsed on receQt calculations. This fit gives
the values of Ii and Iz presented in Table IV.

D. Comparison of Experiment and Theory

All of the 8„„,B„,and B„constants can now be
calculated. Table V shows the comparison of cal-
culated and experimental values for the three Shal-
low donor8 fox' the few sites that caD be definitely
identified. The agreements'for the dipole constants
are as good as for experimental and theoretical
Fermi contact inter actions.

The predictions for other sites which are as yet
uncorx elated with the experimental data are given
in Table VI. Ideally, it should be possible to as-
8lgn Rll experimentRl 8116118 to actual 1Rttlce shells
on the basis of the predictions presented in Table
QI) however~ RS discussed above~ disci 6pRncles
occurred in the fitting procedure even before the
predictions were evaluated. Thus the predictions
must be considered as having only qualitative ac-
curRcy, Despite this llDlltatloQ R QUD1bex' of
worthwhile features concerned with the shell as-
signments have been revealed by the calculations.

One feature is the additional confix mation of
shell K as the (0, 0, 8) shell —not only because of
the exclusion of the (0, 0, 12) and more remote
shells —but also because of the actual B«and 8»
predicted values. The predictions also confirm
shell E to be the (1, 1, 1) shell since it is (i) pre-
dicted to 11Rve an order of magnitude larger dipolRI'

constant than any other shell and (ii) the predicted

and the +3 is due to the UncertRlnty ln ko. TI16 meR-

sured ratios for the diffex ent donors varies from
about I-,' I to I j.'-, I. These measured ratios and the
ratio of Eq. (52) should all be equal since the dis-
tant calculations for the two dipolar constants of
interest Rl"6 zex'o. TI16 conclusioQ we dx'Rw fx'om

this discrepancy ls that R fRctox' of 2 ox' 3 Uncex'-

tainty will have to be tolerated in the numerical
calculations of the dipolar constants at present, as
is also the case for the Fermi contact calcula-
tions.

The l'Rtlo

B.,(o, o, 4)/B.,(0, 0, 8) = w„(o,o, 4)/w„(o, o, 8) (53)

can be matched to the experimental ratio. We have
chosen, however, not to use the B„,(0, 0, 8) value
for fitting because of its strong Ao dependence.

Another expression fox I& and Ia is obtained fromB„„for the (4, 4, 0) shell:
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TABLE V. Comparison of the total dipolar constants
(in knz). The three * values were used for fitting. The
first number refers to k0=2w(0. 85)/a. The upper sign
is for ko-—27r(0. 80)/a and the lower for ko =2m(0. 90)/a.

Site (0, 0, 4)
Calc

zz Exp
Calc

B„~Exp

57

l 56l

43+ 1
41—

—46 +0
l 4&~l

39+1
46

—40+0
l 34 l

Site

Bz

Site

(0, 0, 8)
Calc
Exp
Calc
Exp

(4, 4, 0)
Calc
Exp
Calc
Exp
Calc
Exp

(1, 1, 1)
Calc
Exp

18+9
16

—12 +6
l 7~2 l

—32+0
—41—12

148
—27 +4

l 72 l

1500 +700
1260

15 T9
14

—12 +6
& l 12 I

—28 +0
—34

130+0
160

—24 +4
l4ol

1000 7 500
700

~ ~ ~

—11+6
~ ~ 0

—25+0
—28—l2
115+0

79
—22 +4
l20l

850 +400
520

value of this constant is reasonably correct. The
prediction of Table VI, when used in conjunction
with the Fermi contact calculations, strongly sug-
gests shells IIandOareto be chosen from the
(3, 3, 3), (4, 4, 4), and (4, 4, 4) lattice shells.

Some of the lattice shells are related by inver-
sion. Examples of these are (4, 4, 4) and (4, 4, 4),
(8, 8, 8) and (8, 8, 8), (2, 2, 4) and (2, 2, 4), and

(2, 2, 8) and (2, 2, 8). Because of the approximations
made in obtaining the effective-mass envelope
functions, the Fermi contact constants and the 8„

constants are predicted to be equal for the inver-
sion-related shells. However, inversion is not a
symmetry of the shallow-donor problem and the
experimental results show no such features. On
the other hand, even with the approximations made,
the B„,and B„constants are not equal (see Table
VI) for inversion-related sites.

There are two other general features of the the-
oretical values that agree with the experimental
results: (i) The magnitude of the B,J values for
a given site varies from donor to donor in the same
way that the Fermi contact constant varies, i.e. ,
through the donor dependence of the envelope func-
tion. (ii) For a given lattice site, the magnitudes.
of the Fermi contact constant and the three Bo
values are seemingly uncorrelated because the in-
terference effects between the cosine terms are
different for all four hyperfine constants.

In addition to the discrepancy discussed in con-
nection with Etl. (52), there is another feature of
the experimental results that is not explained by
our dipole theory. Shell I' has large negative val-
ues of B„,(see Table III) and none of the values
predicted in Table VI have this feature.

V. CONCLUSIONS

A theory has been developed for the anisotropic
(dipolar) hyperfine constants of lattice nuclei in-
teracting with a shallow-donor electron that is de-
scribed by the effective-mass approximation. %hen
applied to the ground state of the shallow donors
in silicon, the basic features of the experimental
results can be qualitatively and semiquantitatively
understood for the first time. However, it is not
possible at this time to assign all of the experi-
mental shells to definite lattice sites using both the
Fermi contact and the B;, values. We believe that
this is due to the inadequacy of the effective-mass

{5,5, 5) (7, 7, 7)

TABLE VI. Theoretical predictions of the &&& values for the arsenic donor. Three numbers are given for each B&&.
The first number refers to ko a/2~=0. 85, the upper sign refers to ko a/2~=0. 80, and the lower sign refers to ko a/2x
=0.90. The theoretical values are based on fitting to the three starred (*)values.

Site (0, 0, 4) (0, 0, 8) (0, 0, 12) (1,1, 1) (8, 8, 3) (4, 4, 4) (4, 4, 4)

57.0*
—55.8*

0

187-9
—12 +6

0

5+2 0 0 0
—1 +3 1500 +700 200 +150 95 +6

0

0
125+ 7

&ay

0
10+5o

0
1+8

Site (8, 8, 8) (s, s, s) (2, 2, o) (1,1,3) (3, 3, 1) (2, 2, 4} (2, 2, Z) (1,1, 5) (4, 4, o)

0
25 +15

&my

0
22 +20

—4075
165~ 30

—15 +1

—60 +15
650 +250

—450 + 250

41 +8 24 7-2

250 +150 95 y 20
—320+ 150 —120+15

24+2 —54 +18 —32+0
55 +10 320 +150 148, 2*

75 +100 —27 y4

Site (3, 3, 5)

—17+9
120 +80

—50+50

(5, 5, 1)

33 T-10

0 +25
60 +60

(1,1,7)

—35+ 20
200 +100
10+50

(5, 5, 3)

12%7
10+30

—36 +40

(3, 3, 7)

—14y15
80 ~50
10 +30

(6, 6, 0)

-18+5
85 730
6+5

(2, 2, 8) (2, 2, 8) (8, 8, 0)

6+9 6+9 —8 y5
40y2 18y10 357 25

—45+10 —30+20 —2+ 2



approximation in Recur ately describing the ground
states of the shMGm doors.

The theory presented in this paper is based GQ

the equivalent-orbita3, formulation. The theory x'6-
quires Only three constants X~~» I»» RQd Ia to explain
a Pcg ge Q~ber of exper1mental results %6 Rre
meG wv Rre that the dipole theory could also be
formulated iQ terms Gf a I CAO or R 9I"~ier-'func-
tion representation of tIle Bloch functions. Also,
it is possible to extend the theory to next-Dearest
equivalent Grbitals. HG%'ever» recent calculations
using pseudopotential Bloch f~c4GQ8 hRve sho%Q

that the equivalent Grbitals g1ve surpx'isingly good
fits vzith just the three constants. Qfe believe that
any improvement 1Q the theoretical Ilyperf1Q8 cGQ-

stants DMst wait fox bett&r grognd-state %ave func-
tions for- the s~lo% donors.

APPENMX A: PROOF OF SOMF. IN'fEGRAIL REI.ATIONSHIPS

The proofs of Eqs. (34}-(33)are based on the

symmetry properties'Gf the equivalent orbitRIS and

the operators involved in the integrals as discussed
below. Equation (34) can be proven by observing
that

(x. s'/~') x. & =(x. x'/~'( x. ) = &x. y'/~'Ix. &

Thus»

f,(, )=-&x. 3"-"/"Ix.&=-0.

To prove Eq„(25),it is noted that all but the last
equality follow by a careful consideration of Fig. 1,
where, with site (1, 1, 1) as an origin, the direc-
t1GQs -7» -x» +x» Rnd +g» respectively» Rre 1Q-

distingmshabke for the four respective integrations

of Eq. (35). The last equality follows because the

first four integrals are equivalent to I„„(1,2)

=I»(l, 2) as essentially explained above. ; but

f„„(1,2) +f„(1,3) +f„(1,3) =-0,

. since we kQG% the d3.~GQRl coIQpoQents of the d1-

pG16 Operator have the px'Gperty

B»fg +Dgs» + Bgg O

I„(1,2) =--,'f„(1,2} .
The validity of Eq. (26} can again be seen by in-
spect1GQ Gf Fig 1. Rnd reabz3. Qg that Under the
transfOrIQatiOQ Z ~ —8» Dgg reXQaiQS invar18nt»

The proofs of Eqs. (27)-(33) can be obtained
using similar syrnIQetry arguments which are Mly
d1SCUSSed 1D Ref. 3.8~

D 18 Gf inte''68 to con81der possiMe relations be-
tween the integral parameters Ig„I„RQdI2. %6
shall discuss these relations in terms of two hew

parameters q and $, defined as

It v/iQ be shown that %hen a naive model Gf the
equivalent orbitals is used, g and $ are simple
fractiGQS.

H the'equivalent orbitals are approximated by
MO-I CAO,

@ = s (~)+(x+y+z) p (~)+ (xy+ys+xz) d~(x)+ ~ ~ ~
~

where s, (r), p, (r), and g(r ) are radial functions
centered on site b. (We consider only a'-type or-
bitals. ) Since the conduction band of silicon is
coIQposed priQlarily of g = 3 RtoIQ1c states, we shaIl
ignore f and higher angular momentum states.

%6 have examined the x'esults of the MO-LCAO
approximation in detail for sP hybrids formed from
80icon-RtoxQ %ave f~chons. The88 cklculat1GQS
show that the main contribution comes from the
atomic orbitals located oQ the site of interest Rnd

contributions involving orhitals on the Qearest-
neighbor sites are about 'l% of the totaL

These Rpproximatfions yieM .,

&=-fa/f~=- )&s+(-x-y+~)p+(xy -ys-~s)d f»„~s+(,+y+, )f, +(„y+y,+«)d& ~

. + ( +y+ )Ip+ (&y y + )d(D~
~

+.(g+y+ }@+(xy+yg+gg)d& ]-

=(&his'n'y'/ ')p&+&d)Sx'y' '/r' d&-( ~3 'y'/ '~d&)

~(& p Sx'y'/~') p &+&d (
S~'y'x'/~'~ d &+&.

~

Sx'y'/. -'(d &)-'

= (&+LB'-Sa}(P+LDS+SD}-',
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The approximation of sp hybrids is obtained by
setting 0=0. In this case, we have $ =-,' and t) = l.
The fact that the sP3-hybrids approach is a poor
approximation is illustrated by noting that this pre-

diets B„„(0,0, 4) to be zero when, in fact, it is
large (see Table III). [It was noted by Feher that
d character was needed to explain B„,(0, 0, 4). ]
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Longitudinal Qptical Phonons in Thin Films of CdS, CdSe, and Their Mixtures
G. Lubberts*

Department of Electrical Engineering, University of Rochester, Aocheste~, Nese Fork 14627
(Received 28 September 1970)

LO phonon energies have been determined by means of electron tunneling in Sn-SnO-semi-
conductor-Sn junctions. For mixtures of CdS and CdSe, we find two distinct structures in the
tunneling data which occur at lower energies than the LO phonons for pure CdS and CdSe.
These results agree with infrared spectroscopic data on bulk crystals. This agreement pro-
vides strong evidence that only short-range forces are important in determining the optical-
phonon spectra.

In recent experiments, Giaever and Zeller' 3 as
well as MacVicar et a/. , have demonstrated that
it is possible for electrons to tunnel through thin
layers of semiconducting materials which are sand-
wiched between two metal films. By examining the
current-voltage (I V) curve of such tunneling j-unc-
tions, Giaever and Zeller, ' found a resistance de-

crease in such devices at applied voltages corre-
sponding to the longitudinal optical (LO) phonon en-
ergy of the semiconductor material. Such resis-
tance changes are usually observable when first-
or second-derivative measurements are made of
the I- V curve. The decrease in resistance can be
explained by considering the interaction of the tun-
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