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358 MARTIN C. GUTZWILLER 

toward F(!+!) which is required to satisfy F(Hl) • 

W(Hll = 1. The (n + I)th approximation to FU+!) 

would be given by F(l) + F + of, where we try to 
satisfy 

(F(I) + F + of)WCl+1) 

= (F(l) + F)W(Hl) + of· W<!l + of(W(ll- 1) = l. 

But, we now assume bF· W(1) to be small, and we 
use our knowledge of F(!) to write 

of = F(l)[1 - (Fw + F)W(I+1)]. (83) 

In this manner FCl+1) is found by iteration, and 
ultimately so is F(L). 
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Scattering by a spherical potential is discussed in all dimensions by one formulation using the partial­
wave expansion method. The optical theorem relating the total scattering cross section (J to the forward 
scattering amplitude f(O) is derived. 

We wish to derive a formula relating the total 
scattering cross section to the forward-scattering 
amplitude which holds in all dimensions. The pro­
cedure is to use Gegenbauer's expansion! of a plane 
wave in N dimensions in terms of partial waves appro­
priate for the space under consideration. This allows 
us to treat scattering in all dimensions on equal foot­
ing, without resort to special formulations, and reveals 
the similarities of wave motion in all dimensions. 

The stationary-state Schrodinger equation is 

The wave equation (I) is separable, and the solutions 
are partial waves of the form !n(x)C~(cos 0), where 
!n(x) is the radial solution and C~(cos 0) is the N­
dimensional spherical harmonic of Gegenbauer, in 
which n is the degree of the polynomial and IX = 
iN - 1. 

These harmonics are defined by the generating 
function2 •3 

00 

(I - 2h cos 0 + h2)-a = 1 hnc~(cos 0) (3) 
11=0 

[~ + k2 - U(x)]tp = 0, (1) and satisfy the differential equation 

where ~ is the Laplacian operator in N dimensions, 
k2 = (2m/1i2)E, E is the energy, m is the mass of the 
particle, and U(x) = (2m/1i2)V(x), where Vex) is the 
potential and x is the length of the N-dimensional 
position vector x. It is thus assumed that the potential 
is spherically symmetric. We are interested in the 
scattering of a wave incident along the z axis, and tp 

will depend on x and 0 where z = x cos O. The 
Laplacian takes the form 

02 N - IoN - 2 0 1 02 

~ = - + -- - + -- cot 0 - + - -. (2) 
ox2 x ox x 2 00 X

2 002 

(.£ + (N - 2) cot 0 ~ 
d0 2 df} 

+ n(N + n - 2»)C~(COS 0) = O. (4) 

By substituting (4) and (2) into (1) we obtain the radial 
equation 

(~ + 2ex: + 1 .E.- + k 2 

dx2 
X dx 

- n(n + 2ex:)x-2 - U(x) )fn(X) = O. (5) 
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The substitution !.,(x) = x-a~lI(x) gives 

( 
tP I d k" ( ).... U(»).I.. () 0 -.) + - - + .- - II + 0( -:c- - x '1'" X = . 
c/x- X £Ix 

(6) 
The asymptotic solution of (6) is 

~II(X) "" Z,,! .(kx), (7) 

where Z is a general Bessel function. 
The solution 1p which is of interest must consist of 

an incident wave exp (ikx cos 0) and a scattered 
wave. Now, a plane wave can be resolved into partial 
waves by the Gegenbauer expansion formula: 

00 

eik",cnsO = 2ar(lX) 2 (IX + /1)i"(kx)-aJIlI_a(kx)C~(cos 0), 
n=O 

(S) 

and, since 1p must have the asymptotic behavior of a 
plane wave plus outgoing partial waves, we can write 
the asymptotic formula 

OCJ 

1p'-"" 2<lf'(1X) 2 (IX + Il)i"(kx)-ac~(cos 0) 
11=0 

X Hei<l"h~,l~.(kx) + e-i6"h~,21).(kx»)eiO,., (9) 

where b" is the phase shift for the nth partial wave and 
h~1J and h~2) are Hankel's functions of the first and 
second kind. fn writing (9),the well-known asymptotic 
behavior of Bessel functions was used, namely,4 

J v(x),-.., (2111'x)~ cos (x - ~V11' - 111'), 

h~U(x)'-'" (2111'x)lei(x-~"-I~), 

h~2)(X)'-'" (2/11'x)!e-;(x-!vr.-{lTl. 
(10) 

By subtracting (S) from (9) we obtain the asymp­
totic behavior of the scattered wave 1ps, namely, 

1p.,'-'" 2'r(lX) ~ (IX + n)i"(kx)-a(2/11'kx)~-
n=O 

X C~(cos 0)ei (kx-!(n+a),'-lu)i(e2i<ln - t) 

== i(ix)-(a+!)eikXj(O), (11) 

which also defines the scattering amplitude f(O). 
The optical theorem relates the total cross section 

(j = S If(0)12 dO. to the forward scattering amplitude 
f(O). The cross section (J' can be obtained from (II) by 
remembering that3 

f'sin2
• (}C:"(cos O)C~(cos 0) dO 

77T(21X + n) b (12) 
22a- 1(1X + n)n! [r(oc)]2 m,fI 

and that in the integration over solid angle the contri­
bution of the azimuthal angles (~l' ~2' ... , ~N-2) 

gives the factor U." where 

12", = l11'a! !/I'(IX + n, IX ~ , 

= I, 

and thus we obtain 

0( < , 

OCJ S11"1-~(1X + n)r(21X + /1) .. ) 
(J' = 2 .), , SIl1- ()II' 

II~O II! k-" II (0( + D 
For 0 = 0, Eq. (3) gives 

C~(I) = (II !)-11'(20( + n)/I'(2oc), 

which enables us to deduce from Eq. (II) that 

I I. l'(1X) ( . I) Imj(O) = 2,1- 211'-2 -- k- ,1 2 

1'(2oc) 

( 13) 

(14) 

( 15) 

~(IX + II)l'(21X + /1)(sin2 bJ ( ) x.:.. . 16 
"ceO /1 ! 

By comparing (14) and (16) we obtain the optical 
theorem: 

(J' = 811'·!1(2k)-(a!p[r(20()/['(1X)][1'(1X + m-1[lmj(0)]. 

( 17) 

fn three dimensions, 0( = -~, and we have the well­
known result (J' = (411'/k) [mf(O). In two dimensions 
IX = 0 and 

I 

(J'(N = 2) = 2(211'/k)2[lmj(O)]. (IS) 

In one dimension rJ. = -~ and 

lim __ 1'---,--(2_0(.:...)_ 
,-->-~ r(IX)r(1X +D 

=Iim 
2IXr(21X)(rJ. +n 

a-->-k 2IXr(oc)(oc + nr(1X + D 
= ur(21X + 2)/I'( IX + t )][r( IX +})]-l 
= 111'-k 

(which also could have been foreseen from the duplica­
tion formula for the gamma function), and thus we 
obtain 

(J' = 2Imf(0), N = I, (19) 

a result which is equivalent to that obtained by 
Eberly,5 since our f(O) as defined by Eq. (II) is -i 
times the f(O) used by Eberly. 

Other applications of the Gegenbauer expansion 
formula have been given elsewhere.6 

1 G. N. Watson, A Treatise on the Theory of Bessel Fllnctions 
(Cambridge V.P., Cambridge, \966). 

• Reference \, o. 129. 
3 A. Sommerfeid. Partial Differential Equations in Physics (Aca-

demic, New York, 1949), Appendix IV. 
• Reference \, p. 198. 
5 J. H. Eberly, Am. J. Phys. 33, 771 (1965). 
6 I. Adawi, Phys. Rev. 146, 379 (1966); Phys. Letters 26A, 317 

(1968). 
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