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This defines A as the strength of the 6 function in cr/
O.„as in Ref. 9. Other authors define it as the strength
of the 6 function in 0..

This is easily shown using a Kramers-Kronig rela-
tion and the property that 0

&
= 0 for ~ ~ 2'~.

J. Bardeen and J. R. Schrieffer, in Progress in Iogg
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F. Stern, in Solid State Physics, edited by F. Seitz
and D. Turnbull (Academic, New York, 1963), Vol. 15,
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Radcliffe' has published a method of treating the
Heisenberg ferromagnet by using Peierls's~ theo-
rem on the minimization of an approximate free en-

ergy, applying the theorem to a lattice composed
of clusters. The largest cluster treated is the
Bethe cluster' of n+ 1 atoms, where n is the co-
ordination number of the lattice,

Following Radcliffe, a cluster Hamiltonian al-
lows us to write the approximate density matrix
as a product over clusters [his Eq. (VI)] and to ob-
tain a free energy depending on the fields acting on

the central atom and its neighbors in the cluster
[Eq. (V5)].

Radcliffe then assumes that the partial deriva-
tives of the free energy with respect to these two

fields are both zero, i.e., that the fields are inde-

pendent. This leads to a prediction of a transition
temperature (see Table I}, but the consistency con-
dition that the average magnetizations of central
and neighbor atoms is the same is not satisfied.
This condition, in Radcliffe's notation, is

'dF 1 8F
Bh n Bh,'

which yields A as a function of h . We modify
Radcliffe's procedure by imposing this consisten-
cy condition. If we now further require the mini-
mization of the free energy in terms of these two

dependent variables, we also obtain a condition
that predicts a transition temperature.

To investigate the difference between the transi-
tion temperatures predicted by these two methods,
we have used the classical spin model to simplify
the arithmetic. In our "modified Radcliffe" meth-

od, the equation for the Curie temperature T& is

(n+ 1) —(n —1)L- —,'bn(n —1)(1+L}= 0,
where L = cothb —1/b

and b=2JS /AT,

TABLE I. Predicted transition temperature for a
consistency condition.

n=2

Radcliffe 0.889 2.418 3.824 5.195
Consistent Radcliffe 0.874 2.407 3.817 5.195
Bethe-Peierls-Weiss method "' 1.86 3.25 4.61

while Radcliffe's method gives (for classical spin)

1 ——'b(n —1)[1+(n—1)L ]=0 .
As shown in the table, the "improvement" of the

numerical results that come from requiring con-
sistency is in the right direction, but negligibly
small. The reason for this smallness might be
found in the following observation: The breakup
of the lattice into Bethe clusters gives N/(n+ 1)

clusters and so Nn/(n+ 1) exchange interactions in

these clusters which are included correctly in the

approximate product density matrix. The interac-
tions between clusters involve Nn(n —1}/2(n+ 1)

exchange couplings which are considered uncorre-
lated, i.e., they are replaced by terms of the form
—2Z(S,} . It turns out that these are dominant in

determining the Curie temperature because of

their great number, and this is true whether the

theory is self-consistent or not. Hence, the prob-
lem is with the method itself, in particular, with

the requirement that the density matrix be written

as a product.
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In contrast to previous treatments, we present a spin-lattice-relaxation theory according
to which the crystalline-modulated potential is considered as a quasistationary perturbation
which entails modulation of orbitals and modulation of energy. One of these effects has been
studied previously. We study here the second of them, namely, spin relaxation via modulation
of the orbital energy.

In previous papers it has been shown that
when spin-lattice relaxation occurs, the transi-
tions are induced between wave functions whose
orbital part follows adiabatically the displace-
ments of the crystalline complex. The correct
way to study spin-lattice relaxation is thus to con-
sider the crystalline-modulated potential as a
quasistationary perturbation, whose effect is to
entail polarization and rotation of the orbitals.
These act secondarily on the spin system, through
spin-orbit interaction.

We now consider another adiabatic relaxation
mechanism by which the crystalline-modulated po-
tential does not act directly on the spin system
but indirectly, namely, relaxation via modulation
of orbital energy.

The total Hamiltonian for the paramagnetic sys-
tem coupled to the rigid lattice ean be written as

K =SCo+ 2 P 8 H+ P L ' H+ X L 8+ V, +'it:z, , (1)

where Xo is the Hamiltonian for the free ion, V,
is the crystalline potential, which can be expanded
as a function of the deformations of the crystalline
complex

V V(0) + V&1) ~ + V(2) ~8+
C C C C

XL, is the Hamiltonian of the lattice vibrations $CL

=g ~ (a~ gt, + o)h&o, and H is the external magnetic
field.

e call po and p„ the eigenfunctions of Xo+ V,'0',
and F.o and E„the energies associated with these
functions ~ As shown previously V & for the
direct process (and V,'@co for the Raman process)
can be considered as a slow-varying perturbation,
so that the energies associated with'Ko+ V,' '

+ V,")e are equal, to first order, to the following
express1ons:

&o=~o+(po
I
i &

I 9'o&

g„=z„+(q„lv,"'~
I g& .

If we limit our study to the spin states associ-
ated with the ground orbital state, we can use an
effective -Hamiltonian formalism. As usual, the
effective Hamiltonian can be written ass

sert I wn o& (pn c I+nett
e«

8 6 &0 &n
(2)

where X„„t=XL' S+PL
' H .

Knowing the ability of V,")
& to induce phonon

transitions, we can part%, « into a sum of two
terms, one being static and the other modulated.
Since the perturbation energies are small with
respect to Eo and 8„, we get

g (i c oo —Pe nn) &mrt I 9'n&&(9'n licect~
(Eo -&„)' (4)

Po V. ~ P — P. V. ~ 9.
g

The term

~o g &uettltn~&(Pn&l&mrt 2pa H (3)
no 0 n

is the static effective Hamiltonian, while the term
depending on & is the dynamic one. If we put e
outside of the summation this latter one becomes
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