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Theory of Droplet Growth in Clouds 

I. The Transient Stage of the Boundary-Coupled Simultaneous Heat and 

Mass Transport in Cloud Formation ~ 

J O H N  C. C A R S T E N S  2 A~D J O S E P H  T. Z U N G  3 

Graduate Center for Cloud Physics Research, University of Missouri-Rolla, Rolla, Missouri 65401 

Received November 3, 1969; accepted January 9, 1970 

Two solutions to the system of equations describing the simultaneous heat and 
mass transport involved in the condensationaI growth of a droplet in a supersaturated 
atmosphere are presented. The first, valid for very short times, describes the transi- 
ent stage of such growth; the second, valid for longer times, presupposes the estab- 
lishment of a steady-state condition. The two are shown to be complementary for 
the cases examined. The equations examined satisfy the usual boundary conditions 
imposed oll a drop in a concentric sphere as required by the cellular model for cloud 
formation. Hence our results can be immediately extended to the treatment of the 
growth rate of drops in assemblage. 

I. INTRODUCTION 

The problem of condensational growth of 
cloud droplets has been the subject of ex- 
tensive studies (1-5). Nevertheless, no gen- 
eral consensus has yet  been reached and the 
various authors do not always agree with 
each other, and seldom with experimental ob- 
servations. One of the reasons for the dis- 
crepancies is, as pointed out by  Aleksandrov, 
Levin, and Sedunov (6), the fact that  the a 
priori estimate of the effect of various fae- 
tors on the droplet growth has not been 
sufficiently rigorous. In  this series of papers, 
we shall not a t t empt  to reformulate the the- 
oretical problem of droplet growth in 
clouds in its entirety, but  rather  to limit our 

1 Research supported by the Atmospheric Sci- 
ences Section, Office of Naval Research, and De- 
partment of the Navy, TItEMIS Grant N0O014- 
68-A-0497. Parts of this paper have been presented 
at the 7th International Conference on Condensa- 
tion and Ice Nuclei, Prague-Vienna, September 
18-24, 1969. 

Department of Physics, University of Mis- 
souri-Rolla, Rolla, Missouri. 

Department of Chemistry, University of Mis- 
souri-Rolla, Rolla, Missouri. 

scrutiny to the more crucial and yet  more 
subtle points, namely, the growth rate dur- 
ing the transient stage of the condensation 
process and its relationship with the cus- 
tomary  quasi-steady-state approximation,  
the effect of droplet interaction on the dif- 
fusional process and heat t ransport  (7), and 
the dynamical interaction between droplets 
and its influence on droplet velocities and 
coagulation rates. 

In  this paper, we shMl examine the con- 
densational growth process both  in the 
transient stage and in the s teady-state  
stage, ,~qth emphasis on the degree of ac- 
curacy of the solutions obtained and their 
relationship to each other and to the over-all 
growth rate. 

So far, most of the t reatments  (1-5, 8, 9) 
of the diffusional growth of a liquid drop in 
a supersaturated atmosphere have generally 
avoided the transient stage of this growth 
on the grounds tha t  it is too brief to war- 
rant  particular physical interest. However,  
certain cloud chamber experiments (10-13) 
dealing with the measurement  of nucleation 
rates (as the number  of drops formed per 
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300 CARSTENS AND ZUNG 

second per unit volume) have justified a 
more detailed examination of this stage. 

We shall limit ourselves in this work to a 
treatment of the transient stage in the 
growth of a macroscopic drop (i.e., one hav- 
ing dimensions greater than a mean free 
path). I t  is demonstrated that, for the cases 
presented, the usual quasi-steady-state situa- 
tion is quite rapidly established, and the 
transient stage corresponds with the "quasi- 
steady-state" stage after a brief growth 
period. 

II. THE TRANSIENT STAGE OF DROP 
GROWTH 

Let us consider a drop immersed, at time 
zero, in an atmosphere composed of the 
vapor in dilute solution with some non- 
condensable gas. Physically, of course, there 
are always neighboring drops from which 
the drop under consideration must be iso- 
lated. This independence of one drop from 
another, constituting a basic assumption of 
the cellular model (14) that may be checked 
a posteriori, can be assured by describing a 
sphere around each drop, the diameter 2R 
of which is roughly equal to the average 
distance between drops. The impermeability 
condition, 

Vp(r, t){,=R = YT(r ,  t)Ir=R = 0, [1] 

gives the drop "priority" over the vapor 
within the sphere. Here, p represents the 
vapor density in grams per cubic centimeter 
and T the temperature; r is the distance 
from the center of the drop. Were it not for 
the presence of other drops, the heat (and 
vapor) reservoir would extend out to large 
values of r. Clearly bulk depletion cannot be 
neglected if the annular region at the edge of 
a given cell is sensibly affected by events 
occurring at the drop. 

Turning to that region of the R-sphere 
which is affected by the presence and growth 
of the drop, one expects to observe the 
double diffusion of vapor toward the drop, 
and heat, released by the condensing vapor, 
away from it. For constant diffusion coeffi- 
cients D (mass diffusion) and/c (thermal dif- 
fusion) the two governing equations can be 
written: 

DV2p = Op/Ot + Fo(t), [2] 

lcV2T = OT/Ot ~- Fr(t) ,  [3] 

where 

V 2 = 02/Or 2 + 2r-lO/Or 

and Fp(t) and Fr(t) are sink terms which 
describe the course of the homogeneous, 
time-dependent supersaturation. In the pre- 
ceding equations both the effect that heat 
diffusion has on mass diffusion and that of 
mass diffusion on heat diffusion are neglected. 
The last two assumptions are a consequence 
of the assumed degree of diluteness of the 
vapor in the gas phase. 

The boundary conditions at the surface of 
the drop, r = a (a being the drop radius), 
representing a power balance and a linear 
vapor temperature equilibrium condition, 
a r e :  

Ca dT(a,  t ) /d t  [4] 

= 4~ra2{LDVp Ir=a + K V T  It=a} 
and 

p(a, t) = bT(a, t) -~ c, [5] 

where K is the thermal conductivity of the 
g a s ,  

Cd = (4/3)rra3pzcz, 

pz is the density, cz is the heat capacity of 
the liquid, and L is its latent heat of con- 
densation. Here b and c represent constants 
to be obtained from a linear approximation 
to the equilibrium vapor density curve in the 
region of interest. It  should be pointed out 
that the modification of this equilibrium re- 
lationship, dictated by the Kelvin Thompson 
equation for a spherical interface, is negligible 
for drops larger than 0.1 t~ in radius. The 
final steady-state temperature will be suffi- 
ciently close to the initial drop temperature 
that the above linearization will represent a 
fair approximation. 

The growth rate of the drop is given by 

da _ D Op I [6] 
dt pz Or I r=a(t) " 

Now Eqs. [1]-[6] comprise a fairly general 
description of macroscopic growth provided 
some initial condition is specified. A closed 
form solution is possible if, in Eq. [6], da/  
d t =  0. Such a fixed boundary solution, valid 
only for extremely short times during which 
radial growth is negligible, may lend itself 
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THEORY OF DI~OPLET GROWTH IN CLOUDS 301 

to a stepwise extension to longer times 
wherein the final solution for any given step 
constitutes the initial condition for the next. 
This solution should provide a criterion to 
determine the advent of steady state. 

Solutions to Eqs. [2] and [3] by perturba- 
tion methods have been attempted by several 
authors (15) for the ease of a spherical drop 
in an infinite medium. The non-steady-state 
solution obtained by perturbation teeh- 
niques takes the form of an integral equa- 
tion to be computed numerically. Perturba- 
tion methods have also been used by Aerivos 
and Taylor (16 ) to  estimate the rates of 

heat and mass transfer from a moving 
sphere in Stokes' region, and by Soo and 
Ihrig (17) to study the evaporation rate of a 
liquid droplet in the absence of macroscopic 
convection. Their non-steady-state solutions 
are similar in form to that given by Plesset 
and Zwiek. Here, we present a more straight- 
forward method based on the Laplace trans- 
form theory for handling both diffusion 
equations with their attendant boundary 
conditions (Eqs. [1]-[5].) Detailed analysis 
of the problem is given in the Appendix. We 
obtain the following expressions for p(r, t) 
and T(r, t), valid for the transient stage: 

T(r, t) = (Ta -- To) ~ Zk(r, pz) exp (pzt) -- ~ ~kt ~ It, p~)Fr(t)* exp (pC) 
l l 

q- ceoQ ~ mA~Z~(r, pz) E .  + BoQ ~ '~ nA,, ~k(r, p~) Ek 

e t 

-- ~kt ~ A', O)X.(O)ao Jo (bFr - F,) dt - L-'(bFr -- F.) [7] 

* ~ ~k(r, pz)X~ exp (p#) 
P z  

f; - ~oC'2~(r, 0)XD(0) - aoc' ~ 2k(r, p~)XD exp (p#) + To -F Fr(t)  dt 
l P z  

-t- r -~ 2 A '  exp (--tent) sin ~nTr(r--__a)~ 
n L ( R -  a) J 

÷ r - 1 ~  An'ck(pj)Ek sin ~ (r - a). 

and 

p(r, t) = c' ~ ~.(r ,  t) exp (p#) -k L-l(bfr - -  fo) * ~ ~.(r, Pt) exp (pzt) 
l l 

+ #oL-~(bfr -- fp) * M + #oc'M + b(Ta -- To) ~ Z.(r, Pl) exp (p~t) 
l 

- -  b ~ Z.(r, p~)Fr(t) * exp (pC) + c~obQ ~ mAmEv(r, p~)ED 
l m, l 

+ 3obQ ~ nA,(ZD(r, p)E~ + po 
n,1  

+ I z . ( r ,  p,) [E. - E.] 
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302 CARSTENS AND ZUNG 

fo ~ V m~<r - a) 1 + F / t )  dt + r -~ ~m A,~ sin L ~ :  ~ ] 

r A,,cD(pi) sinh ( r -  a) . 
m 

Here, 

Q = ~r/a(R - a); Xk = x~(Pt); 

Ep = (pj -- pz)-l[exp (pit) - exp (pC)l; 

E ,  = (p~ -/- Dm)-l[exp (pC) - exp (-Dmt)]; 

Ek = (p~ -}- kn)-~[exp (pC) -- exp (--k~t)]; 

and 

i = Z~(r, 0)Xk(0) 

+ ~ ED(r, p~)Xk exp (p¢) /p~ .  
1 

Other symbols are defined in the Appendix. 
In order to evaluate the above solutions, 

even for very simple initial conditions, it is 
perhaps worth while to discuss a couple of 
preliminary steps• 

First, the transcendental equation g(p) = 
0 in the Appendix must be solved since any 
choice of initial conditions leads to solutions 
requiring at least one sum over these roots. 
These roots are expected to be real and 
negative, and the smallest of them repre- 
sents the quasi-steady-state solution• 

Second, the computation procedure can 
be facilitated if the expressions 2D, Ek, XD, 
and Xk are put in forms into which one can 
explicitly substitute l Pz I. 

Third, in order to calculate the mass in- 
flux, use will be made of the following equa- 
tion: 

i t Op t) dr, 
Am(t) = 4~a2D ~ (r, r=a [9] 

where Am(t) is the mass increment in a time 
t. The calculation of Am(t) is simplified by 
the identity 

dr,.~D(r, - -XD(r ,  p~)ED(r, P~), [10] pz) 

III. QUASI-STEADY-STATE STAGE OF DROP 
GROWTH 

The equations for this stage are, in the 
notation already established, 

V2p = VeT = 0; [11] 

p(a)  = b T ( a )  + c; [12] 

OT 
IT= ~ Op r=~ [13] ~ o ~  = - ~ o ~  • 

For the outer boundary conditions: 

p(R, t) = p, , [14] 

and 

T(R ,  t) = T ,  , [15] 

where pR and T,  are constants for compara- 
tively long periods of time. 

The solutions to Eq. [11] with boundary 
conditions, Eqs. [12]-[15], are 

p(r ,a )  - a R - r 
r R -- a [16] 

• [ p ( a )  - -  pR] + pR;  

T ( r , a )  = a R - r 
r R -- a [17] 

• [T(a) -- TR] + T , .  

Here, from Eqs. [12], [13], 

T ( a )  = ao TR + ~o[pR -- c]. [18] 
C~o + b~o 

b 
o(a)  - 

C~o + ~ob [19] 

• [so TR + ~o(p. - c)] + c. 

Now the growth equation gives for a(t) 

a(t) = (ao 2 + 2Dip(a) - pR]t) 1/2, 

which, when substituted into Eqs. [16] and 
[17], yields the quasi-steady-state solutions. 
These will be valid until the time when the 
mass influx expression, 

d m / d t  = 47ra2DVp ] . . . .  

indicates a perceptible decrease in bulk vapor 
density, at which time the conditions [14] 
and [15] must be adjusted appropriately. 
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IV. COMPARISON BETWEEN THE 
QUASI-STEADY-STATE AND 

TRANSIENT SOLUTIONS 

The quasi-steady-state approximation can 
be analyzed according to the following argu- 
ment. The fixed boundary solution permits 
the calculation of a virtual mass influx, that  
is, the influx which occurs when the drop 
radius does not grow into the surrounding 
atmosphere. The difference between this and 
the true mass influx will have to be con- 
sidered small compared with either influx 
term. Also the mass of the drop, throughout 
its brief "growth" period, is considered con- 
stant, so that  its contribution to the specific 
heat of the drop is necessarily neglected. 
However, an averaged mass, somewhere be- 
tween the initial and final masses for a given 
growth period t, could be introduced as an 
approximation. The radial change is given 
by 

Aa/ao = (1 /3 ) (km/mo) ,  

where subscript zero denotes initial values. 
The validity of the quasi-steady-state ap- 
proximation will then depend on the condi- 
tion that  the variation of the steady-state 
solution with respect to the above change in 
radius be negligible and on the magnitude of 
its departure from the fixed radius solution. 

In order to gain some insight into the 
validity of these solutions, let us consider the 
simplest nontrivial problem often encoun- 
tered in cloud formation: that  of a drop 
suddenly inserted into an atmosphere of 
constant supersaturation, where the drop is 
initially at the same temperature as the at- 
mosphere. This gives simply 

where 

h~(p) = c ' / p ,  

h~(p) = O, 

c' = b T o  - -  po -}- c,  

and where To and p0 are the initial tempera- 
ture and vapor density, respectively. In this 
ease the transformed solutions reduce to 

= - (o, oC ' /~ )~ ( r ,  p ) x , , ( a )  + To~p;  

= (c'/p)[p q- floxk(a)l~(r,  p) -I- po/p. 

These have the inversions 

T(r ,  t) - aoC  ~k(r, 0)x . (0 )  
i+ 

- ~oC' E p' ~0X~(pz) 
z p t  

• ZD(r, pl)  exp ( - - l p ~ l t  q- To, 

p(r, t) = c' lim [p q- xk(a)]~D(r, p) 
p~0 

Z p t  

• ZD(r, pt)  exp ( - - [pz i t  q- po, 

where, if a << R, as is usually the case, 

Ceo c' / D X.(0)~( r ,  0) _~ 
flo/l¢ q- bao/D 

and 

lim [p q- xk(a)]~D(r, p ) - -  ~o/]C 
p~.o ~o/k q- bao/D" 

As a numerical example, typical cloud 
chamber data may be used. The following 
were obtained by Grayson (18): To = 
3.6°C; p0 --- 17.76 X 10 -6 gm/cma; Average 
supersaturation S = 5.89; R = 0.3 era; 
number of drops formed during brief 
(~0.01 see) supersaturation pulse = 8 cm -a. 
The cloud chamber gas is composed of 
helium as a solvent and water vapor as a 
solute. Experimental values for D, the vapor 
diffusion coefficient, were obtained from 
Sehwertz and Brow (19) and extrapolated 
down to the temperature of interest. The 
diffusivity k, along with the temperature- 
vapor equilibrium parameters c and b, was 
calculated for helium alone from data avail- 
able (20). 

Solutions to the problem for a 10 t* drop 
are displayed in Figs. 1-4 for two times, 
t = 10 .4 see and t = 10 .3 see. Evidently by 
10 -a see the quasi-steady-state solution is 
nearly concurrent with that  of the fixed- 
radius, time-dependent solution. Mass influx 
calculations give, after 10 -a see, (Arn/mo) = 
0.04:7, which leads to less than 2 % change in 
radius, showing no detectable change in 
steady-state solutions. The present analysis 
appears to indicate that  the growth of a 10-t* 
drop is entirely described by the fixed-radius 
theory in conjunction with the quasi-steady- 
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304  C A R S T E N S  A N D  Z U N G  

state theory, and in addition, that the quasi- 
steady-state theory holds for a large part of 
the growth time. 

Additional solutions, along with pertinent 

data, are shown in Figs. 5 and 6 for a 1.0-~ 
drop, but now with an initial temperature 
of -0.1°C (where To = -3.6°C). The tem- 
perature -0.1°C is obtained from an analy- 

'E 
u 14 
E 

Q 
X 

b- 

Z 

f 
f 

f ~  
/ /  

.01 .02 

Fio .  1. Vapor  den s i t y  v s .  rad ius  for a = 10 #, t = 10 -4 see. - -  

# 3  .04 .05 

R A D I U S  ( c m )  

t r ans i en t ;  . . . . .  quas i  s t e a d y  s ~ate. 

t t 

(J 

E 

P 
x 
>- 
p. 

Z 
uJ 
Q 

4 
RADIUS ( x l 0  - 3  cm) 

F r o .  2 .  Vapor  dens i ty  v s .  rad ius  for a = 10 ~, t = 1 0 -  3 s e e .  - -  
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THEORY OF DROPLET GROWTH IN CLOUDS 305 

sis of the growth up  to 1 • according to 
Buecher  (24). Here quasi  s teady s ta te  repre- 
sents a good approx imat ion  in  less t h a n  10 -4 
see. A t  this t ime, (Am~too) = 0.18 and  
(Aa/ao) = 0.06. Now, whereas a 6 % change 
in radius  yields again an  unde tee tab le  change 

in the quas i -s teady-s ta te  solution, an  18 % 
change in mass should lead to a prolongat ion  
of the t ime  it  takes the fixed-radius solut ion 
to concur wi th  the quas i -s teady-s ta te  solu- 
t ion. If  the drop is endowed with a slightly 
greater mass, say abou t  midway  be tween  

i 
[ 
I 
I 
I 
i 
I 
i 
I 
i 
I 
I 

o 
v I 

< I 

0-  
f 

- 4  
,01 

FIG. 3. Temperature vs. radius for a = 10 #, t = 10 -4 see. - - - -  

.02 ,03 .04 '.05 

RADIUS (cm} 

transient; . . . . .  quasi steady state. 

I 

i 
I 

i 
i 

I 

e~ 

I 
01 .02 .@~ .04 "05 

RADIUS (cm) 

FIG. 4. Temperature vs. radius for a = 10 it, t = 10 -8 see. - -  transient; . . . . .  quasi steady state. 
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306 C A R S T E N S  A N D  Z U N G  

initial and final masses for t = 10 -4 see, a 
certain sluggishness should be observed. 
Despite this, analysis with the augmented 
mass shows that  the quasi-steady-state so- 
lution is still reached before 10 -4 see. I t  is 

mentioned again that  below 1 # the usual 
macroscopic theory begins to lose signifi- 
cance, since the mean free path X is of the 
order of 10 -5 cm for present conditions. 

On the other hand, it may be argued that  

[; 
I 
I 

X 

• ol .02 .03 
RADIUS (cm) 

F r o .  5.  V a p o r  d e n s i t y  vs. r a d i u s  f o r  a = 1 . 0 t , ,  t = 10-5  s ee .  

.04 .05 

t r a n s i e n t ;  . . . . .  q u a s i  s t e a d y  s t a t e .  

I 

] 

t 
1 = . i 1 ?- I I \  

- 4 1  I 
1 

RADIUS 

F r o .  6. T e m p e r a t u r e  v s .  r a d i u s  f o r  a = 1 .0  •, t = 10 -5  s e c .  - -  
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THEORY OF DROPLET GROWTH IN CLOUDS 307 

the validi ty of the fixed-radius solutions 
should become suspect at higher supersatu- 
ration since these would lead to greater 
radial increments in any given time. The in- 
crease in mass influx is primarily a t t r ibuta-  
ble to the increase in initial vapor  density, 
which gives rise to an increase in c'. Since d 
can be factored out of the equation for mass 
influx, one can write 

(dm/dt) l  c1' 

(dm/dt)2 c2" 

which represents a rough criterion, in terms 
of any known influx, for the influx at some 
different po. 

In  conclusion, f rom our analysis of solu- 
tions of the transient stage and the quasi- 
s teady-state  stage, we have found tha t  the 
fixed-radius solution in conjunction with the 
quasi-steady-state approximation can pro- 
vide an adequate description of macroscopic 
drop growth for most cloud chamber  experi- 
ments  and the transient stage solution corre- 
sponds to tha t  of the quasi s teady stage after 
a very  brief growth period. 
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LIST OF SYMBOLS 

a- - rad ius  of the drop. 
ao--initial drop radius. 
b, c- -empir ical  constants in the (linear) 

equilibrium vapor  density approximation 
Ce--heat  capacity (constant pressure) of 

drop. 
C,--specific heat  capacity of drop liquid. 
an--diffusion coefficient of vapor  in non- 

condensable gas. 
Fp ( t ) - -vapor  density sink function. 
F r ( t ) - - h e a t  sink function. 
k - - t h e r m a l  diffusivity of noncondensable 

gas. 
K - - t h e r m a l  conductivi ty of noncondensable 

gas. 
L - - l a t e n t  heat  of condensation of drop 

liquid. 
m - - m a s s  of drop of radius a at t ime t. 

too--initial mass of drop. 
p - -complex  variable in t ransform space. 
r - -d is tance  from center of drop (independent 

variable). 
/?--radius  of outer sphere or "cell." 
S--supersatura t ion.  
t - - t ime  (independent variable). 
T - - t empera tu re  as a function of r and t. 
To--initial temperature.  
TR--bulk temperature  (at r = R). 
p - -vapo r  density as a function of r and t. 
po--initial vapor  density. 
pR--bulk vapor  density (at r = R). 
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A P P E N D I X  

Laplace t ransform theory provides a 
s traightforward way of solving both diffusion 
equations (Eqs. [2] and [3]) with their ap- 
propriate boundary  conditions (Eqs. [4] and 
[5]) for the transient stage. 

The Laplace transform of a function will 
be denoted in one of the following ways: 

L H ( t )  = h(p) = I~(p) 

P [A.1] 
= Jo H( t )  exp ( - p t )  dt, 

where p is the t ransform variable, p = x + 
iy. The transformed problem can now be 
writ ten as: 

DV2~(r, p) = p~(r, p) - p(r, O) 
[A.2] 

+ fp(P), 

kV2T(r, p) = pT(r ,  p) -- T(r,  O) 
[A.3] 

+ fr (p) ,  

V~(R, p) = 0, [A.4I 

bT(a,  p) + c/p,  [A.5] 

V (R, p)  = 

p)  = 

and 

pT(a ,  p) - T(a,  0) = aoV~(a, p) 

+ ~3oVT(a, p), 

where 

[A.6] 

3LD 3k 
a 0 -  and ~ o -  

apz c~ ap~ c~ " 

For initial conditions, T(r,  0) and p(r, O) 

take the modified form: 

T(r,  O) = To + T'(r,  0), 

where 

To = lira T(r, O) 
r-->a 

and similarly for p(r, 0). 
Introduct ion of To and p0 will put  the so- 

lution in a form tha t  will reduce unequivo- 
cally to the initial conditions, 

p(r, O) = pR, a < r < R,  

T(r,  O) = T~ , a < r < R,  

and T(r,  O) = Ta ,  r < a, 

which are to be used later. 
The heat  diffusion equation with T = 

~ r r  -1 becomes 

(k/r)  d2CI'r/dr 2 - p ~ r / r  

= - r - l ~ r ( r ,  O) - f r (p) .  

Now we let 

= CI, + '/'1 + G ,  

where ~'h is the homogeneous solution and 
~'1 and ~2 are particular solutions. With  the 
boundary  condition, Eq. [A.4], one obtains 
for the homogeneous solution, 

~h = A ' (p )  sinh { (p/k)II=(R - r) 

- t anh- lR (p/k)1/2}. 

For CI,2 one takes 

~2 = xlr2 ° + f 

~ ' [ n~ ( r - - a ) l + f ,  = a~ (p) sin 
n 

where ,I,2 ° is imagined to be extended as an 
odd function, and f is a solution to 

(d2/dr 2 - p / k ) f  = O. 

Substi tut ion of ~2 ° into 

d2~/dr 2 - (p/tc)~ = - k - ~ '  (r, O) 

gives 

1 a~'(p) = 2(R -- a) -1 lc + p 

• rT ' ( r ,O)  s m ~  - ~ - -  a ) d r "  
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The condition of Eq. [A.4] is satisfied if 

d I ~ '  n ( r - - a )  1 d~-: r-~ a~ (p) sin R a ~=~ 

+ [d(fr-1)/dr]r=~ = O. 

A satisfactory expression for f is 

f _  ~r 
(R - a) 

I 
'~_, a~'(p)n(-- 1) ~ sinh {(p/]@/2(r -- a)}1 

• { R - ~  _ (p / ]~ ) l /~  eoth [ ( p / l @ / ~ ( R  - -  a)]} t • 
, • sinh {(p/k)l/~(R - a)}j 

A similar analysis holds for ~(r, p). 
Collecting results, we can write the trans- 

formed solutions as 

--- r-~X'(p) sinh {(p/k)i/2(R -- r) 

-- tanh -1 R(p/lc)~12l + f r /p  + To/p 

+ ~ ~la~ '(p)  sin {mr(r -- a)/(R - a)} 
n 

+ r-~ck(p)d(p) sinh [(p/k)~/2(r -- a)], 
[A.7] 

and 

= r-~A(p) sinh [(p/D)I/:(R - r) 

- -  tanh-~R(p/D) ~/2] + fo/P + po/p 

+ ~ ~'-la~(p) sin Imp0" - a) /  
~tt 

(i¢ - a)} + r-~c~@)~(p) 

sinh { (p/D)~Z2(r - a)]. [A.8] 

where 

a' = w(R -- a)-l~-]~ a~ ( p ) n ( - 1 )  , 

ce = ~r(R - -  a ) - l E  a m ( p ) ~ t ( - - 1 )  m, 

c~ = {R -I sinh [(p/l~)l/~(R -- a)] 

_ (p/~)l/~ eosh [(p/~)~/~(~ - a)]}-I, 

c. = {R -1 sinh [(p/D)I/~(R -- a)] 

- (p/D) 1~ cosh [(p/D)~/~(R -- a)]}-l. 

Equations [A.7] and [A.8] can now be 
substituted into the boundary conditions as 
given by Eqs. [A.5] and [A.6] in order to de- 
termine A(p) and A'(p). Direct subsitution 

yields 

T(r ,p)  - a h2(p) - aohl(p)xD(a) 
r [p + ~o xk(a) + b~0 ×~(a)] 

• sinh w(r)  + fr(p) + T_2 
sinh w(a) p p 

, - 

+ r-1E (P) sin/  -:  5-f 

] + r  ~ c , ~ s i n h k \ l i /  ( r - a )  , 

and 

~(r, p) -- a hl(p)[p-+ fl0xk(a)] + bh2(p) 
r [ p  + fl0xk(a) + baoxD(a)] 

siD.h r~D(r) + f;(p) + po 
sinh ~ ( a )  p p 

E ( r  - a ) ]  + r -1 ~ a,.(p) sin m~- 

where 

~(r )  = ( ; / k ) l~ (~  - r) -- t~nh-lR(p/k)lJ~; 

~ ( r )  = (p/D)~/~(R - r) - tanh-lR(p/D)~/~; 

hi(p) = p-~[bfr(p) -- fp(p)] + c'/p; 

d = b T o  + c - -  p o  ; 

h~(p) = ( T o -  To) 

O~o T" 
- - / r ( p )  + a(I~ = a) ~ a,~(p)m 

+ (p/D)l/2a-l[aoa(p)c,(p)] 

+ - -  ~ a ,~ ' (p )n( - -  1) n 

- a i  " - :  

+ ~o(p/]@/2a-~[ck(p)d(p)]; 

XD(r) = (p/D) ~/2 cothw(r)  + 1/r; 

xk(r) = (p/]c) ~/~ cothw(r) + 1/r. 

The problem is now reduced to one of in- 
verting T and ~, which is to be at tempted by 
using the inversion integral (21): 

1 f ~+iR L - 7 ( ; )  = ~ ~ m  ~-,~ f ( ; )  exp (;t) dp. 
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B A 

nl E 

FIG. 7. I nve r s ion  con tou r  

Here, -y divides the complex plane into a 
right-hand region which is free of poles and 
a left-hand region which is not. The existence 
of -y is due to a theorem quoted by Scott 
(22). The usual closed contour is obtained by 
completing the semicircle as shown in Fig. 7. 
I t  may be shown that  the contribution to the 
integral from the contour around A B C D  
vanishes as R --. :¢, where p = R exp (/0). 

Further abbreviated functions to be used 
~ r e  

g(p) = p -4- ~oxk(a) -4- baoxD(a); 

sinh n . ( r ) .  
¢D(r) = r-~ag-l(p) sinh ~ . (a ) '  

~.~(r) = r-~ag-~(p) sinh v~(r) 
sinh n~(a) ; 

[ m~'~ ~" ( n ~  ~ 2 
D~ = D \ R  _ a ]  ' l¢~ = t~ \ R  _ a ] "  

Since convolution techniques are to be en- 
listed in the inversions of ~ and T, some im- 
portant individual transforms will here be 
collected. To do this, straightforward sum- 
marion of residues will be employed following 
the techniques outlined by Scott (23). The 
poles ~re assumed single. 

L - ~ ( r )  = ~ E~)(r, pl) exp (pit), 
1 

where 

~D(r, pz) = ( a ) ( d g ~  -1 sinhvD(r) 
\ ~ / I v = p ~  sinh ~/D(a) v=~, " 

In order to determine L-~h2 (p) it is necessary 
to find 

L - i  ,(p) c~ (p) (p/k) ~/2 

- ~ L -1 ~ a , ' ( p )n ( - -1 ) "  • L -1 
R - -  a n 

(p/k)  "2 

1 sinh (R -- a) 
R 

t / i  < ,a )  
where the symbol * represents convolution• 
The transform 

L - 1  ( P / k )  1/2 

R l s i n h ~ - ~  ( R - a )  

-- ~ - ~ c o s h / V / P ( R - a )  

can be performed by summation of residues 
around the contour ABCD (Fig. 7). The 
other inversion is: 

--2 ! 2 
L as(p) = e x p ( - k , t )  R _  a 

fR Fn~(r - a)~ • ~ T'(r,  O)r sin L R - ~  a .] dr. 

Performing the convolution gives: 

_ i ,  L a (p )ck (p )  = ~ A ' ,  ck (pj)  
j , u  

pj-t-  k~ 

where 

A ' o  - 2 
R - - a  Ja T ' (r ,  O)r 

• sin L R - a  j d r '  

and the p /s  represent solutions to 

sinh (p/k)ll2(R -- a) 

= R(p/k) 112 cosh (p/k)I/2(R - a). 

This gives for L-lh2(p) : 
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L-lh2 (p) = (Ta -- To)~(t) -- Fr (t) 

OLO 7r 
q- a(R ---- a) ~ A,~ m exp ( - D,~ t) 

+ ~o ~r ~ A~'n exp ( - -  k~ t) 
a(R - a) ~ 

/ k l / 2  

+ ~_o ~ A,/c~ (p~) -- 
a n,Y 

where ~(t) is the Dirac Delta function. 
The inversion of T(r, p) and ~(r, p) give 

Eqs. [7] and [8] of the text, as written in 
terms of convolutions of the inverses calcu- 
lated above. 
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