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Dynamic Response of Plates Due to Moving Loads 

THEODORE F. RASKE 

Department of Engineering Mechanics, University of Missouri, Rolla, Missouri 65401 

ALOIS L. SCHLACK, JR. 

Department of Engineering Mechanics, University of Wisconsin, Madison, Wisconsin 53700 

An analysis based on linear theory is presented for determining the dynamic response and the conditions 
of resonance for a simply supported rectangular plate acted upon by two types of moving loads corresponding 
to: (1) a point force of variable magnitude oscillating about a fixed position on the plate, and (2) a point 
force of constant magnitude traveling in a circular orbit about a fixed position on the plate. In addition to 
the ordinary resonance as produced by a variable magnitude load concentrated at a fixed position on the 
plate, resonance of the plate may occur due to the changing position of the load on the plate. It is shown 
that an infinitely countable number of load movement frequencies may excite a given principal frequency 
of the plate for the m, nth mode of vibration. Numerical examples of typical deflection profiles and time 
rate of deflection buildup are presented for two sets of initial conditions corresponding to: (1) a load initially 
at rest on the deflected beam, and (2) an accelerating load dropped from zero height on an initally un- 
deformed beam. 
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INTRODUCTION 

HE dynamic response of elastic bodies to moving loads has been the subject of many investigations, 
and, consequently, an extensive bibliography is availa- 
ble. However, with few exceptions, these studies have 
been restricted to loads moving with uniform velocity. 
Solutions for a rectangular plate acted upon by uni- 
formly moving loads have been presented by Nowacki/ 
Holl, • and Piszczek, a among others, where it was shown 
that a critcal velocity existed for each vibrational mode. 
Steady-state solutions for an infinite plate carrying a 
uniformly moving load were given by Reismann, 4 
Livesley, 5 and Morley. 6 

This paper presents an analysis of the dynamic re- 
sponse of a simply supported rectangular plate acted 
upon by two types of moving loads corresponding to' 
(1) a point force of variable magnitude oscillating about 
a fixed position on the plate, and (2) a point force of 
constant magnitude traveling in a circular orbit about 
a fixed position on the plate. In addition to the ordinary 
resonace as produced by a variable-magnitude load 
concentrated at a fixed position on the plate, resonance 
of the plate may occur owing to the changing position 
of the load on the plate. It is shown that an infinitely 
countable number of load movement frequencies may 
excite a given principal frequency of the plate for the 
m, nth mode of vibration. Loadings of this type may 
occur on an elastic system by an externally forced 
motion of a loading mechanism, or as the result of longi- 
tudinal vibration of the load or supporting structure 
relative to one another. 

I. ANALYSIS 

The simply supported plate shown in Fig. 1 is loaded 
transversely by a moving time-dependent point force 
P (t) whose instantaneous position on the plate is given 
by x=x(t) and y=y(t). In addition to simple supports 
at the edge of the plate, the plate may also be: (1) sup- 
ported by an elastic foundation, which produces a re- 

• W. Nowacki, Dynamics of Elastic Systems (John Wiley & Sons, 
Inc., New York, 1963), Chap. 9, pp. 198-255. 

•' D. L. Holl, "Dynamic Loads on Thin Plates on Elastic Foun- 
dations" Proc. Symp. Appl. Math. 3, 107-116 (1950). 

a K. Piszczek, "Possibility of Dynamic Stability Loss Under 
Moving Concentrated Loads," Arch. Mech. Stos. 10, 195-209 
(1959). 

4 H. Reismann, "Dynamic Response of Elastic Plates to Moving 
Loads," Martin Co., Denver, Colo., Res. Rept. No. R-62-8, 1-89 
(1962). 

• R. Livesley, "Some Notes on the Mathematical Theory of a 
Loaded Elastic Plate Resting on an Elastic Foundation," Quart. 
J. Mech. Appl. Math. 6, 32-44 (1953). 

e L. S. D. Morley, "Elastic Plate with Loads Traveling at 
Uniform Velocity along the Bounding Surfaces," Quart. J. Mech. 
Appl. Math. 15, 194-213 (1962). 
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storing force on the plate proportional to its local de- 
flection, and (2) loaded by constant axial forces N• and 
Nb, which are not large enough to cause static buckling. 
The governing differential equation for the deflection of 
a thin, isotropic and homogeneous plate of constant 
thickness is 

02w 02w Oho 
DV4w+p----N•----Nb +kw 

Ot • Ox • Oy •. 

=P(t)•[x--x(t)].•[y--y(t)•, (1) 

where/i(t) is the Dirac-delta function and w=w(x,y,t). 
Equation 1 is subject to the limitations imposed by 

the classical plate theory and is valid provided that the 
deflection of the median plane is small as compared to 
the plate thickness. In addition, the effects of transverse 
shear, rotary inertia, and damping have been neglected. 

The solution of Eq. 1 for the case of a simply sup- 
ported plate is sought in the form of the series 

oo oo m r x n rry 
w(x,y,t)-' •. •. Wm.n(t) sin sin- , (2) 

where w•.•(t) are unknown functions of time. Substi- 
tuting Eq. 2 into Eq. 1 and applying standard Fourier 
techniques, the following differential equation is ob- 
tained for each wm,• (t)' 

dho,•,• (t) 4P (t) mrrx(t) nry(t) 
{-X2w•,•(t) = •. sin -sin. , (3) 

dt • abp a b 

where 

D[ (mrr) •' (nrr¾'12N,•(m•r• •N•,(nrr.• 2k 
The solution of Eq. 3 depends upon the expressions 

x(t), y(t) and P(t). The following particular applica- 

P(t) 

X 

Nb ,,'- / -••L••••. 
FIG. 1. Simply supported plate with a moving force. 
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DYNAMIC RESPONSE OF PLATES DUE TO MOVING LOADS 

tions are considered herein' 

Case 1' Time dependent point force oscillating with 
amplitude X about the plate position (x0, y0) for which 

P (t) = P coscot, 

x(t) = Xo+ X singt, 
and 

y(t)=yo. (4) 

Case 2: Point force of constant magnitude traveling in 
a circular orbit of radius R about the plate position 
(x0, y0) for which 

P(t)=P, 

x(t)= xo+R cos/St, 
and 

y(t) = yo+R sinfit. (5) 

A. Case 1--Oscillating Point Force 

Substituting Eq. 4 into Eq. 2 yields 

d2wm. ,, ( t) 4t' 

dts abp 

By introducting the din-tensionless ratios 

n•ryo m•r 
coscot. sin---sin--(Xo+ X sinriO. 

b a 

T--" (7r'2/a, 2) (D/p)«t, (X 1:--- ka,4/D71 '4, •: 
(•r•'/a 2) (D/p) «' 

,•= a/b, A m = m•rxo/a, •= 

as= (Na/D) (a2/r2), 

(Va 

A ,•= mryo/b, L= 4Paa/bD•r 4, 

J3•= m•rX/a, W(x,y,r) = (L/2)w(x,y,r), 

Eq. 6 becomes 

where 

The solution of Eq. 8 is 

d•w.•,,• (r)/dF+ X2w .... (r) = L cos&r sinA• sin (Am+ B• sinfir), 

•.2= [-•,/2_.]L. (O•lT/,)2_-lg_•_G2//,/fi_¾G3 (O/1,)2+O/.I. 

2o(rrt,,t,r) = d| ..... sin•rq-13mn cosTxrq-(L/Tx)(Ix sinTxr--Z,2 cosXr), 

where A .... , B• are arbitrary constants, and the integrals I1, Is are' 

and 

I1 = f COS•.•T COS•T sin(A,•q--B,• sinl•r)dr, 

I•.= f cos&r sin•r sin(A •+B• sin•r)dr. 
The evaluation of Eq. 10 requires the use of the first two of the following Bessel function identities 7' 

cos(B• sin/•r)= Jo(B•)q-2 Z Js•(B•) cos2i/•r, 
i=1 

sin(B, sinfir) = 2 E J•.g+•(B•) sin(2i+ 1)fir, 
i=0 

cos(B,•, cos•r)=Jo(B,•)+ 2 E (-- 1)•J•g(B,0 cos2i/•r, 
i=l 

* G. N. Watson, A Treatise an the Theory of Bessel Functions (Cambridge University Press, New York, 1952), p. 22. 

(6) 

(7) 

(8) 

(9) 

(•o) 
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RASKE AND SCHLACK 

and 

sin(B• cos/•r) = 2 Y'• (-- 1)iJ•i+l(B•n) cos(2i-• 

For convenience, let 

f4= i+a-- 2i•, 
f•= i-a+ 2i•, 

y,=i+a- (2•+•)•, 
rs= 7,+a+ (2i+ 1)•, 
f•= 7,-a- (2i+ 1)•, 

rio = i-- 5•-4- (2i-4-1)/•. 

(12) 

Then, I• and I,. become: 

I•= Jo(Bm) sinf•r-+--- sinf,.r 
2 f• 

sinA m 
+• 

2 

and 

Z J2•(B•) sin far-+--- sinf4r-+--- sinfsr-+--- sinf0r 
•--, f• f• f0 

cosA,• • (• 1 Z J2i+l(Bm) cosf7T---- cosf8T---- 
2 •=0 fs 1 cosfor_l_L cos flor), (13) 

I2-- sinAn• (• 1 cosf2r ) 2 .7o(B,•) cosf•vq- f-• 

sinA,• oo (• 1 1 1 Z J.o,(B•) cosf•+-- cosf•--- cosf•+-- cosf0• 

cosA,• • (• 1 1 1 + • J•i+l(Bm) sinf7r---- sinfsr---- sinf0r+-- sinfl0r . (14) 
2 ,=o f, f, f•o 

It can be shown that the formal interchange of summation and integration is justified, since infinite series of func- 
tions of the type 

Z 7,(z) 
i•---o 

cos it 
or 

sin it 

converge uniformly in t. 
In the following analyses, two sets of initial conditions are considered which are designated herein as' 

1. Drop loadsInitially the plate is at rest and undeformed. At r-0 the load P is dropped from zero height at the 
plate position (xo,yo) and begins to oscillate longitudinally about x0 and to change in magnitude according to 
P cos&r. 

2. Static load--initially the plate is at rest with the static load P at (xo,yo). At r=O the load begins to oscillate 
longitudinally about x0 and to change in magnitude according to P cos•r. 
Let 

and 

SmSa= sinA m sinA. sin (m,rx/a) sin (n,ry/b), 

S•C,= sinA • cosA, sin (m,rx/a) sin (n,ry/b), 

C.•S,= cosA,• sinA. sin (m,rx/a) sin (n,ry/b), 

C•.C. = cosA • cosA • sin (m,rx/a) sin (n,ry/b). (15) 
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DYNAMIC RESPONSE OF PLATES DUE TO MOVING LOADS 

Substituting Eqs. 13 and 14 into Eq. 9, and recalling Eq. 2, the general solutions for the drop load WD(x,y,r) 
and static load Ws(x,y,r), respectively, are given by' 

Drop load: 

E 22 
m=l n=l 

cos•r ( 1 1 1 x \• cos f ,r+__ cos f •.r___2•+sinXr( l l f2 f•f2 / X \• sinf•r-{--- sinf•r) 

sin7xr( 1 1 I l sinf6r)}SmS, * q- X \• sin f 3r-{--- sin f 4r-{-• sin fsr-{--- 

q- E E E J2,+•(B•) \• sinfsr---- m=l n=l i------O i 

sin•r• 1 1 1 -3- • k'fz cos f7r--- cos far---- 

S,•n 

1 2fx-- 1 ) f 3 f 4 f-•2 f • 

1 sinf7r_{_L sinf•0r--1 sinf0r) f7 f10 

1 

COSf10T+--cosfoT--g(2i+l)•(l+l-••]}CmXno fo \f7f8 fof•o/ 

Static load: 

(16) 

o• o• COS•kT 
Ws(x,y,r)=WD(x,y,r)+2 Y'. Y'. SmSa. (17) 

m----1 n-•-i •2 

Equations 16 and 17 give the dimensionless deflection for any plate position (x,y) at time r for the load P cosGr 
oscillating with amplitude X about the plate position (x0,y0). In particular, the deflection under the load is obtained 
by setting x= x0-+-sin•r and y= y0. Resonance occurs whenever any of the following relationships is satisfied' 

•+•= 2ifi, (18) 
IX--•I = 2ifi, 

•,+•= (2i+ 1)•, 
and 

[•-•1 = (2i+1)•. 

It should be noted that if one of the above resonance conditions is satisfied, the corresponding expressions in 
Eqs. 16 and 17 are indeterminate and must be modified by a suitable linfiting procedure. For example, if X=&, 
the terms containing the zero-order Bessel function are indeterminate; in the limit, these terms become 

and 

• • sine, r( 1 1) sin7,r( 1 lim E E Jo(B•) X \•-•sinf•rq--- sinf2r S•Sn=Jo(B•) X \•-•sin2brd-r S•Sn. •-->• ra:l n:l 

These equations show that the amplitude of plate vibration increases linearly with time. Similarly, if resonance 
occurs for any of the remaining relationships, the corresponding amplitude terms can also be shown to increase 
linearly with time. 

B. Case 2--Circularly Orbiting Point Force 

Substituting Eq. 5 into Eq. 4 gives 

d'w 1 m•r n•r 

m,• (t)-{- \2Win. • (t) =•4P sin•(x0-{-R cosfit) sin•(y0q-R sinfit). 
dr • abp a b 

(19) 
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RASKE AND SCHLACK 

Introducing the previously defined dimensionless ratios and, in addition, setting Rm= m•rR/a and R•=mrR/b, 
Eq. 19 becomes 

(d2w/(dr2)m,• (r) q-i2w,n,• (r) = L sin (Am+Rm cos•r) sin (A,,q-R• sin•r). (20) 

The solution of Eq. 20 is 

Wm,•(r)=Am• sin•r+Bm• cos•r+Wm.•(r)v, (21) 

where wm,• (r)v is the particular solution. Let 

g•_= •+ 2j•, g•= •+ 2 (i+j)•, 
g2= •-- 2j•, g•2=1-- 2 (i+i)•, 
ga= i+ 2i•, gla-- i+ 2 (i--j)l•, 
g4=i--2i•, g•4=i--2(i--j)•, 
g,= (2j+ )fi, gl= (2i+ 1)fi, 
go= •+ (2j+ 1)•, g10= •-(2i+ 1)fi, 
g7 = •- (2i+ 2j+ 1)•, g17= •+ (2i- 2j+ 1)•, 
gs= •+ (2i+ 2j+ 1)•, g•s= •- (2i- 2j+ 1)•, 
go= •+ (2i- 2j+ 1)t•, gl•= •- 2 if+j+ 1)t•, 
glO = X-- (2i-- 2j- 1)•, g•.o = X+ 2 (i+j+ 1)•. 

(22) 

Proceeding as in Case 1, the general solutions for the drop load and static load, respectively, are given by' 

Drop load: 

WD(x,y,r)= • Y'• Jo(Rm)Jo(R•)7(1--cosXr)q-5-. Jo(R,•)J•,(R•)-- 
m=l n=l X 2 j=l 

sin2r 

• sin•r 1 1 ) +Y'. Jo(R•)Jo.•.(R•) ( singlrq--- sing2r 
•'=• 7• \• g• 

• sin•r/1 1 +5-. (--1)•Jo(R•)J2i(Rm) ' X • sing3rq--- sing4r i=1 g4 

SmX n 

m=l n=l j------O 
sin•r( 1 1 ß - cosg•r---- 

• \gs gs 
cosgot 

1 ) cos•r/1 1 g•g• g• singar)}S•C• 
+ Z; Z; Z; (-- 

m=l n=l i=0 X \'•1• sing•r+--sing1ø 

cos•r( 1 1 1 2• 4- • \•-• cosgl•rq-• COSgist-- g10 gl•gl• / 
SnCm 
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DYNAMIC RESPONSE OF PLATES DUE TO MOVING LOADS 

Static load: 

---- cosg,or--•2 (2i-4-2j-+- 1)fi-+-•2 (2i--2j-- 1)fi 
g•o g7g8 goglo 

cos•,r 1 1 1 1 r) q- ( sing8r---- sing7r-+--- sing•0r---- sing0 
• \•88 g7 g10 go 

S?•CT• 

m=l n=l i=0 j=l X 

+-- cosg7r+-- cosg•r+-- cosgist--27, + _1 
g, gl, g18 xgTg8 g•,g•s 

sin7,r 1 1 1 1 ) q- ( sing8rq--- sing, r-l--- singl,r-t--- sing18r 
• \: g7 g17 gla 

SnCm 

1 1 1 ) COS•,T( 1 l q--- sing12rq--- singlar-4--- sing•4r q- -- cosgilt-4--- sing•2r 

-3--- cosglar-+--- sing14rd- 2• srng n 

1 1 I 1 

cosgsor+--- cosg•ar---- cosg14r--- 4(iq-j+ 1)•-]- 
g2o gl:• ,•14 glgg2o 1 (i--j)•) g•ag14 

cosXr 1 1 1 1 ) q- ( sing20r--• singl•rq--- singnr--• singlar 
• \•;0 glo g14 gla 

• cos•T 
Ws(x,y,r) = W,(x,y,r)-k4 E Y'. _ 

rn-----1 n=l •2 

C,•C,,. (23) 

m•rx mry 
(sinA • sinA, cosB•q-cosA • sinA, sinB•) sin• sin•. (24) 

a b 

Equations 23 and 24 give the dimensionless deflec- 
tion for any plate position (x,y) at time r for the load P 
traversing a circular orbit of radius R about the plate 
position (xo,yo). In particular, the deflection under the 
load is obtained by setting X=Xoq-Rcos•r and 
y= yo-kR sinfir. Resonance occurs whenever any of the 
relationships given by Eq. 25 is satisfied. 

X= 2i•, X= 2i--j•, 
7,= 2jfi, X= (2iq- 2jq- 1)fi, 
X= (2iq- 1);}, X= ] 2i--2/q- 1 [;}, 
7x= (2j+ 1)fi, 7,= 12i-2j- • Ifi, 
X= 2(iq-j)fi, •= 2(i-kj-k 1)fl. 

(25) 

It should be noted again that if one of these resonance 
conditions is satisfied, the corresponding expression in 
Eq. 23 and 24 must be modified as outlined in Case 1, 
above. The corresponding plate amplitude increases 
linearly with time. 

The convergence of the quadruple infinite series 
given above proved to be very rapid for the illustrations 
presented herein. However, it is entirely possible, for 
certain select set of parameters, that the convergence 
may prove to be rather slow. 

II. DISCUSSION AND NUMERICAL RESULTS 

If X, R, and & are set equal to zero, Eqs. 16, 17 and 
Eqs. 23, 24 reduce to the well-known solutions for a 
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Fund Period 2• • t.. 

a•: 2.0 • • 1.5 - •= I.O • 
• = I 0 and resonant for m= n = I ./' ...... • - ' • / X/O = I/• •:: 

i=2Min. • - z •- I0 
- (.> ß 

• Drop Load • • 
___ Static Load • " 

• 0.5 
z 

' I I I I I x 

200 400 600 800 I000 • 

PERIOD NUMBER 

Fro. 2. Rectangular plate deflection buildup for oscillatin•g point 
force at nonresonant frequency • and resonant frequency/•. 

...................... 
I I I I I 

I00 200 •00 400 500 
PERIOD NUMBER 

Fro. 3. Rectangular plate deflection buildup for oscillating point 
force at resonant frequency •. 

point force concentrated at (x0, y0) with initial condi- 
tions corresponding to either the drop load or static 
load case, respectively. 

The deflection at the center of the plate due to the 
above loads accelerating about the center of the plate 
may be determined by introducing the following simpli- 
fying relationships: 

sinAm sinA • sin (m,rxJa) sin (tory/b) - 
1 for m, n= 1, 3, 5... 
0 for m, n=2, 4, 6..., 

sin AmcosA• sin (m, rxJa) sin (mryJb) = O, 
casa m sinA • sin (m•-x/a) sin (n•-y/b)=O, 
casa m casa • sin (m,rxJa) sin (tory/b) - O, 
for x= x0= a/2 and y= y0= b/2. 

(26) 

For this special case the resonance conditions reduce 
to' 

(1) Oscillating force-- 

Preliminary calculations show that the lower-order 
terms in the deflection equations are predominant. 
Thus, the characteristic behavior of the plate may best 
be illustrated by simple examples restricted to the 
fundamental mode of vibration (m=m= 1). Numerical 
results for the deflection at the center of a rectangular 
plate are presented for both the oscillating and circu- 
larly orbiting point forces. Comparisons are made for 
the deflection profiles and rate of buildup of center de- 
flection for a2-aa-a4-O and al = 2, where the a's are 
given by Eq. 7. 

Figures 2-9 represent typical deflection profiles and 
rate of deflection buildup curves for X/a or R/a ampli- 
tude ratios of •6, -}, •6, and •. The nonresonant deflec- 
tion profiles shown are the deflection-time histories at 
the center of the plate throughout a fundamental plate 
period. The fundamental plate period is defined as the 
time interval for which the deflection profile repeats 
itself. The deflection buildup curves represent the ap- 
proximate envelope of maximum deflections that occur 

(2) Circularly orbiting force-- 

•= 2i/•, 
X= 2//•, 
X=2(i+j)•, 

Because the general deflection equations are exceed- 
ingly cumbersome, it is difficult to interpret their char- 
acteristic behavior. To illustrate the dynamic response 
of the plate most effectively, it is convenient to consider 
the load as accelerating about the center of the plate, 
and to determine the deflection at this point. 

(27) 
'• I Fund Period 2.' • 
• / •' = 2.0 /x/a = •/4 e.ol- • = o • 
• / $ = 2.5 and resonant for • ./ 

• / m=n=i=lMin' / ,•../"' 

• zø t 
, I ,o =o =o 40 50 PERIOD NUMBER 

Fro. 4. Rectangular plate deflection buildup for oscillating point 
force at resonant frequency 
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Fro. 5. Rectangular plate deflection 
profiles for oscillating point force at 
nonresonant frequency/•. 

0.16 

jO. i2 

0.08 

0.04 

X/e = 0 X/e I/8 X/e = I/4 

•=0 
.99 

X/= = I/8 X/a = I/4 

x/o:o I 
t•:l 

0.12 I I• = .99 

Fro. 6. Rectangular plate deflection profiles for oscillating point force at 
nonresonant frequencies • and •. 

• -0.0 

-0.1 I I 

during each fundamental plate period for the amplitude 
ratios given above. 

Figures 2-6 present the results of an oscillating point 
force operating at either a resonant frequency/g or non- 
resonant frequencies & and/•. Figures 2 and 3 show that 
the rate of deflection buildup is greatest for & equal to 
zero. Figures 3 and 4 show that the rate of deflection 
buildup is considerably greater at a frequency/• that 
causes resonance of the plate for a Bessel function of 
order two (i= 1) than for a Bessel function of order 
four (i= 2). Figure 5 shows that the maximum deflec- 
tion at the center of the plate does not change appre- 

ciably with increasing amplitude ratio X/a for & equal 
to zero, while Fig. 6 shows the added influence of the 
nonresonant frequency &. 

Figures 7-9 present the results of a circularly orbiting 
point force oper_ating at both a resonant and nonreso- 
nant frequency •. Figure 7 shows that the maximum de- 
flection of the plate decreases with an increasing R/a 
amplitude ratio. Figures 8 and 9 show that the rate of 
deflection buildup is greatest at a frequency/• which 
causes resonance of the plate for Bessel functions of 
order two (i= j= 1) than for Bessel functions of order 
four (i= j= 2). 
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FIc. 7. Rectangular plate deflection 
profiles for circularly orbiting_point 
force at nonresonant frequency/•. 

• . f•.• Period Z- / For the curves presented herein, an increase in the 
• I =,-- z o • _ ß • •5• .•: 2.5 a.d •e,o.o., for • • amplitude ratio X/a or R/a is accompanied by a cor- 
_• / n,,,! I M,, • • responding increase in the rate of deflection buildup. •.• ' = ='= '= . . 

• / / •.•/.: .•/,• But, fore system resonating at higher modes of vibra- 
• I.o[- / • tion, it is possible to have an increase in both of these amplitude ratios and yet obtain a decrease in the rate 

• of deflection buildup. This results since the rate of de- 
flection buildup is primarily dependent upon the order 

• u.o[ • _.....•....••.- and argument of the Bessel function. For example, the 
• / . ' __ •/a: vl6 values of a Bessel function of order two (i= 1) for X/a 
:• / I 2 3 4 5 

/ PERIOD NUMBER 

FIG. 8. Rectangular plate deflection buildup for circularly 
orbiting point force at resonant frequency 

Fund Period 4•' / •("•--') 
'• el: 2.0 R/o: I/4 
• I 5 - •= 1.25 and resonant for m:n= I, 

- ' i=j=2 Min. . 
I0 '•- 

•; --i I i i i 
x 

,{ 5 io i5 20 25 2, X/a=-[, J2=0.01896 
•' PERIOD NUMBER 

Fro. 9. Rectangular plate deflection buildup for circularly 3, X/a=•,J•=O.04199 
orbiting point force at resonant frequency/•. 4, X/a=-}, J•=0.07297 
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I 

Fro. 11. Bessel function of order two for m = 17. 

For point 1, X/a=•, J2=0.47568 

2, X/a= •, J,.=--0.31328 

3, X/a= •_a•, J•.=0.25466 

4, X/a=•, J,.=--0.21822 

ratios of x• to • are given in ascending order in Fig. 10 
for the plate vibrating at a mode given by m= 1 and n 
arbitrary. Figure 11 presents the values of a Bessel 
function of order two (i= 1) for X/a ratios of • to-} in 
the order shown for the plate vibrating at a mode given 
by m= 17 and n arbitrary. 

III. CONCLUSIONS 

For a variable magnitude force P cos&r, whose in- 
stantaneous position on the plate is given by (Xoq-X 
Xsin/•r, y0), resonance occurs whenever any one of the 
following conditions is satisfied' 

C•. 

C•o. •+&= 2i/• •i= i, 2,-.. Ca. [•--&]=2i/• 

C4. •q-&= (2iq- 1)•) i=O, 1,...oo. 
C5. IX--& I = (2i+l)•f 

Condition 1 corresponds to the ordinary resonance pro- 
duced by a variable magnitude force P cos&r concen- 
trated at a fixed plate position. Conditions 2-5 predict 
a resonance which is due to the longitudinal oscillation 
of the force along the plate. For a constant-magnitude 
force P whose instantaneous position on the plate is 
given by (x0+R cos/•r, y0+R sinfi•), resonance occurs 
for any of the relationships given by Eq. 25 and is due 
to the changing position of the point force on the plate. 
For both types of loading, the rate of deflection buildup 
depends primarily on the Bessel function for each mode 
of vibration. 
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