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Dynamic Response of Plates Due to Moving Loads

THEODORE F. RASKE

Depariment of Engineering Mechanics, University of Missouri, Rolla, Missouri 65401

Arors L. ScHLACK, ]JRr.

Depariment of Engineering Mechanics, University of Wisconsin, Madison, Wisconsin 53700

An analysis based on linear theory is presented for determining the dynamic response and the conditions
of resonance for a simply supported rectangular plate acted upon by two types of moving loads corresponding
to: (1) a point force of variable magnitude oscillating about a fixed position on the plate, and (2) a point
force of constant magnitude traveling in a circular orbit about a fixed position on the plate. In addition to
the ordinary resonance as produced by a variable magnitude load concentrated at a fixed position on the
plate, resonance of the plate may occur due to the changing position of the load on the plate. It is shown
that an infinitely countable number of load movement frequencies may excite a given principal frequency
of the plate for the m, nth mode of vibration. Numerical examples of typical deflection profiles and time
rate of deflection buildup are presented for two sets of initial conditions corresponding to: (1) a load initially
at rest on the deflected beam, and (2) an accelerating load dropped from zero height on an initally un-

deformed beam.

LIST OF SYMBOLS

Bessel function or order zero
Bessel function of integer order »

effective  spring constant of elastic
foundation

magnitude of point load

Plate Symbols

a
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A,
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R
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length of plate
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flexural rigidity

mwxo/a
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axial forces per unit length

radius of circular orbit

mwR/a

nwR/b

position on plate measured from coordinate
axis

@ E W hy ™~

w(%,,)
p
.

B

231
Q2
asg

time

amplitude of longitudinal oscillation of load
frequency of longitudinal oscillation of load
transverse frequency of load

Dirac-delta symbol

deflection of plate
mass per unit area of plate

(n2/a)(D/ o)t
__F
(n2/a) (D/ )}
(x%/@?)(D/p)}

a/b
(Na/D)(a*/7*)
(Nb/D)(8*/7%)
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N (ka*)/ Dn*
W(xy,7) w(x,y)bDn'/2Pd’
A2 I:m2+ (aln)z:F-i—azmz—I—as (aln)2+a4

INTRODUCTION

‘HE dynamic response of elastic bodies to moving
loads has been the subject of many investigations,
and, consequently, an extensive bibliography is availa-
ble. However, with few exceptions, these studies have
been restricted to loads moving with uniform velocity.
Solutions for a rectangular plate acted upon by uni-
formly moving loads have been presented by Nowacki,!
Holl,? and Piszczek,® among others, where it was shown
that a critcal velocity existed for each vibrational mode.
Steady-state solutions for an infinite plate carrying a
uniformly moving load were given by Reismann,?
Livesley,® and Morley.*

This paper presents an analysis of the dynamic re-
sponse of a simply supported rectangular plate acted
upon by two types of moving loads corresponding to:
(1) a point force of variable magnitude oscillating about
a fixed position on the plate, and (2) a point force of
constant magnitude traveling in a circular orbit about
a fixed position on the plate. In addition to the ordinary
resonace as produced by a variable-magnitude load
concentrated at a fixed position on the plate, resonance
of the plate may occur owing to the changing position
of the load on the plate. It is shown that an infinitely
countable number of load movement frequencies may
excite a given principal frequency of the plate for the
m, nth mode of vibration. Loadings of this type may
occur on an elastic system by an externally forced
motion of a loading mechanism, or as the result of longi-
tudinal vibration of the load or supporting structure
relative to one another.

I. ANALYSIS

The simply supported plate shown in Fig. 1 is loaded
transversely by a moving time-dependent point force
P (f) whose instantaneous position on the plate is given
by x=x(¢) and y=7v(¥). In addition to simple supports
at the edge of the plate, the plate may also be: (1) sup-
ported by an elastic foundation, which produces a re-

1 W. Nowacki, Dynamics of Elastic Systems (John Wiley & Sons,
Inc., New York, 1963), Chap. 9, pp. 198-255.

2D. L. Holl, “Dynamic Loads on Thin Plates on Elastic Foun-
dations” Proc. Symp. Appl. Math. 3, 107-116 (1950).

3 K. Piszczek, “Possibility of Dynamic Stability Loss Under
%é[o;dlilg Concentrated Loads,” Arch. Mech. Stos. 10, 195-209

1959).

¢ H. Reismann, “Dynamic Response of Elastic Plates to Moving
I(.I();gizs),” Martin Co., Denver, Colo., Res. Rept. No. R-62-8, 1-89

5 R. Livesley, “Some Notes on the Mathematical Theory of a
Loaded Elastic Plate Resting on an Elastic Foundation,” Quart.
J. Mech. Appl. Math. 6, 32-44 (1953).

SL. S. Ig Morley, “Elastic Plate with Loads Traveling at
Uniform Velocity along the Bounding Surfaces,” Quart. J. Mech.
Appl. Math. 15, 194-213 (1962).
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storing force on the plate proportional to its local de-
flection, and (2) loaded by constant axial forces N, and
N, which are not large enough to cause static buckling.
The governing differential equation for the deflection of
a thin, isotropic and homogeneous plate of constant
thickness is '

*w w w
DV4w+p——No——No—+kw
a? 9x? ay?

=Polz—x()]-sly—y(®] (1)

where §(f) is the Dirac-delta function and w=1w(x,y,?).

Equation 1 is subject to the limitations imposed by
the classical plate theory and is valid provided that the
deflection of the median plane is small as compared to
the plate thickness. In addition, the effects of transverse
shear, rotary inertia, and damping have been neglected.

The solution of Eq. 1 for the case of a simply sup-
ported plate is sought in the form of the series

mrx  nwy

w(x’y)t) = i 2.0 wm,n(t) sin— SinT) (2)

m=1 n=1 a

where wn,»(¢f) are unknown functions of time. Substi-
tuting Eq. 2 into Eq. 1 and applying standard Fourier
techniques, the following differential equation is ob-
tained for each @, »(f):

AW, (1) 4P()  mwx(t) nwy()
N ()= -sin -sin . (3)
ae? abp a
where

ma\? /nm\?* P Naoyma\* Ny/um\* k
(T2
plL\ a b p\a p\b p
The solution of Eq. 3 depends upon the expressions
x(f), ¥()) and P(#). The following particular applica-

F1c. 1. Simply supported plate with a moving force.
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DYNAMIC RESPONSE OF PLATES DUE TO MOVING LOADS

tions are considered herein: Case 2: Point force of constant magnitude traveling in

Case 1: Time dependent point force oscillating with

amplitude X about the plate position (%o, ¥0) for which (%, y0) for which

P(#)=P coswt, P@)="p,

x(t)=x0+ X singt, % (£) =2+ R cospt,
and and

y(&)=1yo. 4) y(t)=yo+R singt.

A. Case 1—Oscillating Point Force
Substituting Eq. 4 into Eq. 2 yields

AW, (1) 4P nwyo
——————+ Ny, 5 () =— cosei - sin
ar abp

ma
-sin—(xy+X singt).
a

By introducting the dimensionless ratios

7= (a2/a) (D/o)Y, s kD, L
T ’ (%/a) (D/p)}
_ 8
a1=4a b, Am=m7r o/ @, B=—1
/ w/ (*/a) (D/p)}
as=(N,/D)(a®/7?), A n=nmyo/b, L=4Pd*/bDx*,
as= (Vo/D) (@/7), Bu=mrX/a, W (x9,7) = (L/ 2wy, 7),

Eq. 6 becomes
P, 0 (7) /A8 N0 o (7) = L cos@r sind ,, sin(A4 ,+ By, sinfr),
where
= [m2+ (an)? Pt aom?+as(an)?+au.
The solution of Eq. 8 is

w(mn, 1) = A SINNT+ B cosht+ (L/N) (I sinhr— I coshr),

where Aun, Bmn are arbitrary constants, and the integrals Iy, I, are:

I= / c0s@7 cosAT sin(4 »+ B, sinfir)dr,
and

I,= f cos@r SinhT sin (A4~ B sinfr)dr.
The evaluation of Eq. 10 requires the use of the first two of the following Bessel function identities:

c0s (B sinBr) =Jo(Bm)+2 f J2i(Bn) cos2ifr,

i=l

sin(B,, sinfr)=2 f‘, J2ip1(Ba) sin(2i41)Br,
=0

cos (B cosfr)=To(Bn)+2 i (—1)2T 2¢(Bm) cos2ifr,

ie]

7G. N. Watson, 4 Treatise on the Theory of Bessel Functions (Cambridge University Press, New York, 1952), p. 22.

The Journal of the Acoustical Society of America

a circular orbit of radius R about the plate position

©)

(6)

(7

(8)

9)

(10)
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RASKE AND SCHLACK

and
sin(By, cosfr)=2 i (—1)iT 2441(Bam) cos(2i+1)Br. 11
=0
For convenience, let
fi=M o, fe=A—a—2iB,
fo=A 0, fi=\a— (2i+1)8,
fo=A+a+2iB, fs=Aa+ (2i4-1)8, (12)
fo=Aa—24B, fo=A—o— (2i+1)B,
fs=R—a+2ip, fro=A—a+ (2+1)B.
Then, I, and I, become:
sind m, 1 1
Il= Jo (Bm) (—— SiIlf]_T-l-— SiIlng)
2 S f 2

+T Z ng(Bm)(7 Sll’lf3T+f— Sll’lf4T+f— Sll’lf5T+f— Qll’lfs‘r)

=1

cosAn, = 1 1 1
+ Z J2i11(Bm) (—— COS fr1—— cos far—— cosf97-+— COSfmT), (13)
2 f7 8 9 10
and

7 sind ., J B )(1 firt P )
2= oDm)l — COSJ17T —COS 2T
2 f fa

1

S S e )(1 forb— cosfur—— cosor-+— f)
2\ D)l — COSJ3TT— COSJ4AT—— COS j5TT— COS /4T
2 fs f f fi

i=1 4 5 6

COSAm

+

8 9 10

1 1 i
Z J2i41(Bm) (7 sin f 7T—f_ sinf, 8"'_f_ sin 9‘r+f— sin f 101') (14)

It can be shown that the formal interchange of summation and integration is justified, since infinite series of func-
tions of the type

cos it

ZJ(z){

51n 1t

converge uniformly in .
In the following analyses, two sets of initial conditions are considered which are designated herein as:

1. Drop load—Initially the plate is at rest and undeformed. At =0 the load P is dropped from zero height at the
plate position (xo,y,) and begins to oscillate longitudinally about x, and to change in magnitude according to
P cosar.

2. Static load—initially the plate is at rest with the static load P at (xo,y0). At 7=0 the load begins to oscillate
longitudinally about % and to change in magnitude according to P coswr.

Let
SmSn=sind,, sind , sin(mrx/a) sin(nxy/b),
SuCn=sind,, cosA, sin(mmrx/a) sin(nry/b),
CnSn=c084 n sind , sin(mmrx/a) sin(nmry/b),
and

CnCrn=c084 n cosd , sin(mmrx/a) sin(nny/b). . (15)

628 Volume 42 Number 3 1967
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DYNAMIC RESPONSE OF PLATES DUE TO MOVING LOADS

Substituting Egs. 13 and 14 into Eq. 9, and recalling Eq. 2, the general solutions for the drop load Wp(x,y,7)
and static load W(x,y,7), respectively, are given by:

Drop load:

- Z Jo(B) coshr/1 1 1 2)+smi7— 1 1 )}S,,,,S
p(x,y,7)= Z of m{ 5 (FCOSfu'-I-—COsz‘r — S (f 51nf11-+751nfgr ,,

m=1 n=1 1 2 1/2 1 2

© AT/ 1 1 1
—l—mz—:l nz_:l 12—21 J2:(Bm) ( N (—f— cos fa‘l"l‘? cos f4-r+f— cos far-l-f— cos feT—EZfl_ EZ fz)

+sm7\-r 1 + + + )}S,,.S
— s7+—sin — sin —sin n
z (f sinfsr P sin fur T sinfsr P sin fer

3

FY Y <B>{ SM(l'f " infrr—sin 1'f)
2i+1 m, — SN jg7—— SIN [771— SIN 07— — SIN JgT
! £ I f 5

m=1 n=1 i=0 8 7 10 9

sinAr 1 1 1 1 /1 1
+— [—cos fr1— — cos fsr—— cos fro7+— cosf91—2(2i+1)ﬂ(—+ ):”C,,,S,,. (16)
A 7 Js 10 fo 1fs fafwo

Static load:
w ® COSAT

Ws(xy,r)=Wo(@y,n+2 L X —SnSn. (17)

m=1 n=1

Equations 16 and 17 give the dimensionless deflection for any plate position (x,y) at time 7 for the load P cosor
oscillating with amplitude X about the plate position (xo,3). In particular, the deflection under the load is obtained
by setting x=x¢+sinfBr and y=yo. Resonance occurs whenever any of the following relationships is satisfied:

=0,
Moo= 2i, (18)
IN\—&| =24,

Moo= (2i+1)8,
and

|A—a| = (2i+1)B.

It should be noted that if one of the above resonance conditions is satisfied, the corresponding expressions in
Eqgs. 16 and 17 are indeterminate and must be modified by a suitable limiting procedure. For example, if A=,
the terms containing the zero-order Bessel function are indeterminate; in the limit, these terms become

[--} o0 A 1 1
Té Z= nz=: (BM)T(f— cos frr—l-f— cos fg‘r——Z)\)S,,.S w=Jo(Bm)[ (cosAt)/ )\]—[cos (201)—1]SnSx
and

A/ 1 nir/ 1
lim E Z Jo (B,,.)———(—— sin frr4+— smfg-r)S,,.S,. Jo (Bm)Sl T(— sin2a@7+ T)S”S".
A \f 2 r \2a

Ao m=1 n=1 w

These equations show that the amplitude of plate vibration increases linearly with time. Similarly, if resonance
occurs for any of the remaining relationships, the corresponding amplitude terms can also be shown to increase
linearly with time.

B. Case 2—Circularly Orbiting Point Force

Substituting Eq. 5 into Eq. 4 gives

d*w 1 mw nr
— .0 () F N, » () =—4P sin—(x0+ R cospt) sin—(yo+ R sinBt) . (19)
T2 abp a b

The Journal of the Acoustical Society of America 629
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RASKE AND SCHLACK

Introducing the previously defined dimensionless ratios and, in addition, setting R,=mrR/a and R,=nwR/b,
Eq. 19 becomes

(@w/ (A7) m, 2 (7)+ N 0 () = L sin (A m+ R cosB7) sin (A ,+ R, sinfr). (20)
The solution of Eq. 20 is
Wi, n(T) = Amn SIDNT+ Bonn COSNT+ Wi, n (7) p, (21)

where w,, (1), is the particular solution. Let

21=N+27B, gu=A+2(i+5)B,
gz=5\—2ﬂ§, g12=7\—2(i+j)5,
gs=A+2iB, gis=A+2(i—j)B,
§4= 5‘_2’55, g14=7\—2(i—j)!§,
gs=A—(2j+1)8, grs=A+(2i+1)B, (22)
gs=M(27+1)8, gre=A— (2i+1)8,

gr=A— (2i+25+1)B,
gs=M(2i425+1)8,
go=A+(2i—25+1)B,
gro=A—(2i—2;j—1),

L= 7\+ (2i—25+ 1)5:
gu=A—(2i—2j+1)B,
gre=A—2(i+7+1)8,
go=A+2(i+j+1)8.

Proceeding as in Case I, the general solutions for the drop load and static load, respectively, are given by:
Drop load:

sinAr

®  ® 1 ©
WD(x:y;T)= Z Z {JO(RM)JO(Rn)ig(l_COS)-\T)"'Z JO(Rm)Jm (Rn)

m=1 n=I1 J=1 ;\

® sinhr/ 1 ) 1
+2° Jo(Rm)J 2 (Rn)—:—<- singy7+— Smg2")
=1 A \; ge

© cosAt/ 1 1
+Z Jo (Rm)JQJ (Rn)f<— COSg1T+—— COngT)
=1 A g1 14

w ) sinar/ 1 1
+> (—1D)Te(R)T 21-(Rm)f(— singsr+— singu-)
i=1 A o\gs g4

© ) coshr/ 1 1
+2- (=1 o(Ra)T 21-(Rm)f(- cosgsr+— cosgu-) }SmS n
=1 )\ ga g4

© o ® sinAr/ 1 1
+X XX ]O(Rm)]~j+1(Rn)( 2 (— COSgsT—— COSgeT

m=1 n=1 ;=0 g5 gﬁ

1 \ cosir/1 1
——2(254 1)/3>+ — (— singgr—— sing5r)lSmC,.
8586 A \ge g5

© ® . sin}\r 1 1
+ Z Z Z (— 1)1J0(Rn)]2i+1(Rm){ 5\ (— sing15r—|—— SiIlglsT)

m=1 n=1 =0 415 816

cosht/ 1 1 1
+— (— COSg157+—— COSg167— 2)\) }S,‘Cm
A \gis 47 g15816

630 Volume 42  Number 3 1967
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DYNAMIC RESPONSE OF PLATES DUE TO MOVING LOADS

@ @ ® Sinxf
LR EYY (- 1)"12,-(Rm>12,~+l<1en)( -

m=1 n=1 i=1 j=0

1 1 1
(— COSg7T—— COSgaT+— COSZoT
87 g8 89

! 2(212—2]'—-1)5)

1 1 _
—— cosgror—2(2i+25+1)8+
810 8148 £og10
coshr/ 1 1 1
(— singgT—— singzr-+— singior—— singgr) }S,,.C n
88 &7 810 £

+ 2 XXX (1) 5(Ra) 2i1(Rm)

© ® o . ] {COS;\T 1
bl i i — — COSgsT
% =

m=1 n=1 =0 j=1

1 1 1 /1 1
+— cosgrT+— cosgur+— cosgsT— 27\(g——|— ))
811818

I44 817 g18

sinAr/1 1 1
=5

788

1
— singsT+— singyr+— singyr+— singlgr) ]S aCom
88 &7 g 81

1

=) =) ) o ini\T
FEESY <—1>ifﬁ<Rm>Jg,-<Rn>{sT(g— singur

m=1l n=1 i=1 j=1

1 1 1 COSAT
+— singror+— singr+— 91ng14'r)+ 3

812 g13 814

g1z f1a 811812 Z13814

11

1 1
(g_ cosgn7+——singser

11 812

1 1 /1 1
+— cosgur+— sing14r—|—2)\( +- ))}SmSn

m=1 n=1 =0 j=0

) ) [Sl )\T 1
FE EE S (~DTan®s o) | (— cosgor

g9

1 o _)
813814

1 1 1

1 1 1 1 B}
—— CO8g20T+— CO8g1sT—— Co8g17 ——4(i+ -+ 1)B+——4(GE—7)B
£20 g13 g1 19820
cosht ( 1
g20

Static load: _
w w COSAT
I/VS (x;y,"') = Wp(x,y,'r)-l-4 Z Z -

m=1 n=1 )\2

Equations 23 and 24 give the dimensionless deflec-
tion for any plate position (x,y) at time 7 for the load P
traversing a circular orbit of radius R about the plate
position (wq,¥0). In particular, the deflection under the
load is obtained by setting x=x0+R cosfr and
y= 190+ R sinBr. Resonance occurs whenever any of the
relationships given by Eq. 25 is satisfied.

=218, A=2i—3B,
i= 278, =( i+2j+1)8,
A= (2i+1)8, A= |2—274+118, (25)
A= (2j+1)8, = |2i—2j—1(B,
A=2(i+7)B, =2(z+1+1)B

— singger—— singyy7+— singur—— singm-) ] CnCrn  (23)

£19 g14 813

mmx

ny
(sind , sind ,, cos B~ cosA ,, sind ,, sinB,,) sin— sin—b. 24)

a

Tt should be noted again that if one of these resonance
conditions is satisfied, the corresponding expression in
Eq. 23 and 24 must be modified as outlined in Case 1,
above. The corresponding plate amplitude increases
linearly with time.

The convergence of the quadruple infinite series
given above proved to be very rapid for the illustrations
presented herein. However, it is entirely possible, for
certain select set of parameters, that the convergence
may prove to be rather slow.

II. DISCUSSION AND NUMERICAL RESULTS

If X, R, and @ are set equal to zero, Egs. 16, 17 and
Eqgs. 23, 24 reduce to the well-known solutions for a

The Journal of the Acoustical Society of America 631
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A

= Fund Period 2

g. 2| H=20

o §= 1.0

2 2|.0 and resonant for m=n=| -

E i-2 Min. ? X/a = 1/4

z

©

.08

§ Drop Load

% ___ Static Lood

o =

« X/a = 3/16
B o.af

&

o B X/a=1/8
b3 = ——E T e s e
32 = ) ) ) ) X/a = 1/16
g 200 400 600 800 1000

PERIOD NUMBER

F16. 2. Rectangular plate deflection buildup for oscillating point
force at nonresonant frequency @ and resonant frequency f3.

point force concentrated at (%o, ¥o) With initial condi-
tions corresponding to either the drop load or static
load case, respectively.

The deflection at the center of the plate due to the
above loads accelerating about the center of the plate
may be determined by introducing the following simpli-
fying relationships:

sind ., sind, sin(mwrx/a) sin(nwy/b)=
1 for m, n=1,3,5---
Oform,n=2,4,6---,
sin A ,cosA , sin(mwrx/a) sin(nry/b)=0, (26)
cosA , sind ,, sin(mwrx/a) sin(nry/b)=0,
c0SA », 084 sin(mnx/a) sin(nry/b)=0,
for x=x9=a/2 and y=yo="5/2.

For this special case the resonance conditions reduce
to:

(1) Oscillating force—

r=0,
o= 248, Q7
[A—&| = 248.

(2) Circularly orbiting force—

A=2iB,

A=2;8, (28)
A=2(i+7)8,

A=2|i—j|B

Because the general deflection equations are exceed-
ingly cumbersome, it is difficult to interpret their char-
acteristic behavior. To illustrate the dynamic response
of the plate most effectively, it is convenient to consider
the load as accelerating about the center of the plate,
and to determine the deflection at this point.
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F16. 3. Rectangular plate deflection buildup for oscillating point
force at resonant frequency 3.

Preliminary calculations show that the lower-order
terms in the deflection equations are predominant.
Thus, the characteristic behavior of the plate may best
be illustrated by simple examples restricted to the
fundamental mode of vibration (m=m=1). Numerical
results for the deflection at the center of a rectangular
plate are presented for both the oscillating and circu-
larly orbiting point forces. Comparisons are made for
the deflection profiles and rate of buildup of center de-
flection for as=a3=0a4=0 and a;=2, where the o’s are
given by Eq. 7.

Figures 2-9 represent typical deflection profiles and
rate of deflection buildup curves for X/a or R/a ampli-
tude ratios of %, %, 3%, and . The nonresonant deflec-
tion profiles shown are the deflection-time histories at
the center of the plate throughout a fundamental plate
period. The fundamental plate period is defined as the
time interval for which the deflection profile repeats
itself. The deflection buildup curves represent the ap-
proximate envelope of maximum deflections that occur
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F1G. 4. Rectangular plate deflection buildup for oscillating point
force at resonant frequency 3.
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during each fundamental plate period for the amplitude
ratios given above.

Figures 2-6 present the results of an oscillating point
force operating at either a resonant frequency 8 or non-
resonant frequencies @ and 8. Figures 2 and 3 show that
the rate of deflection buildup is greatest for @ equal to
zero. Figures 3 and 4 show that the rate of deflection
buildup is considerably greater at a frequency § that
causes resonance of the plate for a Bessel function of
order two (¢=1) than for a Bessel function of order
four (7=2). Figure 5 shows that the maximum deflec-
tion at the center of the plate does not change appre-

ciably with increasing amplitude ratio X/a for @ equal
to zero, while Fig. 6 shows the added influence of the
nonresonant frequency &.

Figures 7-9 present the results of a circularly orbiting
point force operating at both a resonant and nonreso-
nant frequency B. Figure 7 shows that the maximum de-
flection of the plate decreases with an increasing R/a
amplitude ratio. Figures 8 and 9 show that the rate of
deflection buildup is greatest at a frequency B which
causes resonance of the plate for Bessel functions of
order two (i=j=1) than for Bessel functions of order
four (1=75=2).
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F16. 7. Rectangular plate deflection
profiles for circularly orbiting point
force at nonresonant frequency 3.

L=
e —
—— Y

‘|
2w

=

Fund Period 21
R/a = i/4

= 2.0
1.5 B =25 ond resonant for
m=n=i=j=|Min. /

R/ = 3/16

o
T

R/a=1/8

[0}
2]
T

e R/a= V16

| 2 3 4 5
PERIOD NUMBER

F16. 8. Rectangular plate deflection buildup for circularly
orbiting point force at resonant frequency 3.
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Fic. 9. Rectangular plate deflection buildup for circularly
orbiting point force at resonant frequency 8.
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For the curves presented herein, an increase in the
amplitude ratio X/a or R/a is accompanied by a cor-
responding increase in the rate of deflection buildup.
But, for a system resonating at higher modes of vibra-
tion, it is possible to have an increase in both of these
amplitude ratios and yet obtain a decrease in the rate
of deflection buildup. This results since the rate of de-
flection buildup is primarily dependent upon the order
and argument of the Bessel function. For example, the
values of a Bessel function of order two (¢=1) for X/a

% (2X)

F1c. 10. Bessel function of order two for m=1.
For point 1, X/a=+, J.=0.00479
2, X/a=%, J,=0.01896
3, X/a=45;, J.=0.04199
4, X/a=%, J.=0.07297
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()

WAV

I°16. 11. Bessel function of order two for m=17.
For point 1, X/a=+;, J:=0.47568
2, X/a=%, J,=-—0.31328

ratios of i to % are given in ascending order in Fig. 10
for the plate vibrating at a mode given by m=1 and »
arbitrary. Figure 11 presents the values of a Bessel
function of order two (i=1) for X/a ratios of {5 to%in
the order shown for the plate vibrating at a mode given
by m=17 and » arbitrary.

III. CONCLUSIONS

For a variable magnitude force P cosar, whose in-
stantaneous position on the plate is given by (x¢+X
X sinBr, yo), resonance occurs whenever any one of the
following conditions is satisfied:

C A=a
Co. A o=2ip
Cs. |[A—a|=2i8

Coe M=+ i=0,1,--- .
Cs. |A—&|=(i+1)8S

}i=i, 2w,

Condition 1 corresponds to the ordinary resonance pro-
duced by a variable magnitude force P cos@r concen-
trated at a fixed plate position. Conditions 2-5 predict
a resonance which is due to the longitudinal oscillation
of the force along the plate. For a constant-magnitude
force P whose instantaneous position on the plate is
given by (xo+R cosBr, yo+R sin87), resonance occurs
for any of the relationships given by Eq. 25 and is due
to the changing position of the point force on the plate.
For both types of loading, the rate of deflection buildup
depends primarily on the Bessel function for each mode
of vibration.
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