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College Park, Md. 

Mem. ASME 

A Plastic Stress Analysis of Cylindrical 
Wafers Under Elastically Deformable 
Compression Plates 
This paper represents an analysis of the pressure distribution occurring in axially 
loaded cylindrical wafers with, and without, elastic radial constraints. The purpose of 
this report is to demonstrate the resulting stress patterns that occur in short compression 
specimens frequently used in determining material properties, and in the opposed-anvil, 
or Bridgman-type, high-pressure cells. The influence of radial constraints, material 
strain hardening, wafer diameter-to-height ratio, anvil or plate deflection, and the wafer-
anvil interface friction on the resulting stress distributions have been examined. The 
integrated normal stress distribution across the specimen surface has been verified 
experimentally via numerous tests in which each of the subject parameters listed above 
was varied. 

Introduction 
THE prob !em of specific interest here is the study of 

the radial and axial pressure gradients existing in a circular 
specime l situated between a pair of initially parallel compression 
plates, called anvils. Other investigators [1, 2, 3, 4]1 have ana-
lytically described the resulting phenomenon by employing cer-
tain simplifying assumptions in their analyses in order to reduce 
the problem to a more tractable form. Since these assumptions 
are not entirely defensible, and the end results have not been 
verified, the justification for a more extensive analysis is ap-
parent. 

Considerable effort has been expended to determine experi-
mentally the stress state in nonmetallic specimens, and this 
merits a brief discussion. The resistance change in manganin 
wire, as a function of pressure, has served as a basis for an ex-
perimental evaluation of pressure gradients in circular wafers 
of silver chloride, reference [5]. The manganin wire was formed 
into a hoop of constant radius in accordance with the assumed 
axial symmetry. This technique prevented any axial variations 
from influencing measurements of the radial gradients, and the 
converse is true for axial measurements. In reference [6], the 
pressure-induced phase change of bismuth wire was employed to 
obtain specific load-pressure data. The authors of this reference 
placed bismuth wires in both axial and radial positions in an ef-
fort to isolate and define the gradients occurring in these two 
directions. The results reported in reference [5] indicate that 

1 Numbers in brackets designate References at end of paper. 
Contributed by the Metals Engineering Division and presented 

at the Metals Engineering Conference, Houston, Texas, April 3-5, 
1 9 6 7 , o f T H E A M E R I C A N S O C I E T Y OF M E C H A N I C A L E N G I N E E R S . 
Manuscript received at ASME Headquarters, January 26, 1967. 
Paper No. 67—Met lO . 

pressure is lowest at the wafer center and increases linearly with 
increase in radial position. Reference [6] suggests that this re-
sult is possible, but would be largely dependent on the diameter 
to thickness ratio (D/H) of the wafer. The authors of reference 
[7] have used the techniques described in reference [6] with the 
result that the pressure is always highest at the center of pyro-
phyllite, talc, and boron nitride wafers. This reference also men-
tions the existence of axial variations in confined wafers of varia-
ble D/H ratios, and points out the influence of the anvil-wafer 
friction on this variation. These conclusions are definitely com-
patible with the results of this report. Since the actual pressure 
mechanism which generates these phase and resistance changes 
has not been conclusively described, most experimenters have 
been compelled to define pressure in terms of total compressive 
load, divided by wafer area. This is actually a measure of the 
average axial normal stress and would supposedly exist only at 
the mid-merdian plane by virtue of the presence of shearing stress 
on the deflected wafer surface. Pressure is usually defined as the 
average of the orthogonal stress state existing at a point and will 
be referred to as such in this report. Unksov, reference [3], has 
presented experimental evidence of the contact stresses for lead 
and metallic specimens and has reviewed the results of several 
other experimenters. Also of interest in this reference is the 
comparative discussion of the theoretical analysis for the as-
sumption of plane strain (as suggested by Prandtl) and the ex-
perimental results for circular specimens. The two results are 
quantitatively the same. The purpose of discussing these re-
ports is to point out the difficulty to be encountered by ex-
perimenters in attempting to isolate, and predict, the influence 
of changes in all of the probable parameters. Chief among the 
parameters needed to be studied are: diameter-to-thickness 
ratio; wafer material properties (strain hardening and yield 

-Nomenclature-
ai, ai, 03 = displacement coefficients 

b = slope of plastic stress-strain 
curve 

F = applied force transmitted to 
the wafer from the com-
pression anvils 

/ = coefficient of friction at 
wafer-anvil interface 

G = modulus of rigidity of anvil 
material 

2ho = initial wafer height 

2 hc = deformed wafer height 
measured along the wafer 
axis 

Pc = radial restraining pressure 
exerted on the wafer at 
the mid-meridian plane 
by the containing ring 

r, 6, z = radial, circumferential, and 
longitudinal coordinates, 
respectively, of cylindri-
cal coordinate system in 

which the longitudinal 
coordinate is directed 
along the wafer axis 

Ro = initial wafer radius 
Rc, R, = deformed wafer radius 

measured at the mid-
meridian and top sur-
faces, respectively 

Ra = radial position, measured 
on wafer-anvil interface, 

(Continued on next page) 
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strength); anvil-wafer friction effect; anvil deflection; and in-
fluence of radial constraints. 

This paper is a condensed version of a more elaborate report 
(reference [8]) made available to Pressure Science, Inc., Belts-
ville, Md., and limited copies may be obtained from the authors. 

Stress Analysis 
The discussion of a stress analysis involving the compression of 

wafers in an opposed-anvil apparatus necessitates an agreement 
on the terminology to be employed. The wafer is initially in the 
form of a short, right circular cylinder and is located between an 
identical pair of parallel plates, called anvils. As these anvils 
are brought close together, a compressive force is generated on, 
and in a direction perpendicular to, the parallel surfaces of the 
wafer. This loading causes the wafer to expand in the radial 
direction: however, the original cylindrical shape of the wafer is 
not necessarily maintained. The expanding wafer is retarded at 
the wafer-anvil interfaces by the inherent shearing action and 
consequently deforms into a barrel shape (barreling). If the 
compression plates are nonrigid, then they too will undergo a 
certain deformation pattern with change in load. The assumed 
elastic behavior of the anvils requires that they return to their 
initial parallel position upon unloading. However, the wafer is 
allowed to flow plastically and will, in general, be permanently 
distorted. Fig. 1 is a qualitative view of the wafer in the deformed 
state. If the wafer maintains its cylindrical shape during expan-
sion, then the single radial coordinate r can be used to de-
scribe the process. The possession of axial sj^mmetry eliminates 
the variation of any parameters with the circumference coordi-
nate 8. In the more general case, variations are occurring in the 
axial direction z and must be accounted for. The center of the 
wafer is shown to be the thinnest section; however, this is not a 
necessary assumption in that the analysis will dictate the required 
direction of curvature. 

The admittance of an elastic containing ring around the wafer 
retards its radial motion and significantly raises the stress level 
within the wafer. This, and other techniques, has been re-
sponsible for the generation of pressures of the magnitude re-
quired for bismuth phase changes as discussed earlier. In this 
analysis, the containing ring acts only on the wafer, hence the 
entire compressive force of the anvils is directed through the 
wafer. 

In order to effectively demonstrate the influence of the parame-
ters under study, a single wafer material, called the primary ma-
terial, was utilized in those tests where the material constants 
were not variable. Additional experiments were conducted with 
different wafer materials, called the secondary materials, to 
evaluate the material effect. The selection of the primary wafer 
material was based on the following factors: (1) the wafer ma-
terial must strain harden in an essentially linear fashion (this is 
required for consistency with the Ludwik equation, discussed 
later); (2) have high ductility; (3) possess a high degree of strain 
hardening; and (4) be nearly incompressible as required in equa-
tion (1). The secondary wafer material must have properties 

L E G E N D : 
I N I T I A L STATE 
LOADED C O N D I T I O N 

Z, lu-

ll 

O N E - D I M E N S I O N V A R I A T I O N S 

Z . u r 
- h r . // 

"» \ \ 

T W O - D I M E N S I O N A L VARIATIONS 

Fig. 1 Postulated w a f e r prof i le for one a n d t w o - d i m e n s i o n a l a n a l y s i s 

that are compatible with the latter and should otherwise reflect 
changes only in those parameters under study. The above 
reasoning led to the selection of annealed 303 stainless steel for 
the primary material, and 2S aluminum, 6061 aluminum, and 
Armco iron for the secondary materials. 

The approach to be taken here is to first describe the system 
of equations to be used, present the method of solution, and then 
show the resulting stress distributions for each of the situations 
under study. 

( A ) Formula t ion of G o v e r n i n g Equat ions. T h e system of equations 
to be developed here is patterned from those given by Hoffman 
and Sachs in reference [7] for a rigid-plastic material. It has 
been stated in reference [8], that for predominantly plastic 
strains, such as occur in most metal-forming operations, the ma-
terial may be considered incompressible. The condition of volume 
constancy (for small total strains) may be written as 

er + e„ + e, 0 (1) 

where er, eg, and e2 are the normal engineering strains acting in the 
radial, tangential, and axial directions, respectively. Since the 
wafer is axially symmetric, the strains are defined in terms of the 
displacements as 

«r = 
d i t 

= — , e, 
dco 

(2) dz or 

-Nomenclature-
where shear yielding com-
mences 

u, w = radial and axial wafer dis-
placements, respectively 

oil, Pi, Ti = selected coefficients con-
taining z-coorclinate vari-
ations 

Pi', Yi' = derivatives of above coef-
ficients with respect to 
z-coordinate 

tr, (fi, e, = radial, circumferential, and 
longitudinal waferst rains, 
respectively 

e = effective strain 
e9c = circumferential strain oc-

curring at outer surface 
of containing ring 

Y„ = wafer shearing strain 
<70, <rz = radial, circumferential, and 

l o n g i t u d i n a l normal 
stresses, respectively 

a = effective stress 
T„ = wafer shearing stress 

Co, To = normal and shear yield 
stresses, respectively 

Vi, V2, V3 = operators (equivalent to 
standard Laplacian op-
erator except for sign 
differences) 

V = deformed wafer center line 
deflection 

\jj = displacement function 
S = radial wafer deflection 

measured at the mid-
meridian plane 

v = Poisson's ratio for anvil 
material 
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where u and co are the radial and axial displacements, respec-
tively, and 7 r , is the only nonvanishing shearing strain. 

Utilizing the Hencky Deformation theory, the resulting stress-
strain relations, valid in the plastic domain, can be written as 

200 - ar «« 
2 ar - ae - at er 

2az - a, - <ro 
2ar - a, - Oz ir 

6 T„ Yr; 
2 ar - at - a, 

(«rr - crey + <r,Y + (<r. - <rP)2 + 6r„2 - 2cr2 (5) 

where a is the effective stress taken from a uniaxial compression 
test. The effective stress is assumed to be linear with respect to 
the effective strain as called for in the selection of the wafer ma-
terial. Thus, the linear form of the Ludwik equation, reference 
[11], becomes 

The von Mises yield theory is thus a combination of equations 
(5), (6), and (7). 

The two equilibrium equations for cylindrical coordinates are 
easily developed from the stress state acting on a differential 
volume element taken from the wafer in the loaded state. They 
are 

(3) 

(4) 

dar 0"r ̂  + ^ = 0 
r dz 

dr., da, r „ 
- l i + — ' + = 0 
or Oz r 

(8) 

(9) 

where ar, and az are the normal stresses acting in the radial, 
tangential, and axial direction, respectively, and rri is the only 
nonvanishing component of shearing stress. The first two of 
these equations are not independent, in that they reduce to a 
statement of volume constancy when combined. Thus only two 
equations are obtained from the deformation theory. 

The Hencky theory furnishes results identical with those of 
Saint Venant's flow theory under two conditions: (a) that the 
principal axes of stress and strain for a particle do not rotate with 
respect to the particle during the process of straining; and (fe) 
that the straining is "proportional," that is, the strain incre-
ments are proportional to the total strains. These conditions 
are essentially satisfied for small finite strains (less than 20-30 
percent) if there is no shear on any of the wafer surfaces, and the 
wafer maintains its cylindrical shape during loading. The same 
is approximately true for small amounts of shear at the wafer-
anvil interfaces. This imposed, yet defensible, restriction on the 
nature and degree of straining within the wafer has led to the use 
of classical, or engineering type, strains in lieu of the more ap-
propriate true strain increments. 

The von Mises yield criteria can be used to predict the incipi-
ence of plastic yielding in ductile metals. This theory is inde-
pendent of the hydrostatic component of stress and requires the 
knowledge of a single material constant, the "effective stress" in 
uniaxial state of stress, in order to predict the behavior under 
any given combination of principal stresses. The applicable 
yield criteria is written as 

The foregoing system of equations, combined with the appropriate 
boundary conditions, are sufficient for a complete determination 
of the displacements, strains, and stresses occurring in the plas-
tically deformed wafer. 

(B) Method of Solution. I f the d i sp lacements u and w are def ined 
in terms of a displacement function \p as 

1 
u = - — , 

r Oz 
w = 

r dr (10) 

then the volume constancy equation (1) is satisfied identically. 
The utility of a displacement function becomes apparent when it 
is realized that the previous system of equations can be reduced 
to a single equation, involving only the displacement function and 
the characteristic wafer material properties. Once the appro-
priate displacement function is determined, or approximated, 
the strains and displacements can be found directly. 

The formulation of this equation is completed by appropriately 
combining the plasticity equations in the following chronological 
order: equations (3) and (4), flow laws; (5), yield criterion; (6) 
material strain hardening; (7) effective strain; (8) and (9), equi-
librium equations; and finally equations (10), definition of the 
displacement function \J/. The manipulation is lengthy, but 
direct, and eventually leads to the desired result, equation (11). 

a 
- Vi 
6 

+ J L ( M , „ ( I 
dz \ dr r ) 'Ortiz \ i / 

where the operators Vi, V2, and V3 are equivalent to the standard 
Laplacian operator, except for the indicated sign changes. 

Vi2 = dr2 

1 a a2 

r dr az2 

a = <r0 + 6i (6) 

where a0 is the yield stress at the onset of plastic strain, fe is the 
slope, and e is the effective strain in the plastic region. An in-
herent implication here is that the wafer material is rigid until 
the incipience of plastic strain, and then strains in a linear fashion. 
Unksov discusses, in reference [3], the occurrence of regions in the 
deformed wafer that remain essentially elastic during the loading 
process. However, for wafer diameter-to-height (D/H) ratios 
greater than unity (which is the situation in this report), the 
volume of material contained in these elastic regions is very 
small, and continues to decrease with increase in the D/H ratio. 
Thus the assumption that the wafer material is fully plastic is 
justified. The effective strain for a material that is rigid up to 
yield is given in reference [12] as 
«- = ^ [ ( e ' ~ e* )2 + (e" ~ 

+ fe - O 2 + f Y 2 „J W 

= a2 

a r2 

1 + -r 
a 
a r 

a2 

az°-

a2 1 a a2 
V32 = a r2 r ar az2 

Equation (11) represents the governing equation for determining 
the displacement function \f/. The prospect of obtaining an exact 
solution of (11) for an arbitrary material is improbable at this 
point, and a numerical solution would likewise be difficult by 
virtue of the mixed boundaiy conditions. If the compression 
specimen were constructed from a linearly plastic Newtonian ma-
terial (i.e., the ratio of effective stress and effective strain is 
constant), only the first term in equation (11) remains, and the 
solution to this simplified differential equation is presented, with 
discussion, in reference [10]. An alternate approach, and the 
one to be used here, is to select a displacement function \j/ that 
approximately satisfies the governing equation (11) and will 
yield a prescribed dispacement pattern which is consistent with 
the observed shape of the loaded wafer. 

Journal of Basic Engineering S E P T E M B E R 1 9 6 7 / 5 4 3 

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/fluidsengineering/article-pdf/89/3/541/5676433/541_1.pdf by M

issouri U
niversity of Science & Technology user on 12 June 2023



1 Two-Dimensional Wafer Profile—Wilh Shear. T h e assumed p r o -
file of the water in the loaded state has been portrayed in Fig. 1 
and leads to the following trial for the displacement function 4 

\p = air'z + a2r2z3 + a3r'z (12) 

where ai, a-i, and 03 are constants and will be referred to as dis-
placement coefficients. Using this function with equations (10), 
the displacements become 

accomplished with the formulas appearing in a short table of in-
tegrals. The constant of integration is assessed by requiring that 
the radial stress be equal to the containing pressure Pi at the ex-
ternal wafer surface. If the containing ring is absent, Pi vanishes. 
The remaining stresses are easily found from the use of equations 
previously discussed. The tangential and axial normal stresses 
are given in (23) and (24), respectively, and equation (25) is the 
shearing stress. 

u = air3 + (3 a2z2 + as)r 

co = — 2z(2ai?'2 + a.z2 + aj) 

(13) 

(14) 

er = 3air2 + 3a2z2 + a 3 

eg = air2 + 3a2z2 + a3 

e, = —4a!)-2 — (M-IZ- — 2a 3 

yn = 2rz(?>ai — 4a,) 

(15) 

(16) 

(17) 

(18) 

where 

e = (air1 + 0,r2 + 7 i ) ' / : 

52 
a, = - a,2, Ti = 4(3a2z2 + a3)2 

O 

ft' = - (12a,a2 + 9a22 + 16a,2)z 

7 / = 48a2(3a2Z2 + a3)z 

0V = 
tTp 

3 V o l 

An examination of (13) indicates that the wafer can barrel in a 
parabolic fashion, having symmetry with respect to the mid-
meridian wafer plane. Equation (14) shows that the wafer-anvil 
interface can likewise be deformed into a parabola; the line of 
symmetry being coincident with the wafer axis. Thus, the trial 
form of the displacement function as given in equation (12), 
does describe a wafer deformation pattern that is consistent with 
that shown in Fig. 1. 

By taking the appropriate derivatives of the displacements, the 
strains are found to be 

X Ln 

(2a, - 3a2) 

2a,r2 + ft + 2 Vai[air* + 0,r2 + 7 , ] ' / ' 

+ 

2a,fl2 + 0, + 2 V<Xi[aiR* + ftfl2 + 7i] ' 
o-oz(3g2 - 4ai) / ( f t f t ' - 2a,7,')r2 - (0,7, ' - 2-y.ft') 
3(0,2 - 4a,7,) \ [air* + ftr2 + 7 , ] ' / ' 

_ ( f t f l / - 2ai7 /)R2 - (ftTi ' ~ 2 7 . 0 / ) ) 
[a,ffi* + PiR* + 7 i ] ' A J 

+ ^ (2ai - 3a2)(r2 - R2) - Pi (22) 
O 

<re 
00 : (2ai - 3a2) 

X Ln-

In order to evaluate the accuracy of the chosen function 
equation (12) is substituted, together with a combination of 
equations (6), (7), (15), (16), (17), and (18), into the govern-
ing equation (11). Equation (12) satisfies the first term of (11) 
identically at all points and is in agreement with the remaining 
terms of (11) if attention is restricted to the wafer axis and mid-
meridian plane. A stud}' of the remaining points of the wafer, 
using typical values of the displacement coefficients, shows that 
the largest discrepancy involved in satisfying equation (11) is 
of the order of one-tenth the effective strain squared. This agree-
ment, both in satisfying the governing equation (11) and in de-
scribing the resulting deformation pattern, provides strong en-
dorsement of the use of equation (12) as an excellent choice of the 
displacement function. Additional satisfaction will be acquired 
when the end results of this analysis are compared with the re-
sults of the experimental program. 

When equations (15) through (18) are combined with (7), the 
effective strain becomes 

3 V o l 
/ 2a.2)-2 + ft + 2 Villas* + 0,r2 + 7 . ] ' / ' \ 

(2a,fl2 + ft + 2 VailaiR* + ftfl2 + 7 i ] ' / ! j 
<roz(3a2 - 4a 1) / ( f t f t ' - 2^7, ' )r 2 - ( f t T l ' - 27 ,0 / ) 

+ 3(ft2 - 4«I7,) \ [a.r* + 0,r2 + 7 , ] ' / ' 

_ ( f t f t ' - 2aiYi')7?2 - ( f t T i ' - 27.01')) 
[aiR* + 0. R* + 7il ' / 2 j 

4 j r2 "1 
~ 3 a i < r o \ [ a . r ' + 0 . , - 2 + 7 I ] ' A | 

- \ Oib(r2 + R2) - a26(r2 - R2) - Pi (23) o 

<*z = 
Co 

3 V « i 
(2a 1 - 3a,) 

/ 2a!)-2 + ft + 2 Va. la .r* + 0,r2 + 7 , ] ' / ' | 
U \2a,B2 + 0i + 2 VadaiR* + ftfl2 + 7 . ] V i j 

+ eroz(3a2 — 4a 0 ( (0 .0 , ' - 2a,7, ' 
'1) I [air* -f 

)r2 - 08,7,' - 27,0,') 
3(0i2 - 4a,71) [ [air* + 0,r2 + -yi] 

(0,0,' - 2a,71 ')R> ~ ( 0 i7 / - 27: 
[a,R* + ftfl2 + 7 i l l / ' 

>ftOj 

(19) 

(20) 

2cr0 J 7a,r2 + 9aoz2 + 3a3 ) 2 „ 
T t[a,r* +0„• 2 + 7 . ] ' 4 " 3 a ' 6 ( 6 ' " + 

- cub(r2 - Rr) - 6a2bz2 - 2a,b - Pi (24) 

Trt = — 6(3a» — 4a,))-z 
o 

0, = — [(12a,a2 + 9a22 + 16a,2)z2 + 12a,a3] 3 

The first derivative with respect to z of the foregoing coefficients 
will be required later and are documented here as 

2 , I rz 
H <To (3ai — 4ai) < 7 7 

3 \[a,r* + 0,r2 + 7,] 
(25) 

(21) 

With the strains now known, the equilibrium equation (8), which 
can be written with the aid of equations (3), (4), (5), (6), and (7), 
as a function of the radial stress alone, can be integrated to give 
the result shown in (22). The integration is lengthy, but can be 

The foregoing three normal stress equations represent the 
orthogonal stress state existing at any point in the wafer, 
and are based on the assumptions of low shear stress, elastic 
deflection of the anvil and containing ring, linear strain hard-
ening and incompressibility of the wafer material, and wafer 
diameter-to-height ratios greater than unity. As shown in the 
next section, the component parts of the experimental apparatus 
are selected to be compatible with these restrictions. The mean 
stress or pressure distribution across the diameter of the wafer 
may be obtained by taking the average of (22), (23), and (24). 

The area under the axial normal stress <J2 curve, evaluated at 
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the mid-meridian wafer plane, (z*= 0) corresponds to the ap-
plied force transmitted to the wafer from the anvils. The mid-
meridian is selected, since at any other plane the wafer is dis-
torted, and is under the influence of shearing stresses, which can 
support a portion of the applied load. In integral form, the 
applied force Is expressed as 

= 2TT f o ; 
Jo 

),-j>rdr (26) 

F = (2a, - 3a2) 
3 V « t 

jl2acRc2 + ft 
I 4ae 

[Ln(2acRc2 + ft) - 1] 

-P- [Ln ( f t ) - 1] - - Rc2 In (2aeR2 + ft) 4a„ 2 j 
i 3 

— — (4oi + a2)wbRc4 — — TTCTO 

X {7ai + PcR'2 + 
- 7 ft«c-V. hi 

4 
! _ f t 
(2 V o \/a, 

+ (a,7?c4 + ft/?e2 + 7, 

+ Vote Fc-

Wi 
2a, 

+ (a,??,1 + ftffc2 + 7 C ) ' 4 

- 7 r 0 aihRc- - aJ)R,c2 + 2a,b + p)j R2 (27) 

r = z = 0; it = Rc - Ro (28) 

where Ro is the initial wafer radius. A combination of (13) and 
(28) gives 

ai (29) 

The second condition relates the radial wafer deflection to the 
constraining pressure. If 5 is the radial deflection at the mid-
meridian plane, then 

8 = R, - Ro = (5.32 X 10-»)FC (30) 

where Pc is the restraining pressure exerted on the wafer, at 
z = 0, by the containing ring. The numerical factor appearing 
in (30) is obtained from an application of the Lame equation for 
the elastic deformation of a thick-wall cylinder and radial wedges. 
These equations can also be used to describe the amount of tan-
gential strain egc occurring at the outer surface of the containing 
ring, due to the influence of the internal pressure Pc. This is one 
of the strains monitored in the experimental program. The rela-
tion found for the ring used in this program is 

where Rc is the maximum wafer radius in the mid-meridian plane. 
Substituting equation (24) into (26), and performing the indi-
cated integration, the results shown in equation (27) are obtained. 
The subscript "c" appearing in subsequent equations indicates 
that the quantity in question has been evaluated at a radius of 
magnitude Rc. 

= (3.02 X 10-»)P„ (31) 

A more detailed description of the containing ring and its use is 
given in a later section. Using equations (13) and (30), the mid-
meridian constraint pressure becomes 

= ( R° \ \a 
\5.32 X lO"8 / l a ' Rc2 + 0 3 ] (32) 

In the absence of a constraining ring, Pc is zero. If the total 
axial deflection along the wafer axis is defined as A, the third 
boundary condition becomes 

)• = 0, z = hr co = - A / 2 (33) 

where hc is one-half the wafer height, measured along its axis, at 
any given load. Substituting the conditions of (33) into (14) 
gives 

a3 = 2(2/t0 - A) 
(2ho - A)2 (34) 

where 2ho is the initial wafer height. 
The total amount of shear stress existing on the wafer-anvil 

interface is considered to be directly proportional to the magni-
tude of the normal stress acting 011 this same surface (Coulomb 
law of friction). The coefficients of friction for various materials, 
under a pressure of 25 Kb, have been documented in reference 
[13]. The manner in which these experiments were conducted 
requires that the integrated effects of the normal and shear 
stresses be related as follows: 

r>Rt r>R, 
(Trz)z-hjclr = / (<Tz)z.hcrdr 

Jo Jo 
(35) 

The resulting displacements (and hence strains, stresses, etc.) 
in a compressed wafer at any specific axial load can be determined 
from equations (13) and (14) providing the displacement coef-
ficients Oi, a?, 03 and the current wafer dimensions Rc and hc are 
known. These unknown quantities can be evaluated by imposing 
five independent conditions that adequately describe the effects of 
the physical constraints applicable to the compression of radially 
confined wafers. 

The first boundary condition pertains to the radial deforma-
tion at the mid-meridian wafer plane. This condition requires 
that at 

where R, is the external radius, evaluated at the top surface of 
the loaded wafer. If the shear stress r „ exceeds the shear 
strength r0 of the wafer material, then equation (35) must be 
written in the form 

flit fRi 
I (T,z)z.hCrdr + Tordr = j I (<Tz)z-herdr 

Jo J Ra Jo 
(36) 

where Ra is the radial position where r „ becomes equivalent to 
r0. The value of r0 is considered to be one half of the effective 
stress a at any given stage of strain. 

The limits of integration are taken as shown since the shear 
stress is zero at the wafer axis and increases with increase in 
radial position. The computer program used in solving this 
problem first calculates the shear stress at the top surface of the 
wafer and then runs a comparison check between r „ and To at ten 
equally spaced intervals across the wafer. If r „ is less than To at 
all radial positions, then Ra is set equal to R, and equation (36) 
reduces to (35), thus eliminating the need of equation (35). 

The last boundary condition is concerned with the compatible 
deformations of the wafer and anvil at their mating surface. An 
approximate relation which relates the average slope of the anvil 
to that of the wafer is given as 

[(C0)r_0 - (W)r„fi,] ANVIL = [|(«)r-0 ~ (c0)r_fl,|z = h] WAFER (37) 

If the anvils are considered to be semi-infinite elastic bodies, the 
deflections due to a normal stress, continuously distributed 
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within a circular region, are given in reference [10] as 

1 - v C"' 
[(cO)r_o]ANVIL = | (J/It' 

h Jo 
(38) 

i - v rR< 
[(io )r_ff,]AN-viL = I a zrdr 

hl{< Jo 

A combination of equations (14), (24), (37), and (38) results, 
after lengthy computations, in the final required boundary con-
dition equation. If a series solution had been used for the dis-
placement function i/', in lieu of the three terms shown in equation 
(12), it may have been possible to match deflections at each point 
of the wafer-anvil and wafer-containing ring interfaces, thus 
providing more appropriate boundary conditions. However, the 
boundary conditions stated in the foregoing are close approxima-
tions, and their use eliminates the drastic and unjustified increase 
in mathematical complexity associated with the addition of more 
terms to equation (12). 

The equations (29), (32), (34), (36), and (38) represent five in-
dependent equations for the determination of the three displace-
ment coefficients, at, ai, a3, the mid-meridian constraining pres-
sure, Pc, and the wafer center line deflection, V. Once these 
quantities are known, the displacements, strains, stresses, and 
applied force can all be found by utilizing the appropriate equa-
tions. When each of the foregoing equations is expanded, the 
thought of obtaining an explicit equation for each of the un-
knowns is out of the question. The complexity of these equations 
provided the motivation for writing a computer program that 
would solve for the unknowns, using an interaction scheme. A 
further discussion of the computer programs and results are given 
later. 

A portion of the motivation for using a displacement function 
in the solution of this problem relates to the ease in which existing 
solutions for wafer compression that apply for the case of more 
liberal assumptions can be verified from the more general treat-
ment provided herein. For example, had the displacement co-
efficient a2, in equation (12), been omitted (or set equal to zero), 
the resulting equations would define the stress state in a wafer 
that expands, without barreling, upon application of a com-
pressive load. Similarly, it can be shown that if as is the only 
nonvanishing displacement coefficient, the result corresponds to 
the compression of a wafer between perfectly lubricated, rigid 
anvils. These, and other aspects of the general compression of 
wafers, are discussed fully in reference [8]. 

Experimental 
A complete description of the experimental facilities and proce-

dure is given elsewhere (reference [8]) and will not be repeated 
in its entirety here. As defined previously, the wafer is a short 
circular cylinder, and has a diameter-to-height (D/H) ratio rang-
ing from 3 to 13. The primary wafer material is annealed 303 
stainless steel, and the secondary materials are 2S aluminum, 
6061 aluminum, and Armco iron. The materials were purchased 
as bar stock, and all wafers of a particular material were taken 
with identical cuts from the same bar. Standard compression 
tests were conducted on specimens of each material to obtain the 
desired material constants. The compression specimens have a 
D/H ratio of 0.4 and are coated with molybdenum disulphide to 
minimize the end-effects. The material constants are determined 
by fitting equation (6) to the experimental stress-strain curves. 

The radial constraint applied to the expanding wafer is at-
tained through the utility of a containing ring assembly, which is 
composed of the following items: 

1 Wedges. The purpose of the wedges is to transmit, in an 
elastic manner, the high-intensity restraining pressure existing 
at the external wafer surface, to a low-intensity pressure level at 
the larger inner surface of the steel containing ring. This in-
tensification is inversely proportional to the radial position. 

Since the wedges are not joined to one another, no hoop stresses 
are developed, and the wedges are in a state of compressive stress. 
The high compressive strengths available in Graph-Air metals 
suggested their use as the wedge material. By employing an 
ambient air quench from 1475 deg, and a further air quench 
to —11 deg with Dry Ice, the compressive elastic limit of the 
Graph-Air was raised to 400,000 psi. These precautions were 
taken to assure that the wafer is confined in an elastically deforma-
ble surrounding, consistent with the assumption employed in the 
analysis. 

2 Steel Containing Ring. This ring serves as a radial support for 
the wedges and was designed to withstand an internal pressure of 
50,000 psi. 4140 steel, heat-treated to a 190,000 psi yield strength, 
was used as the ring material. A slight interference fit between 
the steel containing ring and wedges was provided to maintain the 
assembly as an integral unit. 

3 Safety Ring. As the name implies, the safety ring is con-
structed of a ductile material (303 stainless steel) and serves to 
restrain the motion of the internal parts in case a fracture should 
occur. 

The anvil design is shown in Fig. 2 with the containing ring. 
The wafer makes actual contact with the anvil cones, which in 
turn are seated in a conical wedge assembly. The anvil wedges are 
supported by two press-fitted containing rings and an outer 
safety ring. The anvil cones were fabricated from Graph-Air 
and were designed in the conical shape to take advantage of the 
supporting stresses. 

An assembly view of the wafer-containing ring system appears 
hi Fig. 2. It should be noted that the wafer thickness is slightly 
greater than the corresponding thickness of the containing ring, 
which prevents the anvils from making contact with the ring. 
Three equally spaced rubber tabs are placed on the upper and 
lower sides of the containing ring to keep it centered until the 
expanding wafer makes contact. Two SR-4 foil-type strain 
gages have been mounted at diametrically opposed positions on 
the outer surface of the containing ring such that an average 
circumferential strain can be recorded as a function of the ap-
plied force. In conducting compression tests on confined wafers, 
the ram load was increased in even increments, and the circum-
ferential strain, as read on the Baldwin indicator, was recorded 
at each increment. In the unconfmed wafer tests, the mid-
meridian wafer diameter was measured with micrometers and 
documented against the corresponding axial load. The loss of 
axial symmetry occurring with large (greater than 30 percent) 
radial deformations required that several diametral measure-
ments be made, and the average recorded. 

The lubricants used were molybdenum disulphide and iron 
oxide. According to reference [13], these lubricants have coef-
ficients of friction of 0.04 and 0.71, respectively. These lubricating 
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Fig. 2 Component parts of confined wafer compression system 
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Fig. 3 Applied force displacement relation for an unconflned 303 
stainless steel wafer 

powders were first mixed with an alcohol solution and then 
brush-coated on the wafer-anvil surfaces. Upon drying, a thin, 
uniform coat of lubricant was deposited on the desired surfaces. 

The applied force-strain data taken from the confined wafer, 
and the applied force-radial deformation measurements acquired 
from the compression of unconflned wafers, have been documented 
in the various figures of the following section. This procedure 
permits a direct comparison between the experimental data and 
that which has been determined from the preceding analysis. 
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Results 
The experimental and analytical applied force-displacement 

results achieved in the compression of an unconflned 303 stainless 
steel wafer are shown in Fig. 3. The ordinate of this, and subse-
quent force-displacement diagrams, have been nondimensionalized 
by dividing the applied force, equation (27), by the wafer surface 
area and the material yield strength <r0- The abscissa has likewise 
been nondimensionalized by forming the ratio of current radius to 
initial radius. The predicted curve is in good agreement with 
the data for the low-friction lubricant (molybdenum disulphide), 
but the same comparison for the high-friction lubricant is not as 
favorable, except perhaps, at the approach of higher loads. This 
latter disagreement is to be expected since the analysis was pre-
dicated on the Hencky Deformation theory, which in turn re-
quires that the surface shear stress be small. Since the applied 
force corresponds to the area under the axial normal stress curve, 
its agreement with the experimental data suggests strongly that 
the stress distributions are also valid. 

The stress distributions occurring in a radial direction across 
the top and mid-meridian surfaces of a compressed, unconflned 
303 stainless steel wafer are shown in Fig. 4. To aid in the identi-
fication of the type of compression test, a case number has been 
assigned to each of the stress distribution diagrams. The first 
character is a I or II, with the I meaning unconflned, and II 
represents a confined wafer. The second character is an A or B 
where A indicates that the anvil lubricant is molybdenum di-
sulphide, and B represents iron oxide. Since the stresses are 
symmetrical about the wafer axis, the second half of the diagram 
is reserved for showing the results of an increased load. In Fig. 4, 
the stresses induced by the loads required to cause 16 percent 
and 32 percent increases in the initial radius are shown on the 
left and right sides, respectively. The axial stress u, and shearing 
stress r „ are obtained from equations (24) and (25), respectively, 
and the pressure P is found by taking the average of the normal 

Fig. 5 Stress distribution for 303 stainless steel. Case 1-B. 

stresses, equations (22), (23), and (24). The computer programs 
used in finding the appropriate displacement coefficients, stresses, 
and applied forces are given in reference [8]. 

A comparison of Figs. 4 and 5 illustrates the influence of dif-
ferent anvil lubricants on the stress distribution. Molybdenum 
disulphide (coefficient of friction = 0.04) was used in Fig. 4, and 
iron oxide (coefficient of friction = 0.71) was the lubricant for 
Fig. 5. The higher surface friction retards the radial expansion 
and causes an intensification of the stresses at the wafer center. 
The shearing stress vanishes along the wafer axis and on the 
mid-meridian plane by virtue of symmetry. Both of these figures 
indicate that the axial variations are not significant for the un-
conflned wafer, especially in the low shear case. This latter case 

Fig. 4 Stress distribution for 303 stainless steel. Case l - A 
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also points out the discrepancy involved in assuming that the 
pressure in the wafer is the total force divided by wafer area, or 
what is equivalent, the average value of the normal axial stress <r,. 

The influence of wafer material properties has been examined 
from the results of compression tests on 6061 aluminum and Armco 
iron. Typical applied force-displacement, and stress distribution 
diagrams have been constructed in the manner described earlier, 
and are shown in the following figures. Wafers having two dif-
ferent D/H ratios were constructed from 6061 aluminum, and 
their applied force test results were superposed in Fig. 6 to show 
the apparent agreement with the analysis. This figure indicates 
that the wafer shape (D/H ratio) does not play a major role in 
the compression of unconfined wafers, within the range studied 
herein. Fig. 7 represents the corresponding stress and pressure 
distributions for 6061 aluminum, and it is noted that the stresses 
are still highest at the wafer center, and that the axial variations 
are small. The applied force-displacement and stress distribu-
tion results for Armco iron are not shown here; however, the 
conclusions are essentially the same as that stated for the alumi-
num wafers. 

<r H vt 
3 4 UJ >-
« in , u 3 
oc H tn 
_ ! 
5 2 
x < 
UJ (9 

CURRENT R A D I U S / I N I T I A L RADIUS ( R / R 0 > 

Fig. 6 Appl ied force displacement relation for an unconfined 6061 
a luminum wafer 

The tangential strain occurring at the mid-meridian surface of 
the containing ring has been documented against the applied 
force required for the compression of a confined 303 stainless steel 
wafer, and the results are shown with the analytical data in Fig. 8. 
The excellent agreement shown here is especially encouraging in 
view of the magnitude of the applied load (one million pounds). 
The experimental results do not pass through the origin since a 
certain minimum initial clearance must exist between the wafer 
and ring to provide for assembly. The analytical curve also 
starts above the origin since it was assumed that the wafer 
material is rigid until the onset of plastic straining. If the initial 
clearance and the elastic deformation of the wafer are the same, 
the two results would be compatible at the start. The stress dis-
tributions occurring across the top and mid-meridian surfaces of 
a confined 303 stainless steel wafer, subjected to a load corre-
sponding to a 1.2 percent increase in initial radius, are shown 
in Fig. 9. Both sides of the diagram are employed to effectively 
illustrate the large stress gradients which occur in both the 
radial and axial directions of a confined wafer. The radial 
stress gradients are of the type encountered in the unconfined 
wafer; however, the axial gradients are appreciably greater, and 
this observation will be commented on later. Fig. 10 illustrates 
the stress gradients within the above wafer after the load has been 
increased until the mid-meridian wafer radius is 2.4 percent larger 
than its original value. These last two figures indicate that the 
radial gradients tend to level out with increase in load, and that 
the entire stress state approaches more closely to a hydrostatic 
condition. 

In order to evaluate the effects of wafer shape (D/H ratio) on 
the stress distribution in confined wafers, two additional calcula-
tions were made with all parameters, except wafer shape, being 
the same as those utilized in Fig. 10. The new diameter-to-height 
ratios were 6.5 and 13, and the results of these last three compu-
tations have been combined to give a descriptive account of the 
influence of wafer shape on the profile of the axial normal stress 
distribution. Using the ratio of the axial stress at the wafer center 
to the average axial stress as the parameter for describing the 
stress profile, the curve appearing in Fig. 11 shows, for D/H in the 
range of 3 to 13, that the normal axial stress distribution across 
the wafer surface is maximum at the wafer center, and that the 
axial stress gradient in the radial direction becomes larger with 
increase in the wafer diameter-to-height ratio. The effect of 
neglecting the material strain hardening is to give values of the 
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computed applied force that are considerably less than that found 
in experiment. However, the extent of material strain hardening 
does not significantly affect the character of the stress distribu-
tions within the wafer. 

One last item of interest is the description of the strain varia-
tions that are dictated by the analysis.'. Fig. 12 illustrates the 
strain distributions occurring in confined and unconflned wafers 
of 303 stainless steel. These strains arc calculated from equa-

C A S E I I — A S O L I D W A F E R , C O N F I N E D 
C O E F . OF F R I C T I O N = . 9 . 0 4 
R c / R „ = 1 . 0 1 2 , D / H = 11 .25 

tions (15), (16), and (17) and are to be considered as companions 
for the stress distribution graphs shown in Figs. 4 and 9. 

The agreement achieved between experimental data and the 
two-dimensional analysis is deemed good, and the resulting stress 
gradients are considered to be defensible in view of the manner 
in which they were found. 
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Summary and Conclusions 
The method of solution used in the analysis of one and two-

dimensional parametric variations in the compression of cylindri-
cal wafers is considered to be valid and is adequately supported 
with numerous experimental data. The use of the displacement 
function has served to demonstrate the type of solution to be ob-
tained with a retention of the appropriate terms. It also indicates 
the next term to be added if a more extensive analysis is to be 
performed. The solutions are limited to situations involving low 
shearing stresses at the anvil-wafer interface and are somewhat 
cumbersome to use. However, in view of the fact that the solu-
tions embody the effects of material strain hardening, anvil de-
flection, surface shear, radial constraints, magnitude of load and 
strain, etc., they should be regai'ded as useful analytical tools for 
determining the stress and pressure gradients existing in Bridgman-
type pressure cells (a term generally adapted for confined com-
pression wafers). In the compression of unconfined, short 
cylinders, these solutions should also describe the "end effects" 
that are commonly excluded. 

The stress distributions, for confined and unconfined wafers, all 
indicate that the stress, and pressure, is greatest at the wafer 
center and decreases with increase in radial position. This 
observation is consistent with the results reported in references 
[4], [7], and [14] and is in partial agreement with the conclusions 
of reference [6]. The admittance of a containing ring around 
the wafer enhances the prospect of obtaining pressures in the 
5 X 10s psi range, especially at the wafer center. Evidence is 
presented, Figs. 9 and 10, which supports the argument that the 
stress state in a radially supported pressure cell approaches a 
hydrostatic condition with a sufficient increase hi applied load. 
The containing ring need not remain elastic, nor should it act 
solely on the wafer, if the main purpose is to generate ultra-high 
pressures. The reason for doing such here is to obtain an ex-
perimental model that is more nearly compatible with the mathe-
matical assumptions. The limited information obtained for high 
surface friction, iron oxide lubricant, indicates that the shearing 
stresses restrain the radial expansion of the wafer, in much the 
same manner as a containing ring, and serves to intensify the 
stress level at the wafer center and to increase the axial variations 
of pressure. 

This paper entertains the effects of the variables pertinent to 

pressure cell constructions <that have not previously been re-
solved. The method of solution permits a re-evaluation of the 
simpler analyses now available and lends itself to an extension 
to problems of more complexity. This work is an extension of 
results presented in reference [15], but is not terminal and will be 
pursued from different points of view until more elaborate and 
satisfactory results have been achieved. 
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