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CORRESPONDENCE 
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Fig. 3. Delay vwe.u8 A. 

Figs. 2 and 3 contain measured amplitude and delay char- 
acteristics. 
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Numerical Calculation of Distributed-Network 
Transfer Matrices 

INTRODUCTION 

Exact closed-form solutions for arbitrarily tapered multi- 
layered distributed parameter networks are often impossible 
to obtain. The steady-state analysis of these lines rests most 
often on numerical methods with little or no assurance of solution 
accuracy. Bertnolli and Halijak [l] developed numerical methods 
for solving the multiterminal variable parameter RC network 
problem. 

This correspondence presents an improved numerical method 
based on [l], for det,ermining the transfer matrix of an arbi- 
trarily tapered distributed network and an expression for the 
error of calculation. This expression provides a bound on the 
solution error that enables the analyst to select his solution 
accuracy prior to the calculation of the actual transfer matrix. 

Manuscript received July 31, 1968; revised October 16. 1968, November 6, 1968, 
and May 12, 1969. This work W&B supported in psrt by the National Science 
Foundation through Grant GK-808. This correspondence represents & portion of 
& thesis written in partial fulfillment for the Ph.D. in electrical engineering, Uni- 
versity of Missouri, Rolla. 

Determining the transfer matrix of a multilayered network 
is desirable because it is independent of any excitation and 
loading conditions. 

THE TRANSFERMATRIXSOLUTION 
Fig. 1 depicts a tapered multilayered distributetiarameter 

RC network. (The following method will use the RC network 
as an example, but the method is certainly not limited to this 
specific network.) Bertnolli and Halijak [l] demonstrated that 
the network’s voltage and current law equations may be con- 
cisely written in the “state-space” formulation as 

or 

i(x) = G+%d* (2) 
Here, the functional notation for s has been suppressed since 

(1) is a differential equation in 2. The transfer matrix solution 
at frequency s = 0 + iw for a network of length d has been 
shown [l] to be the matrizant of K(Z), 

t(d) = Q3a41 m). (3) 
This matrizant solution is difficult to calculate in most cases. 

Subdivide the network into n equal subnetworks of length 
Ax = d/n. Corresponding to this subdivision, E(z) can be 
written in product form [2], 

i(x) = (I;2~~_,),,[K(X)] . * . f&y”“[K(x)] . . . ~2,d”[K(x)lJ~(O) 

or 

[T, . * * T&(O). (4) 
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Fig. 1. The 2n + 2 terminal tapered I* microcircuit. 

THE INCREMENTALTRANSFERMATRIX 

Consider the incremental transfer matrix [TJ, Qjz’) AZ[K(z)], 
which relates the network variable vector at position (i + 1) Ax 
to the network variable vector at position iAz, 

z$[(i + 1) Ax] = { fi2:~1)As [Kid]} .Eii Ax) = [T&ii Ax)). (5) 

The transfer matrix relating .$[(i f l)Ax] and .$(iAz) may also 
be expanded in a Taylor’s series in x at the point x = iAz 131. 

T< = Z + Tj”(i AZ) AZ + T:*‘(i AX) $$ + . . . (6) 

where 

T. = L?;yA”[K(x)] 

and Tj’)(iAx) indicales (@/ax~)[Ti(x)] 

(7) 

evaluated at 2 = iAx. 
The terms of this Taylor’s series may be generated by re- 

peated differentiation of (2). When this is done, (6) becomes 

Ti = Z + Ax K(i AZ) + [I;‘(; Ax) + K2(i AX)] $+ 
\ 

+ [k(i Ax) + K(i A)&i Ax) 

+ 2R(i Az)K(i AX) + K3(i AX)] $$ + . . . if0 
THE TRANSFER MATRIX SOLUTION AND SOLUTION ERROR 

The desired transfer matrix from (3) is 

[T] = @[K(x)]. (9) 

This transfer matrix is given by the ordered product of the 
incremental transfer matrices [ Ti] 

[T] = fi [Ti] = T;T,+, ... T,.T,. (10) 
i=1 

The error in the transfer matrix [T] due to any errors in the 
incremental transfer matrices [Ti] is found by taking the dif- 
ferential of [T], 

6[T] = 6T,,T,-, . . . T, + T, 6T,-,T,mz . . . T, 

+ T, ‘.a T,,, I~T~T~-~ . . . T, + T, “. T, ST,. 

(11) 

exp [IKol in - 1) AxI < ew [I&l 4 (20) 

and I W,,, is the largest of the normed errors encountered 
when calculating the incremental transfer matrices Ti. 

If the incremental transfer matrix series (6) ,is truncated 
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Using ]A -t B] I ]A] + ]B] and lAB/ < IAl ]B] from [4], 
the Euclidean norm of 6[T] is 

IWU[ I 16Tn/ IT,-, ... Tl/ 
+ ITnl 16T,-11 ITv-8 ... T,I + ... 
+ IT, ... Ti+lj jsTi( /Tim, ... T,I ,+ ... 

+ IT, ... TzI IST,l. (12) 

The matrizant for a section of uniform line extending from 
i= atopis 

S28,“,z,[K,] 1 exp [K,(@ - CY) AX] = Topaz . . . T,a, (13) 

since K, is independent of x. 
For a tapered line, a constant matrix K, can always be selected 

such that 

IQ’%[Kix)lI 2 lew [KdP - a> Axll, I<ff<P<n 

(14) 

by selecting K, such that IKol 2 [K(z)(,,, over (0, d). 
Then, from (12), the error in the network’s transfer matrix 

will be bounded by the inequality 

[ST] 5 16T,I jexp [K,(n - 1) Ax]~ 

+ 1 exp [K, Ax] I I 6Tnm1 I I exp [K,(n - 2) Ax] I + . 

+ lexp [Kdn - 9 AxI/ 16TiI 
.]exp [K,(i - 1) Ax]] + ... 

+ lexp [&in - 1) AxI1 16TII. (15) 

Expanding exp [K,z] in its Maclaurin series and using prop- 
erties of Euclidean norms [4], it can be shown that 

lexp [&XII 5 exp [I&I xl. 06) 

The above results can now be used on (15) to place a bound 
on IWII. 

or 

IS[TlI I 16TnI exp II&l (n - 1) AxI 

+ exp II&l Ax1 16T,-,I 
.exp [IKoI (n - 2) Ax] + ... 

+ exp [I&l in - 4 Azl /6T;I 
. exp [II<,,1 (i - 1) As] + . . . 

+ exp [I&l in - 1) Ax1 16T,I (17) 

, 

ISiT I exp [I&l (n - 11x1 

. [16T,i + 16Tn-ll + ... + 16T111 (18) 

I exp [I&l 4% 16TI,,, (19) 
since 
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Fig. 2. Convergence data for the exponential transmission line. 

after r terms, the resulting error is given by [S] 

R 
T:‘+l)(~)(Ax)r+’ 

1+1 = 
(r + 1) ! ’ 

and taking the Euclidean norm gives 

I IT&)(‘+‘)/ (Az)~+’ 
(r + l)! ~ 

where r is between (i + 1)Ax and iAx. 
Since Ax = d/n, (22) can be written 

The total error from (19) is 

IV!7 5 
exp [) K,\ d]T’:~~~d”’ . 

(r + l)! 72’ 

(21) 

(22) 

(23) 

From the above inequality, it can be seen that the calculation 
error bound for this method is a function of n and r, the number 
of time increments, and the order of the Taylor’s series, re- 
spectively. This demonstrates the convergence of the method 
and that the solution error decreases approximately in propor- 
tion to (r + 1) !nr, since ITi,,,@+l)( is a fixed quantity. Com- 
puter time depends directly on n, the number of increments, 
while the amount of work needed to program this method de- 
pends on r, the order of the Taylor’s series. Therefore, one 
must trade off programming time versus computer run time. 
Equation (24) gives the relationship between these two calcula- 
tion parameters and the calculation accuracy to aid in selecting 
n and r. 

To illustrate convergence, the transfer matrix for an exponen- 
tially tapered three-wire transmission line was determined. 
This solution was found for r of 1, 2, and 3, and for n varying 
from 10 to 60. Both the log of the bound on the normed error 

581 

predicted by (24) and the log of the actual error (the left-hand 
side of (24), which is available since the exact solution is known 
[3]), are plotted versus n in Fig. 2. By inspection, the information 
in Fig. 2 satisfies the inequality (24). Using an IBM 360/50 
computer system, 114 seconds were required to compile and 
execute evaluation of the approximate transfer matrix for 
r = 3 and n = 60. 

CONCLUSION 

A numerical method for calculating the transfer matrix of a 
multilayered distributed parameter network with an arbitrary 
taper has been presented. This presentation also includes an 
expression for solution error. 

Other authors [5] have presented various methods of solving 
tapered distributed parameter network problems. Most of these 
methods rely on an integration process to obtain the solution. 
Indeed, the matrizant solution mentioned herein is an integral 
solution. The authors [5] presenting these “integral methods” 
make the point that their analysis applies to lines whose,immit- 
tance distributions along the structure are piecewise, continuous, 
and bounded functions of position, i.e., integrable functions. 

With the method presented here, the immittance function, 
i.e., the taper function w(z), must be differentiable. This apparent 
restriction does not preclude physically realizable network 
tapers. Discontinuously tapered lines can be handled by ap- 
propriate network subdivision (piecewise-continuous methods). 

ROBERT C. PEIRSON 
EDWARD C. BERTNOLLI 
Dept. of Elect. Engrg. 
University of Missouri 
Rolla, MO. 65401 
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Corrections 
The Synthesis of Narrow-Band Crystal Band 
Elimination Filters’ 

Dr. H. Matthes of the Siemens Research Laboratories in 
Munich, Germany, called my attention to the fact that Fig. 6 
of my paper is incorrect. In fact, a conventional image parameter 
design to meet the stopband requirements can be obtained by 
the method described in [l] of my paper. 

I also wish to correct the following errors that slipped into 
the paper. In the two equations of Section V, the subscripts of 
X0 and Xi should be interchanged and in the following 
numerical example, the correct value is X0 = -0.25. 

G. SZENTIRMAI 
School of Elec.Engrg. 
Cornell University 
Ithaca, N. Y. 

Manuscript received May 9, 1969. 
1 G. Szentirmai, IEEE Trans. Circuit Theory, vol. CT-15, pp. 409414, December 

1968. 
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