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Short Notes

State Assignment Selection in Asynchronous
Sequential Circuits

GARY K. MAKI, MEMBER, IEEE, AND

JAMES H. TRACEY, MEMBER, IEEE

Abstract -Methods already exist for the construction of critical
race-free assignments for asynchronous sequential circuits. Some of
these methods permit the construction of many assignments for the
same flow table. The algorithm presented here consists of two easy
to apply tests which select that critical race-free assignment most
likely to produce a set of simple next-state equations. The algorithm
has been programmed.

Index Terms-Asynchronous sequential circuits, sequential circuit
synthesis, sequential machines, state assignment.

INTRODUCTION
The problem of generating internal-state assignments

for the realization of asynchronous sequential circuits
operating in normal fundamental mode has been solved
by Huffman [1], [2], Liu [3], and Tracey [4]. A sequen-
tial circuit is said to be operating in normal fundamental
mode if all internal state transitions are direct and the
input state is never changed unless the circuit is stable in-
ternally. In a direct transition, all internal-state variables
that change state are excited at the beginning of the transi-
tion. Often, the algorithms developed produce several in-
ternal-state assignments with the same number of internal-
state variables, all of which permit critical race-free realiza-
tions of a given flow table. It has been observed that the
next-state expressions that result from some of these assign-
ments are simpler than others. The purpose of this note is
to present a means of predicting which of the internal-state
assignments will yield a relatively simple set of next-state
expressions.

STATE ASSIGNMENT SELECTION
The development in this note will not be concerned with

optimum coding in the input states. Therefore, the prob-
lem considered will be one of finding the next-state expres-
sions on a per-column basis. If there are n internal-state
variables and a flow table ofm columns (m input states), the
general form for the next-state expressions will be

y - fl1 (Y1, Y2, * , Yn)I1
+ f12(Y1, Y2, , YX)I2 +
+ flm(Yl, Y2, *,Yn)Xm
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Y2 = f21(YlY2 . Yn)Il
+ f22(Yl, Y2, , YI)12 +
+ f2m(Y1, Y2, * * *, Yn)IM (1)

+ LA2Y1, Y2 , Yn)I2 +
+ fnm(Y1,Y2, %Yn)'m

where Yl, Y2 -, Yn are the present-state variables;
Y1, Y2, , Y. are the next-state variables; I,, I2, , 4
are the input states; andfttl l2, ,fnm are functions of
the internal-state variables alone.
The intent of this development is to obtain a figure of

merit that will predict which internal-state assignment for
a normal fundamental-mode asynchronous sequential ma-
chine will yield simpler next-state expressions than other
assignments for the same machine. In this note the assign-
ment-selection process is considered to be the selection of
that assignment which will tend to minimize the functions
f, 1f, 2, ' * fnm to simplest sum-of-products expressions.
The assignment which tends to minimize the complete set
ofthese functions will be referred to as a "good" assignment.
It is realized that the coding of the input states will affect
the complexity of the next-state expressions, but significant
simplification will result from choosing the assignment
which produces relatively simple JIj coefficients in (1). As
stated previously, optimum coding of the input states will
not be part of this study.
There are two desirable characteristics in critical race-

free assignments that are easy to test for. One of these char-
acteristics permits certain Jj's in (1) to be equal to 1 or 0.
The other permits some f' s to be yi.
The following discussion describes exactly how the pre-

ceding characteristics can be determined. First, some useful
definitions are given.

Definition 1: A partition H on a set S is a collection of sub-
sets of S such that their pairwise intersection is the null set.
The disjoint subsets are called the blocks of n. If the set
union of these subsets is S, the partition is completely spec-
ified; otherwise, the partition is incompletely specified.
Elements ofS that do not appear in n are called unspecified
or optional elements with respect to that partition.

Definition 2: The two-block partitions rl, C2, Tn
induced by the internal-state variables Yl, Y2' , Yn, re-
spectively, are called the set of T-partitions of that assign-
ment. The elements of each block are internal states with
one block of each 'i consisting of those states encoded with
a 0 by yi and the other block consisting of those states en-
coded with a 1 by yi.
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Internal states Assignment

yl Y2 Y3

a
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= {a,b,e;

T2 = {a,d,f;

0
0
0
0
1
1

c,d,f I

b,c,e}

f3 = {a,b,c,d; e,f}

Fig. 1. Internal-state assignment and corresponding T-partitions.
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The following example in Fig. 1 will help illustrate the
above definition. Here the first block in each T-partition is
a set of the internal states that have been coded with a 0 by
each internal-state variable and the second block is a simi-
lar set of the states that have been coded with a 1 by each
internal-state variable. It should be pointed out that the
ordering of the blocks is unimportant.

Definition 3: A k-set ofa single column ofa flow table con-
sists of all k-1 unstable entries leading to the same stable
state, together with that stable state.

Definition 4: A column partition aj is a collection of the
k-sets of the column of a flow table with input state I1,
where each k-set constitutes a single block as shown in Fig.
2. Elements corresponding to stable states in the column
are underlined for easy identification.

Theorem 1: If all the stable states of a column partition
caj are in the same block of a T-partition Ti, the next-state
coefficientfij will be 1 or 0.

Proof: Each of the unstable states of the k-set kr cor-
responds to a transition to the stable state in kr. The next-
state entry for all internal states involved in transitions to the
stable state of kr will have to be the same as the code as-
signed to the stable state. The direct transition between each
unstable state and the stable state within k-set k, may in-
volve more than these two internal states in normal mode
operation. However, the next-state entry for all the internal
states involved in the transition between each unstable state
and the corresponding stable state of kr will have to be the
same as the code assigned to the stable state. This will insure
that a transition from the unstable states to the stable state
will be independent of the order in which the excited state
variables change. In other words, the next-state entries for
all transitions of k-set kr will be determined completely by
the code assigned to the stable state of k,. If the internal-
state variable yi in the code assigned to the stable state of
k. in a certain column of a flow table is I (or 0), then all the
internal states involved in transitions to the stable state of
kr will have a next-state entry of 1 (0) for the next-state vari-
able Yi. It follows that ifyi has the same value in the code for
all stable states in a column, then Yi has the same next-state

Fig. 2. Partial flow table and corresponding column partition.

entry in the entire column, wherever specified. This corre-
sponds to all the stable states of the column partition cc,
appearing in the same block of T-partition Ti.

Constant coefficients f/ can be determined from the
a-partitions and -partitions. The stable states of each col-
umn are identified in the corresponding a-partition. If all
the stable states of an a-partition ccj are in the same block
of the --partition Ti, then the internal-state variable yi is 1
or 0 in the codes for all the stable states in the column with
input state Ij. It follows that the next-state variable Yj will
have a next-state entry of 1 (0) in all the specified states of
the column with input 1j. The partial next-state expression
in this case is

Yi = 1 (0) Ij.

A method to determine constantfg's is as follows.

1) List the stable states associated with each column par-
tition aj.

2) Compare each list of stable states from (1) with each
c-partition. If the stable states from aj are in the same
block of c,, fiJ will be 1 or 0, depending on the coding
of the blocks of Ti.

To demonstrate this method, the column partition of
Fig. 2,

aj = {a,c;b,d,e;f,g;h;j},
will be compared to the -partitions

T1 = {a,c,d,f,h,j;b,e,g}
and

T2= {a,c,f,g,h;b,d,e}.
The stable states in the column partition are c, d, f, h, and j.
By inspection, one can see all the stable states of ccj are

included in the same block of 1, but not in T2. Therefore, it
can be concluded from Theorem 1 that f2j will not be
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constant but flj will be 1 or 0. If the first block of T, is coded
with 0 by the internal-state variable Yi, then the partial
next-state expression will be Y1 =0 Ij.

Clearly, it is desirable to have a maximum number of
constant fi, coefficients in (1). The number of such constant
coefficients in an assignment t will be designated A,.
As stated earlier, the second desirable characteristic in an

assignment is that it produce a number off]j's equal to yi.
Definition 5: Partition n2 is less than or equal to H 1
2.< [I') where f1l and l2 may be incompletely specified,

ifand only if all elements specified in n2 are also specified in
Hl and each block of n2 appears in a block of 11l.

Theorem 2: A coefficientfii in (1) will equal yi if Oij< Ti.
Proof: The transitions in the column of a normal flow

table with input state Ij will occur only between internal
states of the same k-set. Transitions between an unstable
and stable state (a transition pair) of a k-set may involve
more than two internal states, but can never involve an in-
ternal state that is a member of another k-set. This follows
from the characteristics of a critical race-free assignment.
If the column partition aCj is less than or equal to a v-parti-
tion Ti, each block of the column partition aj, which is a
k-set of the column partition, is included in one of the
blocks of the partition ,. Therefore, transition pairs always
appear within a block of Ti. Since all states within a block
of Ti are coded with the same value of yi, yi will never be
excited to change state under input Ij. The result is that the
next state of yi is equal to the present state of yi and there-
forefj=yi.
To demonstrate the use of Theorem 2, the T-partitions

Tj = {a,c,f,g,h;b,d,e,j}
t2 = {a, b, d, e;c, f,g,h,j}

will be compared to the column partition of Fig. 2:

aiJ= {a,c;b,d,e;f,g;h;J}.

Each block of ac is contained in a block of T1 or (ci. Tj).
This means that in all the transitions of this column,
internal-state variable Yi will not change state, or the next
state will always be equal to the present state for any transi-
tion in the column with input Ij. However, v2 does not
satisfy Theorem 2 in that the block a, c of acj does not appear
in a block of T2. The internal-state variable Y2 will therefore
undergo a change of state during the transition from state a
to state c.

It might be noted that in making the test for ac,i vT for
all i and j, one only has to be able to show that each block
of the column partition ci is contained in a block of the
T-partition Ti. Furthermore, only the blocks of cij which con-
tain two or more elements need be considered.

Let B, be the total number oftermsfj=yi in assignment t.
Following is an algorithm that can be used to obtain BR.

1) Form the partitions cij and Ti for all values of i and j.
2) Determine the number of occurrences under input I,

wherefi =yi. Repeat for I2 ... I. B, will be the total
number of occurrences.

Two characteristics ofa "good" internal-state assignment
have been discussed. The relative weight to attach to At and
Bt for internal-state assignment t may vary with each type
of implementation. The weight for an internal-state assign-
ment t will be defined as

Wt = pAt + Bt (2)
where W, is the weight attached to internal-state assignment
t and p is a variable that allows one to adjust the weights of
At and B, with respect to each other. It seems safe to con-
clude that a constant coefficient would require a lesser
amount of combinational logic for synthesis than a literal
coefficient. However, the designer ofa sequential circuit will
in general decide on a value forp by determining how much
easier it is to implement a constant coefficient as opposed
to a literal coefficient. This could be done by obtaining a
cost figure to compare the coefficients. This cost figure
would also depend on the number of literals associated with
each input state.

In general, then, p will vary with each type of implemen-
tation. For purposes of illustration in this note, p will be
assigned the value of 2, which is somewhat arbitrary, to
demonstrate the assignment-selection procedure. The
weight for an internal-state assignment t will be defined in
the examples shown in this note as

W= 2At + B,. (3)

The internal-state assignment with the largest weight asso-
ciated with it will be predicted to yield relatively simple
next-state expressions.

Sequential machine A in Fig. 3 can be coded with either
of the two internal-state assignments shown. The criteria
developed above will be used to predict which assignment
will produce simpler next-state expressions. First B, will be
obtained by following the procedure developed in this note.

Step 1: The column partitions are

cIl = {a,d;b,c;e,f}

ci2 = {a,f;b,d;3; }

ci3= {a,d;b,c;e,f}.

The v-partitions for Assignment 1 are

T1 = {a,d,e,f;b,c}

T2 = {a,b,c,d;e, f}

T3= {a,C, f; b, d, e}.
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I1 I2 I3

a-i

b-2

c-3

d-4

e-5

f-6

0
3

1

6

Assignment 1

Y1 Y2 Y3

a 0 0 0

b 1 0 1

c 1 0 0

d 0 0 1

e 0 1 1

f 0 1 0

6 4

4 0
(i) 2

0 0
00~
0 5

Assignment 2

Y1 Y2 Y3

0 0 0

1 0 1

1 1 1

0 0 1

1 1 0

O 1 0

Step 2: Comparing these stable states with the z-parti-
tions of Assignment 1, one finds a, c, and f from oi1 are in the
first block of T3 and b, d, and e from OC3 are in the second
block of T3.

Performing an identical comparison with the T-partition
of Assignment 2, one finds that none of the T-partitions con-
tain all the stable states of any of the column partitions in a
single block. A1 for Assignment 1 is 2 and A2 for Assignment
2 isO.
The weight for each assignment is

W, = 2(2) + 5 = 9,

and

W2= 2(0) + 1 = 1.

From the above information, Assignment 1 would be pre-
dicted to have the simpler next-state expressions.
The next-state expressions for assignment 1 are

Y1 =

Y2 =
Y3 =

Fig. 3. Machine A with two assignments.

YlIl + Y1Y'3'2 +
Y2'1 + (Y2 + Y'1Y'3)'2 +

Y3I2 +

Y113

Y2I3

I3

and for Assignment 2 are and for Assignment 2 are

T1 = {a,d,f;b,c,e}

T2 = {a,b,d;c,e,f}

T3 = {a, e, f; b, c, d}.

Step 2: The 1-partitions for Assignment 1 that meet the
conditions of Theorem 2 are

al <"" T i

al1"T2
Cl2 . 13
Cl3 < I1
C3 . T2,

and for Assignment 2

Cl2 < T3.

Therefore,

B1 = 2 + 1 + 2 = 5

B2= 0 + 1 + 0= 1.

At is obtained by following the procedure given earlier.
Step 1: The stable states in each a-partition are as follows:

a1 : a, c, and f
Cl2: f, d, c, and e

Cl3 :d, b, and e.

Y1= YIY3,I + Y1Y2'2 + (YI + Y2)I3

Y2 = (Y1 +y2)I1 + (Y2 + Y'3)I2 +

Y3= YJYAIi +

Y2YAI3
Y3I2 + (Y3 + Y2)I3-

Clearly, Assignment 1 yields the simpler next-state expres-
sions.
The assignment selection algorithm presented above has

been implemented in the form of a computer program. The
program is written in PL/1 and is part of a larger synthesis
program which automatically generates design equations
from flow table specifications. For more details concerning
the total program and/or programming considerations, the
reader is referred to [5] and [6].
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