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Empirical Bayesian Learning
DAVID R. CUNNINGHAM, MEMBER, IEEE, AND ARTHUR M. BREIPOHL, MEMBER, IEEE

Abstract-It is shown that a certain weighted average of the prior BAYES' EMPIRICAL DISTRIBUTION FUNCTION
distribution and the empirical distribution yields an estimate of the
posterior distribution that is consistent with Bayes' theorem. A compari- Assume that the distribution function of a population is
son of this approach and conventional parametric Bayesian estimation is to be learned from a set of independent samples. Further
made for some specific cases. assume that some prior knowledge of the distribution

function is available. Using a Bayesian viewpoint, the

INTRODUCTION probability distribution Fx(x) of the population will beassumed to be a stochastic process with beta first-order
ADAPTIVE systems, pattern recognition and, indeed, prior density. For convenience, let

all system studies where random quantities are Q = FX(X)
involved, require the generation of distribution functions
from sample data and experience. There are two common where the dependence of Q on x is understood. Thus the
methods for generating such distribution functions. One is first-order density function of Q is
the empirical distribution function (EDF) and the other is F( + q' )
parametric estimation based on Bayes' rule.' The EDF has qa- (I q)'-
the advantage that it will converge (with probability one) to fQ(q) - 'r (2)
the true distribution function as the sample size approaches 0 < q < 1,O ,1 >O
infinity. However, a disadvantage of the EDF from the 0, otherwise
decision theory point of view is that no systematic method where F(*) is the gamma function, and a, ,B, and q are
exists for determining an optimum testing plan or the functions of x. Now, given q, the probability that a out of n
maximum amount to be spent on testing. samples would be less than or equal to x will be binomial

In a Bayesian scheme, prior information can be used to with probability q. Thus
develop an optimum testing plan and determine the max-
imum amount to be spent on testing [2], [3]. Unfortunately, PAIq,n(a q) = P{a out of n samples < x q}
if the incorrect likelihood function is chosen, there is no n
possibility of a Bayesian scheme converging to the true = () qa(l - q)n-a a = 0,1, .,n (3)
distribution function. For example, if the distribution of X
is assumed to be normal, when in reality it is Laplace, and ni
the mean is learned by Bayes' theorem, then, although the a
mean may be correctly learned, the distribution will not. On applying Bayes' rule after sampling, the first-order

In this paper a method is proposed for generating a density function becomes
distribution function from data which combines the advan-
tages of the EDF and Bayesian parameter estimation in that fQI4(q) - co _,n( __q)fQ(q) (4)
it can be used in decision theory to make testing decisions 00Pxjq,f(a u)fQ(u) du
and yet will converge (with probability one) to the true 00
distribution function. This method is referred to as Bayes' where~ is the total experience. It is well known that this
empirical distribution function (BEF). This paper defines
BEF, discusses convergence, illustrates speed of conver-
gence, and extends the concept to the multidimensional case. F(n + cx + /3) qa+a(-1 q)n-a+ 1-
BEF has two potential disadvantages: it is discontinuous f

_ F
q

(a + cx)F(n -a + /3) (5)
and all sample data must be kept in storage. Both of these Q1;(q - 0 < q < a,fx, > 0
disadvantages, if significant in a specific application, can be 0, otherwise.
circumvented by a method developed by Specht [11] and
discussed in this paper. A reasonable choice for the estimate of Fx(x) is the ex-

pected value of Q. Therefore, the following definitions are
chosen:
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x. In order to assure that FxP4(x) is also a nondecreasing
function of x, it is sufficient to assume that the sum of a and

PRIOR WT. 0/ is a constant; i.e., F0 (X) = NORMAL, 4-, o2I
WO = a(x) + (X) (8) FX = NORMAL, -O, a 2

where wo is not a function of x.
It can easily be shown that E F (EDF)

F~(x) = a(x) _ x(x) () h
A(x) + A3(x) wo D

a(x) + a(x) wo[a(x)!wO] + n[a(x)/n] n 001 _FX14(X)-
wo + n wo+n h
WO ) + n F( (1) x UNKNOWN u AND o2=FxX + ntXF,(x (I

_)
wo + n wo+nn

< - UNKNOWN \

where Fn(x) is the EDF. As Fx,4 is the weighted average of (

the prior distribution function and the EDF, Px,4 can z
easily be shown to be a distribution function. Inspection of
(10) indicates that the prior weight wo can be considered to
be an equivalent sample size for the prior distribution. The
only restrictions on wo and Fx(x) are QOOl J ll

5 6 7 8910 20 30 40 50 70 100 200

0 < Wo < 00 (11) NUMBER OF SAMPLES

and Fig. 1. Integral expected square error with zero prior weight.

Fx(x) = a distribution function. (12)
Consider the case when the likelihood function is assumed

For convenience, FxI,(x) will be called BEF and will be to be normal with known variance a2 and with unknown
denoted by mean , to be estimated by Bayes' theorem. If the prior

FW(X) _ Fxi(x). (13) distribution of the mean is assumed normal with mean po
and variance No2, it can easily be shown that after a data

The prior distribution will be noted by set {XI,X2, * ,X,j Bayes' rule yields a normal posterior
F,40(x) _ Fx(x). (14) distribution of the mean with mean

Thus =(2/N02)/1 + n((1/n) Y=X) (16)
1111= ~(U2IN02) + n -

Fw(x) = ° F.O(x) + F.(x). (15) and variance
wo + n wo + n 2 2

N2 = o2N-- (17)
±2 nN0 2

CONVERGENCE
Using ',, as a point estimate for the mean of X, the EDF

The following convergence theorem Is of interest, is normal with variance o2 and mean given by (16). Inspec-
Theorem: FW(x) converges uniformly in x to Fn(x) for tion reveals that ' is a weighted average of the prior esti-

-oco < x < +so, and FW(X) converges uniformly in x to mate of the mean and the sample mean. Thus the prior
Fx(x) with probability one for -o < x < + oo. weight 02/N02 can be considered as an equivalent prior
The proof of the first statement follows from a simple sample size corresponding towd in the BEF estimate of

limiting argument. The second statement follows directly F (x)t
from the first and the Glivenko-Cantelli theorem [5] which Keehn [4] has investigated Bayesian parameter estimation
states Fn(x) converges uniformly in x to Fx(x) with prob- for the case of a multivariate normal distribution with
ability one for -oo < x < + o0. unknown mean and covariance matrices. For the one-
A convenient measure of the error associated with an dimensional case his results reduce to

estimate F*(x) of Fx(x) is the integral expected square error
- w0,u0 ± n((1/n) En=1 Xi) (18)

1= J E{IF*(x) -FX(X)I2} dx. w0 + n
and

It is of interest to compare the error I when F*(x) = Fw(x)
and when F*(x) is obtained from a Bayesian parameter A 2 v0-k + n((l1/n) Eg= XL2 -pj2) ± w0(fl02 - if)
estimate. To effect the comparison some method for equat- vo + n
ing the prior weights is required. (19)
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Fig. 2. Integral expected square error with correct prior weight. Fig. 3. Integral expected square error with incorrect prior weight.

where function, the BEF estimate of the distribution may be

Anetmt ftema superior (in the integral mean-square error sense) after aItn estimate of the mean ~small number of samples. In fact, for the unknown mean

wo prior weigt1m of the mean case of Fig. 3, the error I will never drop below approx-
wOprior weight of the mean ~imately 0.02. Although the mean is learned correctly in this

{X1,X2,- * ,Xn} data set case, the variance will always be incorrect.

n number of data samples
00 prior estimate of the variance PARAMETER ESTIMATION

VO prior weight of the variance It iS interesting to note that BEF can be used for Bayesian
(Fn estimate of the variance. parameter estimation . Consider any parameter 0 such that

If vo = wo, the prior weight wo can be considered as an
0 bu xdFx.21equivalent prior sample size. The estimate of the variance 0=Jux Fx.(1

becomes
2 2)+ WO(YO2 A 2 A reasonable estimate for 0 is

ff2=wof¢o + n((1/n) Yff=1l Xi - n ) gp2_Jn)b
WO + n 0 = u(x) dF.,Jx)

(20) Ja

Let the true distribution function Fx(x) be normal with = o
b n bwuxEox()dnx.(2

zero mean ,u and variance U2 equal one. The integral square wo + nawo+ na
error I was estimated by numerical methods for F*(X) Then the estimate of the mean given by BEF is
estimated by Bayesian parameter estimation for the cases of
unknown mean and unknown mean and variance and by a=wopo + n((1/n) 1n= Xi) (3
BEF. Results for three different prior conditions are shown wo + n

inFis-13

inFg. 1-3.. '.I. ...

and the estimate of the variance is

Z~~~~~2r

not excude th true vlue, te figues indiate th reasonbPRIOR WT+5

Fig.ve2. Itegal expctesquyarelaierro withlcorrecror weight. Fi.3fneraoxetdsqaeerrwihicretmro egt

where~~~~~~~~~~~~~~functon,ther BEEocht estmaticofthyesa disamteribu imtion mayb

(lnths xapl,X dtae setn case,e the varanc willbuo alay beun incorrect.
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where A' of K. Thus a smoothed estimate of F(x) is

a estimate of the mean Gn(x) = gn(Y) dy. (28)
1o mean given by the prior distribution Jcc>
WO weight of the prior distribution A natural application of this to BEF would be to use

{X1,X2, ,X4} data set
n number of data samples Gn(x) = W+ Fw(x) + + Qn(x) (29)wo +n wo +n
CO2 variance given by the prior distribution

for the estimate of F(x). Properties of this estimate need to
Thus (23) and (24) are identical to (18) and (20) derived be investigated. Because of the nature of G,(x), it is to be

by the more conventional Bayesian approach. To reduce expected that G,(x) would have properties similar to Gn(x).
the data storage required for parameter estimation, (23) The properties of Gn(x) have been investigated by several
and (24) may, of course, be applied iteratively [12]. authors [6]-[8], [10], [13], [14].

MULTIVARIATE DISTRIBUTIONS MEMORY REDUCTION

The BEF concept may easily be extended to Bayesian A major difficulty in applying the EDF to engineering
estimation of the joint distribution function Fx(x) of problems is that all data must be kept in storage. This
random vectors. As the distribution of X is a real-valued difficulty carries over to BEF. Specht [10] has developed a
function of X, it is only necessary to assume that c, fi, and q series approximation for Parzen's method that requires a
of (2) are functions of X. It follows easily from an argument fixed storage capacity. It would appear that this approach
similar to the one-dimensional case that the BEF estimate might be used to simultaneously reduce data storage
F,(x) of Fx(x) is the weighted average requirements and provide smoothing of BEF.

Specht's approximation chooses a weighting function

Fw(x) = ° F(x) + nF(x) (25) K(x) of the form
wo + n W+ n 1 ( (30)

where F,0(x) is the prior distribution, Fn(x) is the EDF, K(x) = _ exp - (30)
wo is the weight on the prior distribution, and n is the
number of samples. Thus

IX [(X- y)2lg9(x) = exp [- 22 dFj(y) (31 )
SMOOTHING BEF - 2r

or
If the distribution function F(x) is known to be con- I(x_I=1 n e (X (32)

tinuous, the discontinuous nature of Fw(x) may be dis- aV2 n i=xp \ 22
concerting, if not an actual problem. Therefore, some form
of smoothing may be desirable. where a corresponds to h of (27). Writing

Parzen [8] has investigated a method for estimating the (x - Xi)21
density functionf(x) from n independent samplesX1,X2, , exp - 2u2
Xn. This estimate gn(x) off(x), where

F(x) = f(u) du (26) = exp (- x2) exp exp (-2f) (33)
-00

is of the form and expanding exp (XXija2) in a Taylor's series, (32)
becomes

gn(x) = Xf K ( h idFn(Y) = KhK ( h / gn(x) 1 exp (-
r) CnX r (34)

00h ~~nh -= a-V2ic 2U2 r=O
(27)

Fn(x) is the familiar EDF and K(y) is a weighting function
satisfying certain conditions. From an engineering point of Cr ___= 1 Xl exp ( i2 (35)
view, this is equivalent to time domain filtering, where K(x) r! a n1 =1
is the filter and x is analogous to time. Erom another point Noting that
of view, it is the weighted average of n density functions3
(l/h)K((x - X)/h), where X1 determines the shift of K C7 _+= Cr,
with respect to the origin and h determines the spread about n+ I

3K(x) is not necessarily a density function. r Trn + 1 Xn \2ex ( 2J (6
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it can be seen that a recursive relation exists for Cr,n. Hence a superior estimate after a relatively small number of
for a fixed number of terms M in the Taylor's series samples. Thus BEF allows the use of prior information as
approximation, does conventional Bayesian parametric estimation, but

_1 / 2 M BEF will converge (with probability one) to the true
gn(x) exp -2 ) Cr,nX (37) distribution, whereas conventional Bayesian estimation

uN/27r 2f r=o may not. BEF may also be used for parametric Bayesian

Thus the approximation requires the storage of a fixed estimation with results very similar to the conventional
number of terms regardless of the sample size. The memory Bayesian technique. For most applications it appears that
required will, of course, depend on the precision required BEF can replace the conventional Bayesian technique
of the estimate. A number of properties of this approxima- either for nonparametric estimation or parametric estima-
tion are investigated by Specht and should be of value in tion-
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