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Recall the definition of the Kronecker product of two
matrices [7]. IfA is an m x m matrix, the Kronecker or tensor
product AO0B is the mn x mn matrix
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The Kronecker product is associative. Also, it is easy to see
that the Kronecker product of permutation matrices is a
permutation matrix.

Furthermore, the permutation represented by Q,,1 0Qn2
0 . 0Qnk can be described in "coordinatized" form as
follows. It maps

il +i2nl+ +jknl-..nkl
into

(/l + 1)+ G2+ 1)nj +**+ (7k + 1)nj . nk- 1,

where jp+ 1 means addition modulo np. It is then straight-
forward to verify that

P1QnP = Qnl ) Qn2(E0 Qnk (2)

Let A(x) be an n x n circulant. Then
n-1

A(x) = EXjQj,
j=O

where Q° = In, the n x n identity matrix. Thus, applying (2),
n-1

P'A(x)P = E xj(Qn0 0 Qnk)
j=O

commutative ring R, the product of two n x n circulants
can be computed with f(n) multiplications. Then, if
n=nl ... nk, with the ni's relatively prime in pairs, the
product of two n x n circulants can be computed with
f (nl) ... f (nk) multiplications.

Proof: By the supercirculant lemma it suffices to con-
sider multiplication of two (n , * , nk) supercirculants. The
proof is by induction on k. The assertion is trivially true for
k= 1. Assume that it is true for k and let Sl, S2 be two
(nl, , nk, nk+± ) supercirculants. Let Rk be the set of all
(nl, * , n) supercirculants over R. It is easy to see that Rk is
a commutative ring, under matrix addition and multiplica-
tion. S, and S2 can be considered nk + x nk + lcirculants over
Rk. Thus S1S2 can be computed using f(nk+ ) multiplica-
tions in Rk. Further, by the induction hypothesis each
multiplication in Rk requires f(n1) ... f(nk) scalar multipli-
cations. Thus the total number of scalar multiplications
required is f(n1) ... Jfnk)f(nk+4). This proves the lemma.
By Lemma 1, we can take f (n)= n(n+ 1)/2; thus we get the

following.
Proposition: Let n= n1 ... nk with (ni, nj)=1 for i$j. Then

the product of two n x n circulants and thus the convolu-
tion of two n-vectors can be computed using n(n1 +1)
... (nk+ 1)/2k scalar multiplications.
Remark: It is easy to see that the factorization minimizing

the number of multiplications by our method is the com-
plete factorization of n into prime-power factors.
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Equation (3) follows from the matrix identity (A 0B) (COD)
=(A - C)0(B * D), while (4) follows from the identity
Qp= Ip for all p. If Ci is an ni x ni circulant for i= 1, 2, k,
then C1 OCk is an (nl, nk) supercirculant. Finally,
a linear combination of (n , , nk) supercirculants is an

(nl,** , nk) supercirculant. Thus P -A(x)P is an (n1,*, nk)
supercirculant and the lemma is proved. A more conceptual
proof appears in [5 ]. As a consequence of the supercirculant
lemma we obtain the following.
Speedup Lemma: Suppose there is a function f :N-+N,

where N is the set of positive integers such that for any
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SHORT NOTES

tinguish the states. Then variables are systematically added until a

satisfactory assignment is obtained. State variables added in the ex-

pansion of an assignment are merely the EXCLUSIVE OR of state vari-
ables in the original assignment. This simple construction procedure
terminates with a maximum of m+[ml2] state variables for a 2"-row
flow table.

Index Terms-Asynchronous sequential circuits, internal state

assignment, nonuniversal assignment techniques, shared-row assign-
ments.

I. INTRODUCTION
The operation of an asynchronous sequential circuit can

be described by means ofa flow table (see Fig. 1). An impor-
tant step in the synthesis procedure for these circuits con-

sists of coding the internal states such that all state transi-
tions can be accomplished without the introduction of cri-
tical races [1]. The internal state variables, Yl, Y2, Yn,
and corresponding code are called the internal state assign-
ment. The type of assignment considered here is one in
which a singley state is assigned to each row ofthe flow table
and remaining y states are used as necessary to complete
transitions between nonadjacent rows. The result of such
an assignment is that, after an input change, the circuit
may sequence through several internal states before be-
coming stable. Unger refers to these assignments as shared-
row state assignments [2]. This should be contrasted with
single transition time assignments where all internal state
transitions go directly from unstable states to terminal
stable states; no sequencing is permitted. Generally, fewer
state variables are required for shared-row assignments.
A state assignment is said to be universal if it is valid for

any flow table with a given number of rows; otherwise, it is
nonuniversal. A nonuniversal assignment for a particular
flow table frequently requires fewer state variables than a

universal assignment. Procedures are well established for
generating nonuniversal single transition time assignments
for asynchronous sequential circuits [3], [4]. This note
treats the more difficult problem of generating nonuni-
versal shared-row assignments [5]-[7].
The assignment procedure presented here does not

guarantee a minimum-variable assignment but terminates
with m+ [m/2] state variables for a 2m-row flow table, where

[/21
/2, m even

LmIJ]-{ (m - 1)/2, m odd.

For flow tables where the number ofrows are equal to or less
than 2' (and greater than 2m1- ), the method consists of first
establishing an initial code ofm state variables. Additional
state variables are obtained, as necessary, by EXCLUSIVE-

ORING variables from the initial code.
It has not been proven that m+ [m/2] state variables are

always sufficient for the coding of a 2m-row flow table by the
procedures of this note. However, a search for counter-
examples has been unsuccessful.

II. DEVELOPMENT OF THE ASSIGNMENT PROCEDURE

A k-set of a flow table column consists of k -1 unstable
states leading to the same stable state, together with that
stable state. A column partition is a collection of the k-sets
that appear in a column. of a flow table. The column parti-
tions for the flow table in Fig. 1 are

I12 I3

1 (i) 3 5

2 1 5 (

3 1 (i) 2

4 ( 5 2

O4 O(
Fig. 1. Flow table.

= {1,2,3;4,5}

-2 {1,3;2,4,5}
a3= {2, 3,4; 1, 5}.

If a transition is to be effected between a pair of states Sa and
Sb, then the pair of states Sa, Sb is called a transition pair. A
transition path is the set of n-tuples that the circuit assumes
in undergoing a transition between states of a transition
pair.
The following definitions are useful in the discussion of

the assignment procedure.
Definition: A set of state variables {Y1, Y2, Yk} is an

independent set of state variables if no yi in the set is equal
to the mod 2 sum 0 of a subset of the other state variables
of the set.

Definition: Consider a set of two independent and distinct
state variables {y4, y,}. If y,(®y,=y,, then the complete set
{y4, y5, y,,} is called a parity set. State variable yN is generated
from the independent state variables and is therefore called
dependent.

III. STATEMENT AND ILLUSTRATION OF THE ASSIGNMENT

A valid set of transition paths for a column partition must
not have any n-tuples that are common to different k-sets.
If the column partition consists of only two-sets, then there
is a maximum number of transition paths with no elements
in common. Therefore, it appears that the most difficult
type of flow table to work with is one composed of column
partitions with only two-sets. The assignment procedure
will be discussed and illustrated for this case first. It will be
assumed that the number of flow table rows is between
2m and 2m. Next, the procedure will be generalized to the
case where k-sets are not restricted to two-sets. Details re-
garding the rationale for each step can be found elsewhere
[6].
Step 1: Code the states with m state variables Yl,

Y2, * , Ym in such a manner that a minimum number of
transition pairs are a maximum distance apart. In general,
best results are obtained if the states of transition pairs are
assigned codes that are close together.

Step 2: Count the number of times each state variable
yi, i= 1, 2, *, m, must be excited to effect a distance two
or greater transition. This forms the count list.

Step 3: Let yj and Yk be two highest value state variables
in the count list that are not yet in a parity set. Generate a
new state variable Yi such that Yi =Yj/Yk. Then Yi, to-
gether with yj and Yk, forms a parity set.

Step 4: Attempt to find the transition paths for each
column partition. If a satisfactory set of transition paths
exists, then the assignment procedure is complete. If not,
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then return to Step 3 and generate another state variable.
The process continues until a set of transition paths is
found.
The following is an example to illustrate the procedure.

Consider the six following column partitions which cor-
respond to a flow table called machine A:

a1J = {0, 9; 7, 13 ; 3, 1 ; 10, 4; 2, 8 ; 11, 15 ; 6, 14; 5, 12}

a2 = {0,6;2,7;3, 13;9,1; 10, 15;4, 12; 14,8; 11,5}
0(3 = {9,4; 7, 10;0, 12; 3, 2; 15, 6; 5, 13; 8, 14; 1, 11}
0C4 = {0, 14;7, 15;9, 12;3,5;4,6; 11, 13; 10,8; 1,2}'

c5 = {7, 10; 2, 4; 15, 12; 0, 6; 3, 13; 1, 9; 8, 14; 11, 5}

oC6 = {0, 13; 7, 15; 3, 5;9, 14; 4, 8; 1,1I;10, 12; 6, 2}.

The codes assigned to the states of the m-cube (four-cube)
are shown in Fig. 2. It is possible in this case to avoid coding
any transition pair with codes a maximum distance apart.

Next, the number of times each state variable is excited,
in a distance two or greater transition, are tabulated as
follows.

State Variable Number of Times Excited

Yi 14
Y2 15
Y3 12
Y4 16

On the basis of this count list, a new state variable y5 is gen-
erated from state variables Y2 and y4 with y5 =Y2 DY4- The
Karnaugh map representation of this assignment is shown
in Fig. 3.

Transition paths can be constructed within each column,
and therefore the assignment is satisfactory. The amount of
effort involved in finding this state assignment appears to be
significantly less than other known techniques.

It is interesting to note that the assignment procedure
just described and illustrated always produces the universal
four-variable assignment given by Saucier [7].
For the more general case where k-sets are not restricted

to two-sets, the above algorithm can be easily modified.
Each k-set is converted to a set of transition pairs. For
example, consider a three-set consisting of states 1, 2, and 3,
with state 1 as the stable state. There are three possible sets
of transition pairs for a three-set: (1, 2) (1, 3); (1, 2) (2, 3);
(1, 3) (2, 3); where the parentheses denote the transition
pair. It is apparent that more flexibility is associated with
k-sets where k is greater than two. To account for this, in the
initial coding attention is given primarily to keeping the
codes of the two-sets as close together as possible. Little
effort is expended in minimizing the distance between states
of k-sets greater than two-sets. Transition pairs that con-
sist of states that are adjacent are most desirable in that the
resulting transition path contains just the two states. The
means ofdetermining which independent state variables are
to be used in generating the additional state variables is
identical to the procedure previously discussed for the all-
two-set case.
The final code depends on the flow table characteristics

and the initial encoding. Therefore, when all transitions

y3Y4 00 01 11 10

00

01

11

10

-9 13 14

6 ll 1 21
L 4 5 7

12 10 3 8

Fig. 2. Initial coding for machine A.

Y5 = 0

y3Y4
00

01

11

10

y5 = 1

00 01 11 10

14

".11 1 _

12 8

y3Y4 00 01

00 L 9I
01 6

11 15

10 10

11 10

Fig. 3. Trial state assignment for machine A.

cannot be made with the constructed assignment, one may
choose to experiment with a modification of the initial code
before adding another state variable to the assignment.
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Serial Adders with Overflow Correction
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Abstract-A method of implementing two single-bit adders is
discussed. These adders can be used individually to realize the con-
ventional functions of serial addition and serial multiplication on a
pair of operands, or they can be cascaded to allow the serial addition
of three operands for forming the product of complex numbers. In
either case, the circuits will detect the occurrence of an overflow or
the generation of the number minus one, and they will allow an addi-
tion to be rescaled by outputting the correct bits during the addi-
tional shifts, whether the addition overflowed or not.

Index Terms-Cascaded adders, overflow detection and correc-
tion, parallel processing, serial addition.
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