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On Semigroups of Functions on Topological Spaces 

‘I’. L. HICKS AND A. G. HADDOCK 

University of Missouri-Rolla, Rolla, Missouri 65401 

Submitted by Ky Fan 

1. INTRODUCTION 

If X is any non-empty set, the symbol F(X) will be used to denote the 
semigroup of all functions which map X into X, where the binary operation 
is that of composition. The symbol 2 will denote the function which maps 
every element of X onto x. The function % will be referred to as a constant 
function, and Z(X) will denote the collection of all constant functions ofF(X). 
The symbol a(X) will be used exclusively to denote a subsemigroup of 
F(X) which contains Z(X). If X is a topological space, C(X) will denote the 
semigroup of continuous functions on X. C(X) is a subsemigroup of F(X) 
that contain Z(X). Suppose X and Y are topological spaces and a(X) and a(Y) 
are isomorphic. This paper deals principally with the following question. 
What conditions on X and Y are sufficient to imply that X and Y are homeo- 
morphic ? 

The following two lemma’s are straightforward. Magi11 [l] proved them 
for the case a(X) = C(X), and his proof carries over. 

LEMMA 1. LetfEol(X).fog=fforeverygEcu(X)ifandonlyiff==x 
for some x E X. 

LEMMA 2. Let f E u(X) and put H(f) = (x : f (x) = x}. x E H(f) if and 
only if f 0 X = 2. 

Suppose + is an isomorphism from a(X) onto a(Y) and +* = 4 / Z(X). 
Consider the following diagram. 

cl(X) -----f 4 Y) 
U u 

Z(X) --d+ -WY 

t 
X* 

t 
Y* 

x -h-+ y 
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x*(u) = 8 for every a E X and y*(b) = 6 for every b E Y. Clearly x* and y* 
are one-to-one and onto. If $* maps Z(X) onto Z(Y), it will follow that $* 
is an isomorphism onto Z(Y) and h = y*-lo $* 0 x* maps X one-to-one 
and onto Y. 

LEMMA 3. #* maps Z(X) onto Z(Y). 

PROOF. If g E a(Y) there exists f E a(X) such that 4(f) = g. For x E X, 
c&v) og = I$(XO f) = 4(x). B y L emma 1, (b(z) E Z(Y). Let 7 E Z(Y). There 
exists f E a(X) such that $(f) = J. Let g E a(X). 

#(f “g) = 4(f) o 4(g) = r o 4(g) = r = 4(f )* 

Since + is one-to-one, f 0 g = f. By Lemma 1, f E Z(X). 

REMARK 1. h(x) = y if and only if 4(a) = 7. In [l] Magi11 proved that 
4(f) = h 0 f 0 h-l for every f E a(X) for the case a(X) = C(X) and 
a(Y) = C(Y), and his proof carries over. We note that if T is any one-to-one 
mapping from X onto Y such that +(f) = T 0 f 0 T-l for every f E Z(X), 

then T = h. For, if x E X let y = h(x) and then 

$(a) (a) = (T 0 x 0 T-l) (a) = T(x) = T(x)(u) 

for every a E Y. Hence 

h(x) = 7 = $b(Z) = T(x), and h(x) = T(x). 

THEOREM 1. Suppose p(X) and p(Y) are semigroups such that 

4x1 c SW c F(X) and 47 CW) CV)* 

91 can be extended to an isomorphism I/ from /3(X) onto /3(Y) if and only a. 

(1) hofo h-‘Ep(Y)for everyf E&X), and 

(2) h-l 0 g 0 h E /3(X) for every g E /3(Y). 

If $ can be extended 1,4 is unique; 4(f) = h 0 f 0 h-l for every f E j(X). 

PROOF. The last statement follows from the preceding remark. If 4 can 
be extended, (1) is clear. Given g E p(Y), there exists f E /J(X) such that 

#(f) = hof 0 h-l =g. h-logoh=fE/3(X). 

If the conditions hold, it is clear that $ maps p(X) into /3(Y), 4 is one-to- 
one, and a homomorphism. Given g E p(Y), h-1 0 g 0 h E /3(X) by (2) and 
$(h-l o g 0 h) = g. 

The following lemma is essentially contained in the proof of Theorem 3.1 
of [l]. We give a proof for the sake of completeness. 
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~WVIA 4. h(H(f)) H($(f)) for ee:Pl;v f E &(A) and 

~--lw(g)) = H(4- ‘W) 
fvr every g E a(Y). 

PROOF. Let f E X and put y :-= h(x). Using Lemma 2, we see that the 
following statements are equivalent: y E h(H(f)), .2: E H(f), f’ .t; .= 5, 

#W = 4(f) o G), 7 = d(f) o Y, Y E H($(f )). 

THEOREM 2. Suppose X and Y are topological spaces such that 
(H(f) : f E a(X)} and (H(f) : f E a(Y)} form bases for the closed sets of X and 
Y respectively. If 4 is an isomorphism from a(X) onto CY( Y), then h is a homeo- 
morphism from Ly onto Y. 

PROOF. Since 12 is one-to-one and onto, this follows immediately from 
Lemma 4. 

2. &f-f3PAc~s AND S-SPACES 

DEFINITION 2.1. A topological space X is said to be an M-space if 
(H(f) : f E C(X)} is a base for the closed sets of X. 

De Morgan’s laws yield X is an M-space if and only if (O(f) : f E C(S): 
is a base for the topology of X, where O(f) = (x : f (x) f x>. 

An open set G containing a point x in X was defined in [l] to be an S-neigh- 
borhood if G = {x> or there exists a continuous function f from c(G) into X 
such thatf(x) # x and f (y) = y for each y in c(G) - G, where c(G) denotes 
the closure of G. A space was defined to be an S-space if it is Hausdorff and 
each point has a basis of S-neighborhoods. It was shown in [l] that every 
S-space is an M-space. In Section 3, an example is given of a space with 
a basis of S-neighborhoods that is not a Tr-space. 

THEOREM 3. Every M-space is a Tl-space. For Hausdorff spaces, S is an 
M-space ;f and only ;f it is an S-space. 

PROOF. Suppose X is an M-space. If x E X, {x} = H(x) which is a closed 
set. It suffices to prove that x has a basis of S-neighborhoods. Suppose G is an 
open set containing x. X - G = n {H(f) : f E T C C(X)}. Since x $X - G, 
there exists f~ T such that f(x) f x and f(y) = y for every y E X - G. 
Since c(G) - G C X - G, f(y) = y for every y E c(G) - G. 

REMARK 2. If h is a homeomorphism from X onto Y, 4 defined by 
d(f) = h 0 f 0 h-l is an isomorphism from C(X) onto C(Y). In view of 
Theorem 2, two M-spaces X and Y are homeomorphic if and only if the 
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semigroups C(X) and C(Y) are isomorphic. This result for S-spaces is the 
main theorem in [l], but the proof given there holds for M-spaces. 

In [3], an isomorphism 4 from a(X) onto a(Y) was said to be induced by a 
homeomorphism if there exists a homeomorphism T from X onto Y such 
that (b(f) = T of o T-l for every f E a(X). In view of Remark I, 4 is induced 
by a homeomorphism if and only if h = y*-r 0 C* 0 x* is a homeomorphism. 
In [2], Magi11 proved that a mapping 4 from a(X) onto a(Y) is an isomorphism 
if and only if there exists a one-to-one mapping T from X onto Y such that 
+(f) = TO f o T-1 for every f E a(X). This also follows from Remark 1. 
Furthermore, if such a mapping exists it must be h. 

EXAMPLE 1. Let X = {a, b} with topology t := (D, X, {a}}, and let Y 
be the same set with topology u = (Z , Y, (6)). C(X) = C(Y) = (a; 6, i}. 
The identity mapping on C(X) is an isomorphism and h(x) = x for every x in 
X. h is not continuous but f defined by f (a) = b and f (b) = a is a homeo- 
morphism. This shows that an isomorphism may not be induced by a homeo- 
morphism even though X and Y are homeomorphic. 

THEOREM 4. Suppose P is a topological property such that for any two 
topologies u and v for the set X which possess P, any isomorphism of C(X, u) 
onto C(X, v) is induced by a homeomorphism. Then any isomorphism of C(X, u) 
onto C( Y, t) is induced by a homeomorphism if t possesses P. 

PROOF. Let 4 be an isomorphism from C(X, U) onto C(Y, t). Then 
h =y*-10$*0x* is a one-to-one map from X onto Y. Let the topology 
induced from Y by h on X be denoted by v. Clearly h is a homeomorphism 
from (X, v) to (Y, t) and +(f) = h 0 f 0 h-l is an isomorphism from C(X, v) 
onto C(Y, t). We now have 9-r c 4 an isomorphism from C(X, u) onto 
C(X, v). We observe that #-lo 4 is the identity isomorphism and hence is 
induced by the identity function i which must be a homeomorphism from 
(X, U) to (X, v). It follows that h 0 i = h is a homeomorphism from (X, u) to 
(Y, t) and since h induces 4 the proof is complete. 

3. FURTHER EXAMPLES 

EXAMPLE 2. Let X = (0, 1) u {2}, and define the topology u for X to 
be the relative topology for (0, 1) together with the set X. Certainly the space 
is not Hausdorff. It is a space with S-neighborhoods. Let G be any neigh- 
borhood of 2, then c(G) - G = X - X = O, hence the constant function 
f(x) = 4 suffices for G to be an S-neighborhood. Therefore, X has a basis of 
S-neighborhoods at 2. Let P be any other point in X, then X is locally 
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Euclidean at P. Magi11 [I] has shown that every locally Euclidean space has a 
basis of S-neighborhoods. To show that S has a basis of S-neighborhoods at 
P, it will suffice to show that f is in C(X) whenever f is in C(S - (2)) 
and f(2) = 2 or f is constant. Certainly if f is in C(X - (2)) and f (2) = 3 
or if f is constant, f is in C(X). Suppose f is in C(X) and f(2) = a, then for 
any E > 0, f-‘[(a - E, n + c)] = X. Hence f (.x) =. a for all x’ in <Y and f is 
constant. 

The following is an example of a space (X, t) which is not an M-space. 
However, if C(X, t) is isomorphic to C(X, s) then C(X, t) = C(X, $). Further- 
more, h is a homeomorphism from (X, t) onto (X, s) and t = s. 

EXAMPLE 3. Let X be an infinite set, and let t denote the topology con- 
sisting of the empty set and all subsets of X whose complements are finite. 

To show (X, t) is not an M-space, let {x~} be a sequence of distinct points 
in X. Observe that C(X, t) consists of those functions which are constant or 

finite to one, where finite to one means, for each a E X, {x : f (x) = u} is 
empty or finite. Hence f(x) = x for x in X - {x, : n is even} and 

f (xZk) = X27c+2 is a continuous function. However, 

H(f) = X - (xn : n is even> 

is not closed. 
Let s be any other topology on X such that C(X, t) and C(X, s) are isomor- 

phic. We note that h is a homeomorphism in the t topology. Therefore, if f 
is in C(X, t) then h of0 h-r is in C(X, t). Since each function in C(X, s) 
is of this form, C(X, s) C C(X, t). Furthermore, h-l 0 f 0 h is in C(X, t). 
It follows that h 0 (h-l 0 f 0 h) 0 h-l = f is in C(X, s) and C(X, t) C C(X, s). 
Therefore, C(X, t) = C(X, s). 

We now show that t = s. It suffices to show that the only topology u on an 
infinite set X which allows C(X) to be precisely the finite to one and constant 
functions is t. Let U be a non-empty element of u, and X - U f @ . Choose 
qinUandpinX-U.Wedefinef(x)=xifxfpandf(p)=q.fisin 
C(X), hencef-l( U) = U u {p) is in u. Therefore, if U is in u and A C X - U, 
(U U A) E u. Suppose now that U is in u and X - U is not finite. Let q be 
in X - U and define f (x) = x for x in U, f (x) = q for x in X - U. f is not 
constant or finite to one. To show f is continuous, let V E u. If q 6 V then 
f--l(V) = (V n U) E u. If q E V then f-‘(V) = (V n U) u (X - U). Now 
(V n U) E u and from what we have just shown, (V n U) u (X - U) is 
in u. Therefore, if U is in u, X - U is finite. To verify the converse of this 
statement, let UC X such that X - U is finite. There exists a V in u such 
that V is a proper subset of X, otherwise C(X) =F(X). If V C U then 
U=Vu(U-V)isinu.IfV-Uisnon-emptyletpbeinv-Uandq 
inX- V.Definefbyf(x)==xifxisin Un VorX-(UU V),f(x)=pif 
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XEU-V,andf(x)=qifx~V-U. U-VCX-Vwhichisafinite 
set. Also, V - U is a finite set. It follows that f is continuous since it is 
finite to one, and consequently f-l(V) = (U n V) u (U - V) = U E u. 
Therefore, U E u if and only if X - U is finite. 
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