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DISTANC E , A

Figure 4. Near-optimal feedback gains for N = 3 at f = 0

Still another advantage of trajectory approximation when
applied to linear distributed systems is that a near-optimal
feedback law is obtained, which is expressed in terms of values
of the state variable x at ,Y arbitrary probe locations. As can

be seen in Figures ] and 2, three or four probes are sufficient
to achieve almost complete optimality. This also demonstrates
the rapid convergence of the trajectory approximation algo-
rithm. In practice, a value of  ’ could be selected to provide
a near-optimal control in keeping with the accuracy of the
model.

Finally, trajectory approximation extends readily to more

complicated systems, such as those in which axial dispersion is

important. Then the reduction to a lumped parameter system
such as the one that Koppel and Shih (1968) describe would
be impossible.

Acknowledgment

LcRoy L. Lynn gratefully acknowledges the support of
the National Science Foundation while on a traineeship at
Carnegie-Mellon University.

Literature Cited

Athens, M., Fallí, P. L., “Optimal Control,” pp. 750-814,
McGraw-Hill, New York, 1966.

Butkovskil, A. G., Automat. Remote Contr. (USSR) 22, 13 (1961a).

Butkovskil, A. G., Automat. Remote Contr. (USSR) 22, 1159
(1961b).

Butkovskil, A. G., Proceedings of I FAC Conference, p. 333, 1963.
Denn,  . M., Ind. Uno. Chkm. Fundam. 7, 410 (1968).
Egorov, A. I., Automat. Remote Contr. (USSR) 25, 557 (1964).
Graham, J. W., D’Souza, A. F., Tenth Joint Automatic Control

Conference, Boulder, Colo., Aug. 5-7, 1969.
Kaplan, S., “Application of Synthesis Methods to Elasticity

Problems,” WAPD-TM-694 (Clearinghouse for Federal
Scientific and Technical Information, U.S. Dept, of Commerce),
May 1967.

Koppel, L. B., Shih, Y.-P., Ind. Eng. Chum. Fundam. 7, 414
(1968).

Koppel, L. B., Shih, Y.-P., Coughanowr, D. ID, Ind. Eng. Chkm.
Fundam. 7, 268 (1968).

Parkin, E. S., Zahradnik, R. L., 67th National Meeting, A.I.Ch.E,
Atlanta, Ga., Feb. 15-1 s, 1970.

Yasinsky, J. B., “Extensions and Applications of Synthesis
Methods, with Error Bounds, to Problems in Reactor Physics,”
Ph.D. thesis, Carnegie-Mellon University, 1966.

Zahradnik, R. L., Lynn, L. L., Eleventh Joint Automatic Control
Conference, pp. 590-95, June 1970.

RAYMOND L. ZAHRADNIK1
LEROY L. LYNN2

Carnegie-Mellon University
Pittsburgh, Pa. 15213

Received for review February 2, 1970
Accepted October 5, 1970

1 To whom correspondence should be sent.
2 Present address, Esso Mathematics & Systems, Inc., Florham

Park, N.J.

Sufficiency Conditions for Constrained Optima

Sufficiency conditions for constrained optimization problems were derived by the use of constrained second
total derivatives. The results are in a simpler form than the Schechter and Beveridge relation. The sufficiency
conditions of Phipps were corrected.

The sufficiency conditions for constrained optimization prob-
lems are derived through an alternate approach and result in
a simpler form than in the recent work of Schechter and
Beveridge (1966). The relations presented in this note can be
used with equality and/or inequality constraints. The suffi-
ciency conditions of Phipps (1952), which have been quoted
for years in the literature, were corrected in this work.

Definition of Problem

The constrained optimization problem is defined in this
work as to determine the optimum of an objective function
the form

S = f(Xi,X*, ...,Xn) (1)
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which is subject to m independent equality constraints

9k(Xi, X2, . .. Xn) = 0, k = 1,2, ...,m (2)

where m < n and both / and gk are continuous functions and
possess partial derivatives at least through second order.

This problem can be generalized to handle problems with
inequality constraints by introducing slack variables.

Then the sufficiency test can be described as follows:

For a minimum, all values of Bp should be positive.
For a maximum, the Bp should alternate in sign, Bi being

negative.
If the signs of Bp do not follow either pattern, the point

under investigation is not a maximum or a minimum point.
If any one of the Bp is equal to zero, the optimality cannot be
ascertained by use of this test.

Methodology

The sufficiency conditions for an optimum of the problem
defined above have been derived by Phipps (1952) and inde-
pendently by Schechter and Beveridge (1966). These two inde-
pendent works result in two different forms of sufficiency tests,
the former being simpler than the latter.

This paper presents a third approach to derive the suffi-
ciency conditions (Huang, 1968). The methodological frame-
work of the approach can be described as follows:

Since the problem has n — m degrees of freedom, we choose
for convenience the first m variables, Xi, X2, . . ., Xn, as de-
pendent variables and Xm+i, Xm+2, . . ., Xn as independent
variables. From Equation 2 one obtains

N

dgk =   gkdXi =0 k = 1,2, . .., m (3)
¡ = 1

From Equation 3 we can solve dXk, (k = 1,2, . . ., to), in
terms of dX¡, (j = m + 1, to + 2, . . ., n), and we call the re-

sults the “constraint relations.” Substituting the constraint
relations into the first total derivative of the objective func-
tion, (dS), we obtain the constrained first total derivative,
(dS')g, and once again substituting the constraint relations into
the expression of d[(dS)p] we obtain the constrained second
total derivative, (d\S)„.

The above described mathematical manipulation is made
possible by use of the Lagrangian function, L, defined as

L = / +   xy (4)
k = 1

where Xk, (k = 1,2, . . ., to) are Lagrange multipliers.

Sufficiency Test

Let 0 ... o gi1
1

Qm+p

(-D m 0 ... o fll" gm+v
Bp

(JO) gd · · g™ ill ‘ U, m+p

9m+p^' * ‘ 9m+p Bm+p i 1
* * ' Bmjrp, rn+p

V = 1,2, . . , n - m

where

d2L dgk
Bni —

dX,dX„’ gk =

dXi

n,l = 1,2, . n k = 1,2, . ., m

and

jo = j(^ 0
J\Xi,X*. ...,xj*

Discussion

The above sufficiency test can be proved to be equivalent
to that of Schechter and Beveridge (1966). However, the
former is simpler than the latter, in that much less work is

required in using the sufficiency test of this study for the
formulation of the equations and computer programming,
particularly in case of multivariable problems. The sufficiency
test of Phipps (1952) is very similar to the results of this work
except that Phipps has an error in the range of index t used

by him. By comparison with the present work, Phipps’ index
t should range from to + 1 to n instead of from m to n. This
error has been quoted in the literature without correction
(Wilde and Beightler, 1967).

Example

To show how simple the present sufficiency test is when
compared with the test of Schechter and Beveridge, let us

compare them by the following example.
Minimize:

S = f(Xh  ,,  ,   (6)

with constraints

 (  :, ,, 3,   = 0 (7)

g2(X1,X2,X3,X 4)
= 0 (8)

g5(Xi,X2,Xz,X4) ~ 0 (9)

The Lagrangian function is

L = f + XV + XV + XV (10)

where  1,  2, and  3 are Lagrange multipliers determined by
the stationary points.

Now let us look at the sufficiency tests:

Schechter and Beveridge Sufficiency Test (1966).

Define

+   1pxA\z>xtj, + 2/41 (-)\dx4A

+ fa
Zd2X2\
W42A + 2/4:

ZdX2\
! \pxje

+ fa
   3\
W42A + 2/45

ZdX3\
1 \dX4A

+ /ll V + 2/12
ZdXA ZdXjN
Xd^A YX4A

+ ,/*22

ZdXA2
\pX*/i + 2/23

ZdX2\ ZdXsN

W</t \ax«A

+ fas
ZdXaY
W·/* + 2/31

ZdXsN ZdXA
XdXiA \QX4A
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where Present Sufficiency Test.

ZdA'A
WV::

Zduv;
w'i.
'd^dAV
ZdAl

s

Q

1

7°

J14 ZdVA
Wv ¿I4 Zd-Y7 _ _¿!_4

and

J14 = J g\g2,g3
A’JvY2,A’3

y\Qjd*
  ,  , 

,/34

Now if J0 , then

/c = 1,2,3

According to Equation 5,

-1 0 0 0 011 021 03l 041

J0)2 0 0 0 0i2 g-22 033 044

Io 0 0 0i3 023 033 04
3

.011 0i2 013 ¿11 Z-12 ¿13 ¿14

¡021 022 023 ¿21 Z/22 ¿23 ¿24

031 032 033 ¿31 Lz2 ¿33 ¿34

¡04
3

042 043 ¿41 La2 ¿43 ¿44

Now if J” 0, then

B¡ > 0 for a minimum
Bi < 0 for a maximum

Thus, the present sufficiency test is much simpler and more

straightforward than that of Schechter and Beveridge.
It is easily seen from the above that to use the present test

all one needs to do is to take derivatives of Equations 7

through 10. Determinant Bi can be evaluated by use of a

simple computer subroutine. Furthermore, in the present test
the increased number of variables does not require much extra
work, in either the formulation of the equations or the com-

puter programming, as it does in the test of Schechter and
Beveridge (1966).

Literature Cited

Huang, C. C., master’s thesis, University of Missouri—Rolla,
1968.

Phipps, C. G., Am.tr. Math. Monthly 59, 230 (1952).
Schechter, R. S., Beveridge, G. S. G., Ind. Eng. Chum. Fundam.

5, 571 (1906).
Wilde, D. J., Beightler, C. S., “Foundation of Optimization,”

Prentice-Hall, Englewood Cliffs, N.J., 1967.

C. C. HUANG
R. M. WELLEK

University of Missouri—Rolla
Rolla, Mo. 65401

(fa)s -x 0 for a minimum Received for review February 24, 1970
(fu)g < 0 for a maximum Accepted July 13, 1970

Asymptotic Expression for the Efficiency of a Staged Reactor

The efficiency for a single reaction of a sequence of equal ideal stirred-tank reactors is exhibited as an

asymptotic series in the reciprocal space velocity for a stage, in a form general for any analytical dependence
of rate on conversion. The first three terms of the series ore given in the expression

So

S
  .

1 R(x n)Id--In —:—r
2n R(0)

[R'UIF
R(x) }

where S is the reciprocal space velocity giving conversion xM in an n-stage reactor, R(x) is the rate of the
reaction when the conversion is x, and S0 is the reciprocal space velocity that would give the same conversion
in an ideal plug-flow reactor.

If three conditions hold, an asymptotic expression can be
derived giving the relationship between the space velocity
leading to a certain conversion in a sequence of stirred vessels
and the space velocity that would give the same conversion
in an ideal plug-flow reactor. The conditions are that all
vessels in the sequence have equal volume and temperature,

and that only one stoichiometrically independent reaction is

going on. The relationship is otherwise completely general,
with no restrictions on the kinetics of the reaction.

The expression is derived by a formal summation of the
reciprocal space velocities required in a plug-flow reactor to

give the actual conversions in the several stages. The
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