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OPEN-CHANNEL PROFILES 

BY NEWTON'S  ITERATION TECHNIQUE 

D. L. FREAD and T. E. HARBAUGH 
Civil Engineering Department, University of  Missouri-Rolla, Missouri, U.S.A. 

Abstract: Computation of surface profiles for steady gradually varied flow can be ac- 
complished by use of Newton's Iteration Technique. The magnitude of error is controlled 
and the profile depth can be conveniently calculated at selected distances upstream or 
downstream from a control point. A Fortran IV program is provided for utilizing the 
technique in a trapezoidal channel. 

Introduction 

Computer applications to problems of simulating complex interrelated 
systems of channels, dams, bridges, and other hydraulic structures are 
increasing. This incleased use of the computer to solve engineering problems 
poses new challenges to the designer. Computational methods which de- 
signers have employed for several years are under review concerning possible 
revisions to adapt them to rapid computation on high speed computers. 
Many of the existing design techniques may be conveniently computerized 
through use of numerical analysis techniques. One example of the use of 
numerical analysis occurs for the computation of steady gradually varied 
open-channel flow profiles. 

The use of the present hand techniques in calculating open-channel 
profiles is generally accomplished by methods such as the direct step, and 
the method of direct integration1). These techniques provide values of distance 
for specified values of depth from known controls in the channel flow. It is 
often necessary to obtain the depth of flow for specified distances from 
control points in the channel particularly when simulating large systems 
involving bridges, culverts, etc. The use of direct step, and other hand 
techniques, require an interpolation scheme to provide this information. 

The standard step method provides the value of depth at specified distances 
from a control point. Chow r) presents this method as a hand technique. 
Henderson 2) describes a graphical procedure which is not amiable to compu- 
ter application. Prasad 3) discusses a numerical analysis technique of trapezoi- 
dal integration which is a convenient method for computer application. 

70 
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This paper  deals with a numerical analysis technique which will provide 

values of  flow depth at specified distances without using existing design 
methods or interpolation schemes. This method is generally referred to as 
the Newton Iteration Technique and has an advantage over the trapezoidal 
method by being a more straightforward solution to the integration of the 
gradually varied flow equation and being computationally more efficient. 

Gradually varied flow 

The derivation of a gradually varied flow equation is presented in many 
texts 1, 2, 4) and will not be repeated here. The gradually varied flow equation 
is generally expressed as a differential equation in the following form: 

where 

Y 

dy So - -  S f  

dx = 1 +~  d-iVz/29)/dy (1) 

= depth of flow in feet 
x = distance along channel in feet 
v = average velocity in channel in feet per sec 
So = slope of channel in feet/feet 
Sf = slope of the energy gradient in feet/feet 

= energy coefficient 
g = gravity acceleration constant. 

I f  Eq. (1) is expressed in difference form for an incremental reach of 
channel, it clearly represents an energy balance between section l-1 and 

C~Vl 2 
2g 

Yl 

SoAx 

1 
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Fig. 1. Incremental reach of open channel. 
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section 2-2 (see Fig. 1). 

S°Ax + 2g Y, = Y2 + }g  + Ax (2) 

where Ax is the distance between sections 1-1 and 2-2. When the Manning 
formula is used, the energy gradient is given by 

H2U 2 

Sf = 2.208 R ~" (3) 

Thus, if the depth, Y2, at section 2-2 is known, the depth, Yl, at section 1-1 
for a rectangular cross-section is obtained by substituting Eq. (3) into Eq. (2), 
remembering Q =AV, and rearranging. Thus, 

2 .2e2Ax (B + 
Yl+ZgBZy~ 4.416B2y 2 \  By, / + F = O  

~tQ 2 n2Q2Ax (B + 2y2) ~ 
F=SoAx-Y2-2gB2y~-4 . ,416B23;~  BY2 J " 

where 

(4) 

Equation (4) is nonlinear with respect to the unknown variable y~, while 
the term Frepresents the sum of all known quantities of Eq. (2). Equation (4) 
may now be solved for Yl by utilizing an iterative technique commonly 
referred to as Newton's Iteration Technique. 

Newton's Iteration Technique 

Suppose an expression y - - f (x) ,  as shown in Fig. 2, is known and it is 
desired to find the value of x which will make y--0. This value of x is 
denoted as X in Fig. 2. An iterative method, Newton's technique, may be 
used to find a solution to the equation, f ( x ) = 0 .  In this method, f ( x )  is 
expanded in a Taylor Series about the point xl, which is an initial approxi- 
mation of X. Thus, 

y = f (x) = f (x~) + f '(x~) (x - x~) + f"(Xl) (x - x 1 )  2 
1 ! - 2 !  + ( 5 )  

The prime (') denotes a derivative, i . e . , f '  (X l )=df (x l ) / dx l .  S ince / (x )=0 ,  
and if second order terms of the Taylor Series expansion in Eq. (5) are 
neglected, then 

f (x,)  + f ' ( x l )  (x - x~) = 0. (6) 

Solving Eq. (6) for x yields 

f (x,) (7) 
x = x ,  f ' (x , )"  
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This value of x is an approximation of X which is being sought since the 
second and higher terms of the Taylor Series were discarded. However, if 
x is now substituted for xl in Eq. (7), the resulting value of x will converge 
toward X. Thus, successive iterations of Eq. (7) will produce a value of x 
which is sufficiently close to X. A general iterative formula for this procedure 

is given by f ( x k )  
(8) XR + I = Xk f ,  (Xk) 

where the subscript k denotes the number of iterations. After choosing an 
appropriate starting value, xl, and applying Eq. (8) successively, the value 

1 ~ y=f(x) 

I \ 

x 2 
Fig. 2. Graph of a function, y = f ( x ) .  

of x will be found such t h a t f ( x ) = 0 .  The initial approximation X 1 must be 
chosen sufficiently close to X. It can be shown, (5) that if xl satisfies the 
inequality 

[f  (Xa) f "  (Xl)] 
< 1 (9) 

[ f ,  (x l)]z 

where the double prime superscript denotes the second derivative, then xl 
will converge quadratically to the root X of the equation f ( x ) = 0  upon 
applying Eq. (8). 

Convergence is attained when either 

Ixk+l - xd < E1 (10) 
o r  

I f  (Xk)l < E2 (11) 
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where E1 and E 1 are error tolerances, i.e., the desired absolute accuracy of 
the solution X of the equation f (x) =0. 

Application of Newton's Iteration Technique 

The energy balance as shown by Eq. (4) is in the form f ( x ) = 0 .  Thus, 
application of Newton's Iteration Technique can readily be utilized to solve 
for the unknown, Yl. Thus, 

f (YR) 
Yk+I = Yk -- (12) 

f '  (Yk) 
where 

where 

7Q2 n2Q2Ax (B + 2yk) ~ 

f (Yk) = Yk + 29B2y2 -- 4.416 B2yk z (Byk) ~ + F 

c~Q 2 nZQEAx (6Vk + 5B) {B + 2yk'~½ 
f ' (Yk )  = 1 -- -Biv- 3 + g .k  6"624BYy~ - \ BY~ // 

and F is defined in Eq. (4). 
The initial approximation for Ya of Eq. (4) is simply taken as the known 

value of the depth, Y2, at section 2-2. Since Ax is chosen relatively small as 
compared to the total length of the reach of channel for which the surface 
profile is sought, the change in depth between sections 1-1 and 2-2 will also 
be relatively small. Thus, the initial approximation Yl is quite close to the 
desired solution of Eq. (4), and Eq. (12) will rapidly converge to the desired 
solution. 

The above procedure is then repeated in order to determine a new up- 
stream depth at a new section 1'-1' located at a Ax distance upstream from 
section 1-1. The initial approximation of y is taken as the previously 
calculated value of y~. This procedure may be repeated for as many Ax 
reaches as desired. (The incremental reach length, Ax, need not be constant 
although it is treated as a constant in this paper.) When E l is chosen ex- 
tremely small, say 0.000001, Eq. (12) will satisfy the inequality Eq. (10), 
after only a few iterations. 

An accelerated convergence is easily obtained after the first Ax increment 
by improving the estimation of the initial value of the unknown depth. 
Rather than use the previously calculated value of depth for the initial 
approximation, an approximation of the form Y = Y l -  (Y2-Y~) will allow 
convergence in two or three iterations, when El is 0.000001. 

Computations may proceed in an upstream or downstream direction 
depending on the particular situation for which the surface profile is desired. 
For calculations of profiles in a rectangular channel where the computations 
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begin at an upstream control and proceed in a downstream direction, Eq. (4) 
becomes 

o~Q 2 n2QZAx ( B  + 2y2"]~ 
Y Z + Z g B 2 y ~ + a ' 4 1 6 B 2 y ~ \  B; '2  J + F = O  (13) 

where 
~Q2 n2QZAx {B + 2 y , ~  

F = - SoAx - y, - 29BzY ~ + 4.4i~2y ~ \ Byl  / . 

The equations for f (Yk) and f ' ( Y k )  are identical with those associated with 
Eq. (12) except for a sign change in the third term of each equation. 

If  the cross-section of the previous example were trapezoidal with side 
slopes I :ZL and I:ZR, for the left and right sides, respectively, as viewed 
in the upstream direction, and with a bottom width B, then the relationship 
for the depth, y, at section 1-1, would result in 

~Q2 
f (Yk) = Yk + 2g[By k + 7Yk (ZL 

n2Q2Ax [B -~ Yk (ZHL -~ ZHR)] ~ 
- - 2 . . . . . .  , . i o  + F ( 1 4 )  

4.416 [Byk + ½Yk (ZL + ZR)]3 
where 

7Q2 

F =  SoAx - 29[BY2 + ½y2 (ZL + ZR)] 2 

,2QZAx [B + Y2 (ZHL "1- ZHR)] ~ 
- -  1o -- - 4.416 [ByE + ½Y22 (z L + ZR)]3 Y2 

and 

o~Q~ 2 I n  -4- Yk (ZL "4- ZR) ] ' |2Q2Ax [B -~- Yk (ZHL q- ZHR)] ~ 
f '  (Yk) = 1 -- 1 2 2 _ 9 [Byk + ZYk (ZL + ZR)] 3 6.624 [By k + Yk (~L + ZR)]'; 

1 2 X {2 (ZHL -[- ZHR ) [By  k + ~Yk (ZL Jr- ZR)] 

-- 5 [B + Yk (ZL "q- ZR)] [B + Yk (ZHL "{'- ZnR)]} 

where 

and 

/72 
ZHL = %/Z L -]- 1 

/- 2 
ZHR = N/ZR -[- 1 . 

A Fortran IV program is presented in Fig. 3 for determining the surface 
profile of a trapezoidal channel with a steady flow Q of 400 cfs. The depth 
is known to be 5.0 ft at a dam located 2400 ft downstream. It is desired to 
compute the depth and velocity at 50 ft stations along the 2400 ft reach of 
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channel. E~ is chosen as 0.000001. Other pertinent data includes: So =0.0016; 
B=20.0; n=0.025; ~=1.10; Zr=2.0; and ZR=2.0. This problem has been 
solved by Chow 1) using the graphical integration technique and the direct 
step method. Both methods determine the distance along the channel 
associated with a specified change in depth. The surface profile obtained by 
the Newton Iteration Technique described in this paper produced results 
varying by less than 0.5 percent of the results shown by Chow1), see Fig. 4. 

COMPUTATION OF STEADY GRADUALLY VARIED FLOW PROFILE 
DEPTH IS COMPUTED AT SPECIFIED LOCATIONS ALONG THE CHANNEL 

STARTING WITH A KNOWN DOWNSTREAM DEPTH ( YA ) AND PROCEDING 
UPSTREAM AT INCREMENTAL DISTANCES ( DX ) UNTIL THE TOTAL 
DISTANCE IS EQUAL TO TTL. 

Q IS THE DISCHARGE,CFS; RN IS MANNING'S N; SO IS THE CHANNEL 
SLOPE; B IS THE CHANNEL BOTTOM WIDTH; ALPHA IS THE VELOCITY 
DISTRIBUTION ENERGY COEFFICIENT; TTL IS THE LENGTH OF CHANNEL; 
YA IS THE KNOWN STARTING DEPTH; ER IS THE ERROR TOLERANCE FOR 
NEWTON'S ITERATION METHOD; M IS THE NUMBER + i OF INCREMENTAL 
REACHES OF LENGTH DX ALONG THE CHANNEL REACH; G IS THE GRAVITY 
ACCELERATION CONSTANT,32.2 FT/SEC/SEC; ZL IS THE LEFT SIDE 
SLOPE LOOKING UPSTREAM AND ZR IS THE RIGHT SIDE SLOPE. 

DIMENSIONS ARE AS FOLLOWS : LENGTH,FT; DEPTH,FT; WIDTH,FT; AND 
DISCHARGE,CUBIC FT PER SEC° 

DIMENSION X(49),Y(49),V(49) 
A (Y) =B*Y+Y*Y/2. * (ZL+ZR) 
P (Y) =B+Y* (ZHL+ZHR) 
AD (Y) =B+Y* (ZL+ZR) 
READ (I, 200) Q,RN, SO,B,ALPHA, TTL 
READ(I, 202) YA,ER,G,M,ZL,ZR 
WRITE (3,210) Q,RN, SO, B,ALPHA, TTL 
WRITE (3,212) YA,ER,M,ZL,ZR 
WRITE (3,214) 
DX=TTL/(M-l) 
ZHL=SQRT (ZL*ZL+I.) 
ZHR=SQRT (ZR*ZR+I.) 
FI=ALPHA*Q*Q/(2. *G) 
F2=RN*RN*Q*Q*DX/4. 416 
F3=ALPHA*Q*Q/G 
F4=RN*RN*Q*Q*DX/6. 624 
EFI=I. / 3. 

Fig. 3a 

Solution sensitivity 

The Newton Iteration Technique will enable the computations to proceed 
either upstream or downstream if and only if the correct starting depth is 
used. For example, the computation of the M1 backwater curve can proceed 
downstream if a correct upstream depth is used to start the calculation. The 
general use of these equations, however, proceed from flow control points 
where the depth is known, i.e., critical depth, dams, sluicegates, etc. Table 1 
shows the behavior of the Newton Iteration Technique for the trapezoidal 
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channel with the solution proceeding both upstream and downstream. One 
can observe that for subcritical flow, the downstream solution procedure is 
valid if the correct depth at an upstream station is used as the starting value; 
however, if a 5 ~  error in depth is introduced, the solution diverges to 
produce a 2 3 ~  error at the dam. The proper use of  the Newton Iteration 

Figure 3 (continued) 
EF4=4./3. 
EFI0=I0./3. 
EF13=13./3. 
X(M)=TTL 
Y(M)=YA 
V(M)=Q/A(YA) 
DSX=TTL 
DDY=0.0 
MM=M 
SOLVE NON-LINEAR EQUATION BY NEWTON'S ITERATION METHOD 

5 YA0=YA-DDY 
F=S0*DX-YA-FI/(A(YA)*A(YA))-F2*P(YA)**EF4/A(YA)**EFI0 
DO i0 K=l,i5 
YAI=YAO-(YAO+FI/(A(YA0)*A(YA0))-F2*P (YA0)**EF4/A(YA0)**EFIO+F)/ 
I(I.-F3*AD(YA0)/(A(YA0)*A(YA0)*A(YA0))-F4*P(YAO)**EFI/A(YAO)**EFI3* 
2(2.*(ZHL+ZHR)*A(YA0)-5.*AD(YA0)*P(YA0))) 
IF(ABS(YAI-YA0)-ER) i2,10,i0 

i0 YA0=YAI 
12 DDY=YA-YAI 

YA=YAI 
M=M-I 
DSX=DSX-DX 
X(M)=DSX 
Y (M) =YA 
V(M)=Q/A(YA) 
IF(M-l) 20,20,5 

20 WRITE(3,215) (X(M),Y(M),V(M),M=I,MM) 
STOP 

200 FORMAT(7FI0.6) 
202 FORMAT(3FI0.6,110,2FI0.6) 
210 FORMAT(2X,'Q=',FI0.2,5X,'RN=',FI0.4,SX,'SO=',FI0.6,5X,'B=',FI0.2, 

15X,'ALPHA=',Fi0.2,5X,'TTL=',Fi0.2) 
212 FORMAT(2X,'YA=',FIO.4,5X,'ER=',FI0.6,5X,'M=',I5,5X,'ZL=',FI0.2,5X, 

I'ZR=',Fi0.2) 
214 FORMAT(i5X,'X=DISTANCE',iOX,'DEPTH',9X,'VELOCITY') 
215 FORMAT(10X,3FI5.3) 

END 

Fig. 3b 

Fig. 3. For t r an  IV Newton's Iteration Technique for open-channel profiles. 

Technique is to proceed upstream from the control point in subcritical flow. 
As can be noted in Table 1, introduction of  starting depth errors at the 
downstream point will still allow convergence toward the true surface profile. 

The supercritical data shown in Table 1 are for the trapezoidal channel 
example with a channel slope of  0.0036. Again note the fact that for error 
free starting depths, the solution may proceed either upstream or down- 
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Q=400.00 RN=0.0250 S0=0.001600 B=20.00 ALPHA=I.10 TTL=2400.00 
YA=5.0000 ER=0.000001 M--49 ZL=2.00 ZR=2.00 

X-Distance Depth Velocity 
0.000 3.399 4.392 

50.000 3.403 4.385 
I00.000 3.408 4.377 
150.000 3.413 4.368 
200.000 3.419 4.359 
250.000 3.426 4.348 
300.000 3.433 4.336 
350.000 3.442 4.343 
400.000 3.450 4.309 
450.000 3.460 4.294 
500.000 3.471 4.277 
550.000 3.483 4.259 
600.000 3.496 4.239 
650.000 3.510 4.217 
700.000 3.526 4.194 
750.000 3.543 4.169 
800.000 3.561 4.142 
850.000 3.581 4.113 
900.000 3.602 4.082 
950.000 3.625 4.049 

I000.000 3.650 4.015 
1050.000 3.676 3.978 
Ii00.000 3.704 3.940 
1150.000 3.734 3.900 
1200.000 3.766 3.858 
1250.000 3.799 3.815 
1300.000 3.834 3.7-70 
1350.000 3.871 3.724 
1400.000 3.910 3.677 
1450.000 3.951 3.628 
1500.000 3.993 3.579 
1550.000 4.038 3.529 
1600.000 4.083 3.478 
1650.000 4.131 3.426 
1700.000 4.180 3.374 
1750.000 4.230 3.322 
1800.000 4.282 3.270 
1850.000 4.336 3.218 
1900.000 4.391 3.165 
1950.000 4.447 3.113 
2000.000 4.504 3.062 
2050.000 4.562 3.010 
2100.000 4.622 2.959 
2150.000 4.683 2.909 
2200.000 4.744 2.859 
2250.000 4.807 2.810 
2300.000 4.870 2.761 
2350.000 4.935 2.714 
2400.000 5.000 2.667 

Fig. 4. Ou t pu t  f o r t r a p e z o i d a l c h a n n e l .  
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TABLE 1 

Effect of starting depth errors 

Flow profile Direction of Initial Depth at end % error 
Flow regime computations starting depth of the reach beginning end of reach 

M-I 
Subcritical Upstream 5.000 3.399 0.0 0.0 

M-1 
Subcritical Upstream 5.250 3.418 + 5.0 + 0.67 

M-1 
Subcritical Upstream 4.750 3.385 -- 5.0 -- 0.41 

M-1 
Subcritical Downstream 3.399 5.000 0.0 0.0 

M-1 
Subcritical Downstream 3.570 6.158 + 5.0 -- 23.0 

M-I 
Subcritical Downstream 3.170 Not -- 5.0 - 

computable 
M-3 

Supercritical Upstream 1.652 0.530 0.0 0.0 
M-3 

Supercritical Upstream 1.730 0.608 + 5.0 + 15.6 
M-3 

Supercritical Upstream 1.570 0.440 -- 5.0 -- 18.0 
M-3 

Supercritical Downstream 0.530 1.652 0.0 0.0 
M-3 

Supercritical Downstream 0.580 1.701 + 9.4 + 2.96 
M-3 

Supercritical Downstream 0.480 1.606 -- 9.4 - 2.79 

stream. However, errors in the starting depth of supercritical flow, amplify 

when proceeding upstream, and  dampen  when proceeding downstream. 

Conclusions 

Steady gradually varied surface profiles can be efficiently and  conveniently 

obta ined by digital computers  utilizing the Newton I terat ion Technique of  

solving the difference form of the gradually varied flow equation.  The 

accuracy of this procedure is dependent  upon  the accuracy of the starting 

depth and /or  the direction (upstream and  downstream) of the computat ions .  

These characteristics are the same as those displayed by the convent ional  

step methods,  since both are merely variat ions in the technique of solving 

an energy balance equat ion  of the general form of Eq. (4). 
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