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Handlos and Baron Model: Short Contact Times 
J. M. PATEL and ROBERT M. WELLEK 

University of Missouri at Rolla, Rolla, Missouri 

Handlos and Baron have proposed a mathematical 
model which describes the internal mass transfer mech- 
anism for droplets that have a special type of turbulent 
internal circulation ( 1 ) .  The turbulence is in the form 
of random radial vibrations superimposed upon internal 
streamlines which are in the form of a system of tori. 
These fluid dynamic conditions are most likely to be en- 
countered in the high-droplet Reynolds number-nonoscil- 
lating region. A detailed description of the model and 
the assumptions involved are given elsewhere (1, 2 ) .  The 
model has been compared (with approximate solutions 
used) with experimental data for single droplet systems 
(1  to 4 ) ,  and its use has also been suggested for multiple 
droplet systems (5, 6). The object of this work is to ob- 
tain a more exact solution to the Handlos and Baron 
model which is rigorously applicable for short (and long) 
contact times and finite continuous phase resistances. This 
more exact solution (along with various approximate solu- 
tions) will then be compared with some of the single 
droplet extraction data which have been presented in the 
literature. 

Solutions to droplet extraction models can be presented 
either in terms of droplet extraction efficiencies or in 
terms of mass transfer coefficients. These two performance 
indices for extraction are related by the following expres- 
sion 

(1) 
E m =  1-exp ( - 7 K d i f )  A 

when there is resistance to mass transfer in both the con- 
tinuous and dispersed phases. If the continuous phase 
resistance is negligible (k, +- 00 ) , K d  equals k d .  

The solution to the Handlos and Baron model may be 
expressed in terms of an extraction efficiency as 

00 

Em= 1 - 2  B,,"exp (-Xnbt) (2) 

b =  (3) 

h = l  
where 

U 
128 ( 1 + &d/&c) d 

J. M. Pate1 is with Procter and Gamble Company, Cincinnati, Ohio. 

APPROXIMATIONS FOR LARGE CONTACT TIMES 

The approximate solutions of Handlos and Baron (1) 
and Wellek and Skelland ( 2 ) ,  consider only the first term 
in the above series summation; thus their solutions are 
limited to large contact times when only the first term 
is dominant. Furthermore, in both papers (1, 2 )  it is 
tacitly assumed that 2B12 is equal to unity. Thus, Equa- 
tions (1) and (2) ma be solved for K d ,  subject to the 
above assumptions a n l  therefore, for large contact times 

(4) 

In terms of the droplet extraction efficiency, these large 
contact time solutions are expressed as 

( 5 )  E m  = 1 - exp (- hibt) 

The Rayleigh-Ritz variational method was used in refer- 
ences 1 and 2 to solve for values of Handlos and 
Baron considered the case of zero continuous hase re- 
sistance and found A1 = 2.88. Wellek and Skel P and con- 
sidered the effect of various finite continuous phase re- 
sistances on the value of hl (see Table 1 in reference 2, 
where hl is given as a function of a modified continuous 
phase mass transfer coefficient h )  . 

bt 

Fig. 1. Fraction extracted vs. dimensionless time. Not to be used 
for low values of bt. Solution by Wellek and Skelland (2). 
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Fig. 2. Fraction extracted vs. dimensionless time. Solukion by finite- 
difference method. 

Equation (5) is represented in Figure 1 for various 
values of the continuous phase resistance parameter h. 
The extent to which this approximate solution is valid at 
short contact times is investigated in the next section of 
this work. 

SOLUTION FOR EXTENDED RANGE OF CONTACT TIMES 

In this communication the Handlos and Baron model 
was solved for the extraction efficiency Em as a function 
of the dimensionless contact time bt for various values of 
the modified continuous phase mass transfer coefficient h. 

The partial differential equation and boundary condi- 
tions describing the Handlos and Baron model with con- 
tinuous phase resistance [see Equations ( lo ) ,  ( 11) , and 
(12) of reference 21 were solved b using the implicit 

Olson (7). All computational details are given in refer- 
ence 16. The results are summarized in Figure 2. 

As may be seen from Figures 1 and 2, the continuous 
phase resistance (which is proportional to the inverse of 
h )  has a significant effect on the extraction efficiency. 
Olander ( 8 )  has recently solved this model for the case 
where h is equal to infinity, and the results are in close 
agreement with the upper curve in Figure 2 of this work. 
The error introduced by the use of the large contact time 
solution [that is, Equation (5)] can be seen by compar- 
ing Figures 1 and 2. 

At values of h greater than about 5.0, the finite-differ- 
ence solution (Figure 2) indicates values of Em greater 
than those predicted when using the large contact time 
solution (Figure 1). This difference is more pronounced 
at small values of bt. For values of h less than 5.0, Em 
as calculated in this work is less than that predicted by 
Equation (5). However, as the continuous phase resist- 
ance increases (at values of h less than about 0.01), the 
difference between the large contact time solution and the 
finite-difference solution becomes negligible; this might 
be expected since the continuous phase resistance would 
then dominate the extraction process. 

finite-diff erence technique suggested is y Crank and Nich 

COMPARISONS WITH EXPERIMENTAL DATA 

Comparisons of mathematical models with single drop- 
let experimental data will be divided in two sections: 
data for which virtual1 all the resistance to mass trans- 

to mass transfer exists in both the dispersed and continu- 
ous phase. Conclusions drawn from these comparisons 
should be considered tentative in view of the relatively 
small data sample studied and the apparently inevitable 
scatter exhibited by the mass transfer data for dispersed 
phases. 

fer is in the dispersed p h ase, and data for which resistance 

NEGLIGIBLE CONTINUOUS PHASE RESISTANCE 

The Colburn and Welsh (13) technique has been used 
to study the dispersed phase resistance for the water 
(droplet) -ethyl acetate system. Thirty data points were 
available for these hi h Reynolds number-low interfacial 

perimentally observed extraction efficiencies are closer to 
the values of Em as iven in Figure 2 (for h = to) than 

time Handlos and Baron solution [that is, Equation (5) 
with hl == 2.88, which is shown in Figure 1 for h = 001. 
The average deviation of Em calculated with Figure 2 
from the experimental values of Em is +IS%, whereas 
the average deviation of Em calculated with Equation (5) 
from the experimental values of Em is -27%. 

tension data. Some o P the droplets were oscillating. Ex- 

with those calculate f with the use of the large contact 

RESISTANCE IN BOTH PHASES 

In this section comparisons will be made with the ouer- 
all mass transfer coefficients used (although extraction 
efficiencies could also have been used). The data exam- 
ined are primarily those of Handlos and Baron (see refer- 
ence 2 for exceptions). The overall mass transfer coeffi- 
cient K d  will be calculated by using four variations of the 
Handlos and Baron model which are described as follows: 

1. Finite-difference results developed in this work 

In ( l - E m )  
d &=-- 
6t 

where E m  is a function of k, and bt as shown in Figure 2. 
The continuous phase mass transfer coefficient was esti- 
mated by using the following correlation of Garner and 
Tayeban (14) : 

- = 50 + 0.0085 
kCd 
Dc 

2. Large contact time method 

(4) 

where h1 is a function of k,  as indicated in Table 1 of 
reference 2. Here also, k, is estimated by using Equation 
(7). 

3. Two-resistance method I 

where kc is estimated by Equation (7) and kd (at k, + 
to) is given by Equation (4) with hi = 2.87. 

4. Two-resistance method I1 

where k, is estimated by the Higbie (15) type relation: 

This method is the form originally used by Handlos and 
Baron (1). Four variations have been listed above in 
what was believed to be, from a theoretical standpoint, 
decreasing accuracy. The errors associated with the nu- 
merical method used to prepare Figure 2 (used in method 
1) are believed to be minimal. As described earlier, 
method 2 assumes that only the first term in the series 
solution is important and thus should be applicable-pri- 
marily for large contact times, Methods 3 and 4 introduce 
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additional deviations from methods 1 and 2 by the as- 
sumption of the additivity of resistances and also the use 
of the Handlos and Baron solution for k d  (k, 3 a). 
The Garner and Tayeban correlation [Equation (7)] is 
expected to predict k, with greater accuracy than the 
Higbie relation [Equation (10) 3. 

[The authors would like to call attention to the fact 
that kd in Equations (19) and (20)  of reference 2 should 
have, for generality, been given as K d ,  so that E uations 
(19) and (20) in reference 2 could have appliea for all 
values of continuous phase mass transfer coefficients. Thus, 
the expressions for k d  in modifications A and B of refer- 
ence 2 are not correct, and consequently they have not 
been considered in this work.] 

The data which are compared with the above four 
methods are the same as those indicated in reference 2. 
The droplet Reynolds numbers ranged from 569 to 987 
and interfacial tensions ranged from 25 to 35. The aver- 
age absolute and arithmetic percentage deviations of the 
experimental data from the values of K d  predicted by 
these four methods are given as follows: 

Absolute Arithmetic 

Method 1 48.6 4-41.0 
Method 2 101 f96.8 
Method 3 25.8 + 3.8 
Method 4 31.8 +27.0 

Although one should be cautious about drawin 

methods 3 and 4 (the long contact time-additive resist- 
ance methods) are more accurate than the finite-difference 
results. It should be noted that the droplet extraction data 
used in this comparison (only seventeen measurements of 
K d )  did not include experiments for very short drop con- 
tact times. Future experimentation, for a wider range of 
drop coiltact times and interfacial tensions, may indicate 
closer agreement with the finite difference results devel- 
oped in this work. 

The Handlos and Baron model is frequently described 
as applying to turbulent and/or oscillating droplets (2,  3, 
9, 10) .  However, recent photographic evidence of Rose 
and Kintner suggests that the circulation patterns in os- 
cillating droplets deviate considerably from those postu- 
lated by the Handlos and Baron model ( 1  1 ) . Fluid mo- 
tion within fully oscillating drops, for the systems they 
studied, appeared to be a type of random mixing with 
only a slight tendency for internal circulation. Thus, it is 
probably best to consider the Handlos and Baron model 
(solution given in Figure 2)  as applying only for drop- 
lets with vigorous internal circulation, that is, in the high 
Reynolds number-nonoscillating region. 

On the basis of their observations, Rose and Kintner 
have proposed an extraction model for vigorously oscillat- 
ing droplets which assumes complete mixing in the drop- 
let for every oscillation cycle and which also considers the 
effect of interfacial stretch (11 ) . Angelo et al. ( 1 2 )  have 
recently presented a generalization of the penetration 
theory for surface stretch which was also applied to pre- 
dict mass transfer to oscillating droplets. Both models 
( 1 1 ,  12) require estimates of the amplitude and frequency 
of oscillation. These models are appealing from a physi- 
cal standpoint, although the calculation of the fraction 
extracted appears to be slightly complicated. 

Despite the fact that these surface stretch models ( 1 1 ,  
12) more closely represent the actual phenomena present 
in an oscillating droplet, comparisons (12) with experi- 
mental data available (for k, = w )  indicate that the 
Handlos and Baron model [essentially Equation (8), in 

sions from the limited data studied, it appears 

terms of E m ]  predicts values of E,,, not significantly dif- 
ferent from those of the two surface stretch models. More 
precise and extensive data in the high Reynolds number 
region are needed to provide a more conclusive test of 
the available droplet extraction models. 
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NOTATION 

A 

b =  

B, 
C,, Cf ,  C” = initial, final, and equilibrium concentrations, 

Em = extraction efficiency during the free fall period = 

d = equivalent droplet diameter 
D, = molecular diffusivity in the continuous phase 
h = modified continuous phase mass transfer coeffi- 

k,, k d  = individual continuous and dispersed phase mass 

K d  = overall mass transfer coefficient based on dis- 

m = dispersed phase concentration/continuous phase 

t = contact time during the free fall period 
U = droplet free fall (or rise) slip velocity 
V = droplet volume 
h, = eigenvalues in the series solution 
)Ld, p, = viscosity of the dispersed and continuous phase, 

p, 

= average interfacial area of the droplet 
U 

128(1 + S L ~ / P , ) ~  
= coefficients in series solution 

respectively 

( C O  - Cf)/(CO - C’) 

cient = 512 k, (1  + p d / p c ) / ? d  

transfer coefficients, respectively 

persed phase concentration units 

concentration at equilibrium 

respectively 
= density of the continuous phase 
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