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Subscripts
C = continuous phase
D = dispersed phase
d = dispersed phase
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NUMERICAL DIFFERENTIATION OF
EQUALLY SPACED AND NOT EQUALLY
SPACED EXPERIMENTAL DATA

HARRY C. HERSHEY,1 2JACQUES L . ZAKIN, AND ROBERT SIMHA1

Department of Chemical Engineering, University of Missouri at Rolla, Rolla, Mo.

Procedures are given for smoothing and differentiating experimental data with both equal and nonequal
spacing in the independent variable. Selection of the number of points to be included in the "movable
strip" technique and of the degree of the polynomial is discussed. Equations are given to estimate the
error by calculating a confidence interval on each slope. A technique for handling certain types of non-

random errors is presented.

^Phe scientist is often called upon to obtain derivatives of
* functions representing his experimental data. With the

advent of the digital computer there is no longer any excuse

for plotting the data by hand and then using “optical” methods
(Simons, 1941) which are often unintentionally biased as

well as tedious. On the other hand, the digital computer
can generate such a quantity of numbers that the correct

interpretation of the results is obscured or overlooked. This
article emphasizes procedures for numerical differentiation
of experimental data and estimation of the error in the slope,
reviews the assumptions behind the methods, and gives some

techniques for numerical differentiation of data with non-

random errors.

1 Present address, Department of Chemical Engineering, Ohio
State University, Columbus, Ohio.

2 Present address, Department of Chemistry, University of
Southern California, Los Angeles, Calif.

Experimental data are always subject to errors. These
errors prevent a simple difference technique from being used
to obtain derivatives, as is graphically shown by Ralston
(1965). Such a scheme of approximating dY/dX by AY/AX
at the point of interest results in the loss of significant figures
in both numerator and denominator. Thus even the sign of
the derivative is often incorrect, and the simple difference
technique is completely unsatisfactory.

In numerical differentiation no attempt is made to represent
all the data by a single function of high order. Although this
technique is often satisfactory for integration, it usually leads
to results as erroneous as those from the simple difference
technique. The best estimate of the derivative at a point is
to fit a function to several data points on both sides of the

particular point and then differentiate the resulting function
analytically at that point. The best procedure is to start at
the top of the table of data and move stepwise down, evaluating
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the derivative at each center point by a “movable strip” or

“moving arc” technique (Lanczos, 1956; Sasuly, 1934).
Thus the problem becomes one of deciding on the type of
function to represent the data, its degree if it should be some

type of polynomial, how many points to be included at each

step, how to reduce the error present in the data by “smooth-
ing” before differentiation, and how to estimate the error in the
derivative.

Type of Function

Many types of functions have been introduced into the
literature, but most of them lead to useful approximations
only in particular applications. Common examples are

Fourier functions (for periodic phenomena) and exponential
functions. But for general application, polynomials are the
most useful functions for approximations. In fact, poly-
nomials will usually be satisfactory for numerical differentiation
of both periodic and exponential data.

Polynomial approximations are of three general types:
(1) interpolation approximations, of which Newton’s inter-
polation formulas with divided differences and Lagrangian
functions are two of many examples (Hildebrand, 1956;
Lanczos, 1956; Ralston, 1965); (2) least squares approxi-
mations where the sum of the squares of the differences
between f(X) and its approximation is minimized over a

discrete set of points (Lapidus, 1962); and (3) minimization of
the maximum error approximations (Ralston, 1965). Of
these, the least squares approximations are most useful for
representing and differentiating experimental data (Ralston,
1965).

In least squares analysis the following model is assumed
to represent the data:

f(X) = £  , ,( ) +6 (1)
3=0

where m is the degree of the polynomial, a¡ is the y'th poly-
nomial coefficient, P¡{X) is some as yet unspecified function
of the independent variable X and is of degree j, and e is the
error which is independently distributed at each point (ran-
dom) with mean zero and variance  2. In least squares
analysis all the error is assumed to be in the dependent variable,
/. This simplifies the error analysis.

A discussion of least squares polynomials is often divided
into two sections: simple power functions and orthogonal
polynomials. These are discussed separately here.

Least Squares Power Functions. For this case Equation 1

is simplified into a power series by equating P¡{X) to X1:

f(x> =   +« (2)
3=0

where ß  are the power coefficients. It is easily shown that
minimization of the sum of the squares of the residuals leads
to the following set of simultaneous equations written in matrix
form (Graybill, 1961):

(X 'X) (B) = (X'Y) (3)

where the unknown coefficients ß, of the vector B is thus
the best linear unbiased estimate of ß3) are found by Gauss-
Jordan elimination (Hildebrand, 1963) with a pivot picker
(Orden, 1962) [or some other suitable method] and the
definitions of matrices (X'X) and (X'Y) are:

(X'X)

(X'Y)

> XX, XX,2 . .    ," \
XX, XX,2   7 · ..    +! \
XX,2 XX,3   *4   .....

1 (4)

XX,m xx,™+1   XX,2m /
'2/t \
XX,f. \
XX,2f, (5)

zxrfi /
The computational problems in finding the least squares

coefficients (vector 6) and the reasons for them have been
discussed at length (Bright and Dawkins, 1965; Lapidus,
1962; Orden, 1962; Ralston, 1965). The rule of thumb
usually quoted (Bright and Dawkins, 1965; Lapidus, 1962)
is that serious problems arise from roundoff error for m > 6.
The authors’ experience is that computational problems can

start at m > 3, if the data have little error and all numbers
are rounded off after eight digits at every stage of the calcula-
tion.

Fable I shows the least square coefficients for a cubic fit of
water density vs. temperature (“Handbook of Chemistry and
Physics,” 1955) as calculated in single precision arithmetic
on an IBM 1620 Model II (8 digits) and in double precision
after scaling / by subtracting the average of the /’s (to four
digits). There were 21 points in this set of data between 20°
and 40° C., with the independent variable ranging from 20.00
to 40.00 and the dependent variable from 0.99262 to 0.99823.
A Gauss-Jordan subroutine with a pivot picker was used to
solve the simultaneous equations. The results in Table I
show that roundoff error can reduce single precision coefficients
(word length of 8) to meaningless digits if the data are suffi-
ciently precise. [As e becomes smaller in Equation 2, the
roundoff error becomes more serious, because the determinant
of (X'X) approaches zero.]

To be conservative as to the number of digits needed in the
computation to remove the possibility of roundoff error, a

criterion of the largest number of significant digits in the in-
dependent variable times 2m — 1 is proposed, since this is the
number of digits in the largest element of (X'X)—i.e., XX,2m.
However, for any given set of data a little experimentation
with the highest degree polynomial to be selected, using a

variety of word lengths in the calculation, will show exactly
how many digits are needed.

Orthogonal Least Squares Polynomials. The definition
of a set of orthogonal polynomials Q,(X) is:

  Qj(Xi)Q*(Xi) = 0 if/ pi k (6)
1=1

Table I. Least Squares Cubic Coefficients for Density of Water vs. Temperature

Word Standard
Length Scaling & "CL; X 3 ß  X 705 ß> X 70’ Deviation, *5’

8 No 0.99282590 79.162407 -3.2574219 3.1187873 0.00005054
16 Yes 1.00025036 1.42258121 -0.61528822 0.19782108 0.00000239
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The restriction of Equation 6 can be applied to the model of
Equation 1 and the result expressed as:

f(X) =   7/2X*) + * (7)
3=0

where y¡ become the least squares orthogonal coefficients.
Perhaps the easiest set of orthogonal polynomials for use on a

digital computer is that proposed by Forsythe (1957), which is
defined as:

Q-i (Z) = o

Qo(z) = i

Qi(Z) = (Z - ai)Qo(Z)

Qi(X) = (Z - a2)<21(Z) - ¿nQoíZ) (8)

Qa(Z) = (Z - a3)Q2(Z) - ¿,2Qi(Z)

Qi(X) = (X - aj)Qj-i(X) - 6y-iQ,-2(Z)

where a¡, b¡, and y ¡ (the best linear unbiased estimate of 7,·)
are calculated from:

a, =   XilQ.3-i(Xi)Wi: IQj-ÁXi)]2 (9)
i=l ¿=1

b) =   [<2riXt)]V¿ [<2,-t(^,')]2 (10)
 =1 i=l

7,· =   / (2,·(^)/  mxd}2 (11)
1=1 ¿=1

spaced data points to be represented by least squares orthog-
onal polynomials, a change in variables from Z to 1 where
s is given by:

i = L + s

and

(12)

(13)

lets r go from —L, —L + 1, . . ., 0, . . ., L — 1, L as 2 goes
from 0 to  '. Since a dummy variable with integer values
has replaced Z, the least squares orthogonal polynomial
becomes (Ralston, 1965):

/  =   7J QA 2L) + e (14)
= 0

where

Qo = 1

<2i = s/L

Q2 - — —~
L(2L - 1)

Qj(s, 2L) =   (-D*+i
k = 0

(j + k)'^
(k'y

(L + i)<*)
[2L]m

(15)

with the factorial functions (j + k)<2t>, (L + t)<*>, and [2Z.]<*>
defined according to the following example of Z<*>:

z<‘) = Z(Z - 1)(Z - 2)(Z - 3) ... (Z - k + 1) (16)

It is obvious from Equations 8 through 11 that the result of
the orthogonalization is to eliminate the need to solve a linear
system of equations by reduction. Instead the solution has
become trivial, in that successive substitution yields all the
unknown coefficients. Thus the higher coefficients are cal-
culated without changing the values of the lower coefficients,
in contrast to the ß} of the power function least squares which
are changed when the degree of the polynomial in the model is
increased. Least squares orthogonal polynomials have been
treated in depth elsewhere (Bright and Dawkins, 1965; For-
sythe, 1957; Hildebrand, 1956; Lanczos, 1956; Lapidus,
1962; Ralston, 1965; Sasuly, 1934). But it should be
emphasized that the least squares orthogonal polynomials,
when fitted to a particular set of data, will yield the same

coefficients in Equation 2 as the solution to Equation 3,
when all the constants in Equation 7 have been evaluated and
factored into coefficients of simple powers of Z. This is

natural, since the sum of the squares of the differences between

f(X) and its approximation   yjQj(X) [hereaftercalled T(Z)]
3=0

was minimized in the derivation, and only one equation of
degree m will fit a given set of data in the least squares sense.

The principal advantages of orthogonal polynomials in
numerical differentiation are for data equally spaced in the
independent variable. [The case of data equally spaced in f(X)
can also be handled.] For unevenly spaced data, computa-
tion is as long for the low order orthogonal polynomials as for
the power function least squares (Bright and Dawkins, 1965),
and in computing centers where library routines are available
for the Gauss-Jordan reduction the programming of orthog-
onal polynomials is somewhat more tedious.

If we agree to the restriction of an odd number, Z', of equally

and

Z<°) = 1 (17)

etc., and:

í,- ¿ /.g,(,,2£)/(2t+<+1)!(2Í-;)! (18)
,.-L / (2, + 1)[(2£)!]·

To reconvert Equation 14 into terms of Z, the substitution:

X - X,
- L (19)

where X0 is the value of Z at i = 0 and h is  ;_µ — Z,, yields
the desired equation.

As can be seen from Equations 14 through 18, much of the
computation involved is done only once after the number of
points and the degree of fit have been chosen. For example,
the third-degree seven-point formula for Y evaluated at r = 0 is

Yo — — (~2/_3 + 3/_2 + 6/_i + 7/0 + 6/1 + 3/2 — 2/3)

(20)

The computing time to find Ya in Equation 20 is several orders
of magnitude less than to find Y0 by calculating (X'X) and
(X'Y) from Equations 4 and 5, then B in Equation 3, and
lastly the generated function, Y, from Equation 2. The final
formulas for the derivative of Equation 14 are equally simple.

Smoothing

Practically all experimental data require smoothing before
differentiation is performed. Smoothing (Hildebrand, 1956;
Lanczos, 1956; Ralston, 1965) consists of passing a least
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squares polynomial through the data points in order to deter-
mine a¡ and the constants in P¡{X) and then replacing /¡
with the generated function  {  ) as calculated from

  “AW
5=0

As discussed for the general case in numerical differentiation,
the best method is to select a small, odd number of points,
evaluate Y at the center, and proceed using the “movable
strip” technique. At the top and bottom of the table it will be

necessary to calculate the points between the center and the
extremity from off-center formulas (Hildebrand, 1956).
Hildebrand (1956) points out that the amount of smoothing
increases with the number of points in the movable strip and
decreases with increasing m, the degree of the polynomial.

Each set of data must be judged as to the proper TV' and m,
and so generalization is difficult. However, selection of  '
and m is not so critical in smoothing as in the actual differen-
tiation, because the number of times that smoothing is applied
is also controlled. The authors have had good results with
m = 3 and  ' = 5 or  ' = 7 formulas. Often no significant
improvement is found after smoothing has been applied more

than four times. However, the smoothing has to be ter-
minated at the stage where the random error is eliminated
and yet the basic shape and character of the data have been
unaltered.

Selection of Degree of Fit in Numerical Differentiation

It is advantageous to perform numerical differentiation
with m as low as possible, because as m approaches N — 1,
the least squares polynomial approximates the data points
more closely at the expense of increasing the variations in the
derivative. When m = N — 1, the polynomial fits the data
exactly (passes through each point) and may have as many as

N — 2 points at which the slope changes sign. Hence its
derivative often fluctuates widely and in general is a poor
representation of the slope of the points.

A second-degree least squares polynomial will give excellent
results on almost all sets of data, unless the points are unusually
far apart or sparse. However, a statistical test can be made
if there is reason to suspect that a higher degree would produce
better results. If e in Equation 1 can be assumed to be dis-
tributed normally as well as independently with mean zero

and variance  2, an analysis of variance (AOV) can be per-
formed to test the hypothesis am+1 = 0, given two sets of least
squares polynomials of degree m and m + 1 (Graybill, 1961),
and thereby determine if the polynomial of degree m ade-
quately represents the data.

Since the AOV requires that both the m + 1 degree series of
least squares coefficients and the m degree series of coefficients
be determined in order to test the hypothesis am+i = 0, the
m degree coefficients will be called   ,   , . . .,  „ and the m +
1 coefficients   ,   , . . .,   +1· The first step is to find the
least squares coefficients in the following equations:

Y =   (21)
5=0

m-h 1

  =   *iX¡ (22)
5=0

The equations for the AOV are:

Fm+1 = (23)
Am+l

where Fm+i is the ratio of the mean sum of squares for   + 
set of coefficients, adjusted for the variation that can be re-

moved by the  , coefficients in Equation 21, Am+i·.

Tm+i = [   /j +      /  +  ·   ?/i+ . . . +
  +1   ^/  ~ [   /, +        +  2  7/,+ . . . +

 »   ,"· ] (24)

to the error in the fit of Equation 22,   + :
Em+i = [2/¡2 -    /i -     ,   -

...
-

4'm+   ^ /[  - m - 2] (25)

If Fm+1 is less than the value of the central F statistic with 1

degree of freedom in the numerator and (N — m — 2) degrees
in the denominator at the desired confidence level (p = 0.05
is convenient), the data are adequately represented by Equa-
tion 21, since the am+1—i.e.,  , +1—coefficient makes no

significant improvement in the fit.
The AOV to test the hypothesis am+1 = 0 frequently must be

interpreted carefully, because sometimes e is not normally
distributed. For example, data taken on electrical instru-
ments throughout several ranges, each range differing as a

result of different size resistors in series at the time of the
measurements, will not always have a common normal dis-
tribution. Often best results will be obtained by assuming
“m+i = 0 if Fm+1 is reasonably close to the F statistic, even

when the F statistic is determined at p = 0.05 or p = 0.01.
Some statisticians recommend that if am+1 is found not to be

significant, am+i be checked also, just in case the true function
of the data were odd or even. However, this is usually un-

necessary for experimental data.
If the AOV is used to determine the lowest order poly-

nomial to be used in sloping the data, the movable strip tech-
nique will have to be applied in order to see that all portions
are well represented by the degree finally used.

The AOV is even more sensitive to roundoff error in the
computation than the solution of the least squares matrix.
The subtractions in both Equations 24 and 25 are almost
always between nearly equal numbers. After the subtraction,
Equation 23 requires a division. Thus the AOV will require
a careful choice of word length (discussed in conjunction with
the solution of Equation 3).

Selection of Number of Points in Each Strip

There is no known test to assist in the selection of  ', the
number of data points to be included in each strip. The larger
 ', the less the error in any given data point affects the slope
of the curve at that and adjacent points. A three-point
formula is unsatisfactory for experimental data, because a

second-degree polynomial fits all three points exactly. A
seven-point polynomial often gives good results (Zakin et al.,
1966). A five-point formula works well when the data are not
too “bumpy,” whereas a nine-point or higher polynomial may
be required for data with large errors, even after smoothing.

Numerical Differentation of Equally Spaced Data

Smoothing Formulas. Orthogonal polynomials are the
most convenient for evenly spaced data. The most useful

smoothing formulas are the third-degree five-point and the
third-degree seven-point. Table II supplies the coefficients
for smoothing formulas to be used in Equation 26 :

Ys = ^   (     (26)
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Table II. Orthogonal Least Squares Coefficients for Third-
Degree Smoothing Formulas

A-' 5 D C_3 C_2
5 -2 70 69

-1 35 2
0 35 -3
1 35 2

7 -3 42 39 8
-2 42 8 19
-1 42 -4 16

0 21 -2 3

C_ 1 C« C, C2 c3
4 -6 4 -1

27 12 -8 2
12 17 12 -3

-8 12 27 2

-4 -4 1 4 -2
16 6 -4 -7 4
19 12 2 -4 1

6 7 6 3 -2

where the formulas for Fi, F2, and Fs are obtained from sym-
metry by multiplying the subscript of every /< by ( —1); as

shown in Table II for the five-point Y, Y„ is the smoothed
value at the center of the strip (s = 0), etc. The off-center
equations are used only at the beginning and end of the data
table. Equation 20 serves as an example of how to use Table
II to construct the desired equations.

Sloping Formulas. After the data have been smoothed,
 ' and m are selected and the suitable formulas applied.
Table III supplies the coefficients for the more commonly used
sloping formulas to be used in Equation 27:

dYs

dX 0Cifi) (27)

where h is the spacing in X—i.e., Ai+1 — Xt.
The formulas for dYJdX, dY2/dX, etc., are obtained by

multiplying the subscript of every ft by ( — 1) and then
changing the sign of the coefficient of fi, as shown in Table III
for the dYi/dX second-degree, five-point formula.

Additional smoothing and differentiation formulas may be
derived if needed from Equations 14 through 19.

Numerical Differentiation of Data Not Equally Spaced

For data not equally spaced the power function least squares
are recommended for both smoothing and differentiation.
Although the computing time is roughly the same for both the
power function and the orthogonal cases, the power functions
are easier to program. Furthermore, only a trivial change in
the program is required to change  ' and a few extra state-
ments are required to change m in the power function case,
whereas the orthogonal sets require more programming in
addition to calculating the new polynomials from Equations 8

through 11.

The second-degree normal equations from Equations 3 to 5

are:

(N   {
I XXt   ?
\  ?    

/do'

    If
\d2,

ZXifi (28)
¿XfíiJ

and so on.

For smoothing, coefficients j3y are found as in the least

squares power functions, and Y(X{) are calculated from^ 0jX/
y = o

for the center or off-center points, as the case may be. For
differentiation, Equation 28 is solved as above and the estimated
derivative dY(Xf)/dX is calculated from the derivative of
Y(Xi):

dY{Xt)
dX

=   0) W"1
> = i

(29)

Estimate of Error in Slope
A convenient estimate of the error in the slope as calculated

by the above methods is provided by a confidence set on the

slope.
Two-sided confidence limits are defined as ± ( /2. N —

m — 1)5, where t(p/2, N — m — 1) has the Student’s distribu-
tion with N — m — 1 degrees of freedom and 5 is defined in
Equation 32. If e is distributed normally and independently
with mean zero and variance  2, the probability that the true

value of the slope, dYT{Xf)/dX, lies in the interval:

dY(Xt)
dX t(p/2,  7 — m — 1)5 < dYÁXd

dX

t(p/2, X

^ dY(Xt)
- dX

- m - 1)5 (30)

is 1 — p. This statement is properly interpreted as follows:
If points X{ are measured repeatedly in proper statistical
replications, slopes dY{Xf) /dX are expected to be in the con-

fidence interval expressed by Equation 30 in the fraction of
experiments equal to 1 — p.

The estimation of the confidence interval of a slope dY{Xf)/
dX is really a special case for finding confidence intervals of any
linear combination of ß  and is treated in the general case

elsewhere (Graybill, 1961). First the following vector is

defined:

g(X)
l
3A2 (31)

.mX™-1/

Table III. Orthogonal Least Squares Coefficients for Sloping Formulas
5 D C_ 4 C_ 3 C_2 C_1 C0 Cl C2 c3 C4

-2 70 -54 13 40 27 -26
-1 70 -34 3 20 17 -6

0 10 -2 -1 0 1 2
1 70 6 -17 -20 -3 34

-3 84 — 39 -6 15 24 21 6 -21
-2 84 — 29 -6 9 16 15 6 -11
-1 84 -19 -6 3 8 9 6 -1

0 28 -3 -2 -1 0 1 2 3

-4 4620 — 1428 -511 166 603 800 757 474 -49 -812
-3 4620 —1148 -441 86 433 600 587 394 21 -532
-2 4620 -868 -371 6 263 400 417 314 91 -252
-1 4620 -588 -301 -74 93 200 247 234 161 28

0 60 -4 -3 -2 -1 0 1 2 3 4
-3 252 -446 311 374 72 -266 -311 266
-2 252 -206 101 146 48 -74 -101 86
-1 252 -50 -25 2 24 34 25 -10

0 252 22 -67 -58 0 58 67 -22

7
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where g(X) is the vector representing dY/dX. Then the con-

fidence interval on dY/dX for any X is:

^ - t(p/2, N-m - 1) vVW(X'X)-1 g(X)  2 <
dX

^ ^ + < (p/2,    - m - 1) \/g'W(X'X)-1 g(X)d2
(2 A dX

(32)

where g'(X) is the transpose of g(X), (X'X)-1 the inverse of
the matrix (X'X) in Equation 4 and d2 is given by:

_
OCY) - (fi)(X'Y)

V - m - 1

with
(Y'Y) = 2/<2 (34)

and (É) and (X'Y) defined in Equation 3.

The confidence interval calculation in the case of the slope
at center point of an orthogonal polynomial with equal X
spacing is considerably shortened because g(X) simplifies to:

0
1

0

g(X) =
°

(35)

The smoothed values were then resmoothed, and so on,
with the results shown in Table IV.

A second-degree seven-point orthogonal polynomial (Table
III and Equation 28) was used to differentiate the data. An
example calculation is shown for the case of no smoothing
and X = 0.5:

dY
dX (X = 0.5) = --- [(3)(0.935 - 0.610) +

(28) (0.1)
1 '

(2)(0.880 - 0.663) + (0.875 - 0.717)] = 0.560

The 16 points in Table IV were chosen from the middle
of a data set of 125 points in order to illustrate the advantages
of smoothing data before differentiation. The 16 points are
in a region of relatively constant slope, yet at point X = 0.6
there is a glaring inconsistency in the data for which the
scientists who took the data had no positive explanation.
The inconsistent point affects 2 ' — 1 (or in this case 13)
slopes in the moving strip technique. The resultant dis-
continuity in slopes for the no smoothing case (NS = 0) is

clearly shown in Figure 1, whereas a much better estimate of
the slope is obtained after four smoothings (NS = 4).

Table IV also includes values of Y after 20 smoothings.
The important thing to note is that little change occurred
between four and 20 smoothings. After four smoothings the
“noise” in the data was reduced to a very reasonable level and
little benefit was gained from further smoothings.

0

Example. Table IV presents a set of experimentally deter-
mined length-temperature measurements (coded to save space)
and typical results of smoothing and differentiating according
to the techniques described previously. For the smoothing
operations a third-degree seven-point orthogonal polynomial
from Table II and Equation 26 was chosen:

Y smoothed (X = 0.1) = ~ [(39) (0.551) + (8) (0.610) -

(4) (0.663 + 0.717 - 0.875) + (1) (0.776) - (2) (0.880)] =

0.556

Y smoothed (X = 0.5) = 1 [(—2)(0.610 + 0.935) +

(3) (0.663 + 0.880) + (6) (0.717 + 0.875) + (7) (0.776)] =

0.787

Method for Sloping Data with Nonrandom Errors and
for Improving the Estimate of Transitions

In considering nonrandom errors in experimental data, no

general statement can be made because each case must be
scrutinized individually. The effects on sloping of some

nonrandom errors can be at least minimized by a technique
called “breaking.”

Sometimes data taken on electric instruments are subject
to unavoidable jumps or shifts. An example is length-tem-
perature measurement on polymer samples (Zakin et a!.,
1966). Differentiation of length-temperature data yields the
location and magnitude of glassy transitions. One bad point
affects 2N — 1 slopes to a varying extent in the movable strip
technique, although smoothing can handle the case of only one

bad point, as shown in Figure 1. But if the instrument zero

shifts (or if some other occurrence produces a similar dis-

continuity), smoothing will not significantly improve the
estimate.

Table IV. Example Results0

X Y(NS = 0) rfM? = 7) Y(NS = 4) Y(NS = 20) gc.ra - m
cu

sx

II

0.1 0.551 0.556 0.555 0.553 0.604 0.561
0.2 0.610 0.600 0.603 0.606 0.596 0.565
0.3 0.663 0.659 0.660 0.661 0.589 0.570
0.4 0.717 0.726 0.722 0.718 0.582 0.574
0.5 0.776 0.787 0.783 0.775 0.560 0.571
0.6 0.875 0.844 0.840 0.832 0.540 0.554
0.7 0.880 0.894 0.892 0.888 0.527 0.537
0.8 0.935 0.940 0.942 0.943 0.520 0.530
0.9 0.987 0.985 0.994 0.997 0.519 0.534
1.0 1.048 1.050 1.048 1.051 0.565 0.541
1.1 1.110 1.107 1.105 1.105 0.561 0.548
1.2 1.168 1.163 1.160 1.159 0.557 0.551
1.3 1.211 1.217 1.215 1.214 0.548 0.554
1.4 1.269 1.268 1.269 1.269 0.547 0.556
1.5 1.326 1.323 1.324 1.325 0.546 0.557
1.6 1.382 1.383 1.383 1.383 0.545 0.559

0 NS refers to number of smoothings.
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Figure 2 shows some length-temperature data for a mixture
of 52% polypropylene and 48% polyethylene measured with a

linear voltage differential transformer (LVDT) (Zakin et al.,
1966). At about —137° C. there is an unexplained shift in
the LVDT output voltage. Figure 3 compares expansion
coefficients (1/L„) dL/dT calculated from these data by smooth-
ing four times, using Equation 26 and Table II with  ' = 7

and differentiating using Equation 28 and Table III with  ' =

7 and m — 2, with those obtained by “breaking” the data at
— 137° C., smoothing four times, and differentiating (using
the same equations). The “break” consists of terminating the
moving strip on one side of the discontinuity and starting the
strip again on the other side. There is considerable improve-
ment when the break is used as can be seen in Figure 3: The

discontinuity is not breached by any smoothing or sloping
polynomial, and the smoothing formulas tend to straighten
out the points near the discontinuity, so that the slopes form
a smooth curve, despite the discontinuity.

A break in the smoothing and sloping process can also assist
in the location of a minor transition and estimation of the
magnitude of a major transition. Figure 4 shows length-
temperature measurements for a polyurethane sample. Figure
5 shows the results of smoothing four times and sloping with
breaks at —137°, —60°, and —39° C. Using a graphical
method in Figure 4, the transition at the lowest temperature
appears to occur at —132° C. However, the numerical
differentiation techniques with a break show that —137° C.
is the better value. Breaking at the higher temperatures

Figure 1. Effect of smoothing on slopes of data in Table IV

 -
 

.j

Figure 2. LVDT output vs. temperature data for mixture of 52% polypropylene
and 48% polyethylene

| BREAK POINT

rh 0 NO BREAK
xBREAK AT -137*0
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Figure 3. Effect of breaking on differentiation with smoothing on linear expan-
sion coefficient as a function of temperature for data of Figure 2
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Figure 4. Graphical method for determining transition temperatures on LVDT output vs.
temperature data for a polyurethane

Figure 5. Differentiation with smoothing and breaks for determining transition temperatures
from data of Figure 4

prevented the smoothing from “smearing out” the major
transition and permitted a better estimate of the change in the
magnitude of the expansion coefficient.

Care must be taken to ensure a break at the proper location.
The authors’ experience has been that if the wrong point were

chosen initially it was obvious from the resulting plot.
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Nomenclature

a¡ = defined by Equation 9

Am+1 = defined by Equation 24
AOV = analysis of variance
(6) = N X 1 matrix containing (ij
bj = defined by Equation 10
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C = constant in Equation 26 or 27
D = constant in Equation 26 or 27
Em+i = variance, defined by Equation 25
F = central F statistic
Fm+i = defined by Equation 23
/, /(-Y), /„ /,· = dependent variable
g(X) = Ar X 1 matrix defined by Equation 31

g'(X) = 1 X N matrix, transpose of g(X)
h = spacing in equal-spaced independent variable,

X + t ~ Xi
i, j, k = summation indices
(k) = factorial notation, defined by Equations 16 and 17
L = defined by Equation 13
m = degree of polynomial
   = number of data points included in polynomial
A" = odd AT

NS = number of smoothings
Pj(X) = least squares polynomial of degree /, general case,

in Equation 1

p = level of significance
Qi = orthogonal least squares polynomial of degree j,

defined for the general case by Equation 8, for
the equal-spaced independent variable case by
Equation 15

s = translated independent variable, of Equation 12
a = ViFIxkx'x)-1 g(x)i2
tip/2, n — m — 1) = Student’s t statistic, at p/2 level of

significance with n — m — 1 degrees
of freedom

X, Xi, X0 = independent variable
(X'X) = N X ;V matrix defined by Equation 4
(X'X)"1 = inverse of (X'X)
(X'Y) = N X 1 matrix, defined by Equation 5

Y = approximation of /, calculated from y ijQjiX)
3=0

in the case of equally spaced data and from

T. 0j X> for nonequally spaced data

(Y'Y) = defined by Equation 34
a3 = jib. coefficient of generalized least squares poly-

nomial model in Equation 1

03 = ;th least squares power function coefficient of
model in Equation 2

03 = best linear unbiased estimate (least squares) of
03, calculated from Equation 3

73 = jth least squares orthogonal coefficient of model
in Equation 7

'pj = best linear unbiased estimate of 73, calculated
from Equation 11 or 18

  = difference, i + 1 point minus i point
t = random error
 2 = variance
 2 = estimated variance, defined by Equation 33
 ; = mth degree least squares coefficients in Equation

22
   = m + 1th degree least squares coefficients in

Equation 21
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DESIGN AND EFFECTIVENESS OF
FEEDFORWARD CONTROL SYSTEMS FOR
MULTICOMPONENT DISTILLATION COLUMNS

T.W.CADMAN
Department of Chemical Engineering, University of Maryland, College Park, Md. 20740

R . R. ROTHFUS AND R . I. KERMODE·
Department of Chemical Engineering, Carnegie Institute of Technology, Pittsburgh, Pa.  52 3

The design and simulation of feedforward and feedback control systems for a five-tray, single-feed dis-
tillation column have been carried out for the multicomponent system benzene-toluene-xylene. For changes
in feed composition, linear feedforward compensation may range from nearly perfect to detrimental, de-
pending on column operating conditions.

#ITHIN the past few decades, the increasing interest in
**   higher product quality, safety of operation, and optimum

economic performance has been the motivation for a revolution
in the theory of process dynamics and control. Unfortunately,

1 Present address, University of Kentucky, Lexington, Ky.
40506

the complexity of chemical and petroleum processing has

severely hampered the parallel development of potential
applications. Such is particularly the case for one of the most
common of the unit operations, multicomponent distillation.
In this paper, emphasis is placed on the evaluation of the
potentials and application of the linear theory of feedforward
and feedback control design to multicomponent distillation.
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