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DAB = binary coefficient of mass diffusion in the mixture 

g = gravity acceleration 
h = height difference between the interfaces mercury- 

L; LHg = length of gas capillary and of mercury tube, 

n = molecular concentration 
NRe = Reynolds number 
P ;  Ptot. = experimental and total pressure of the gas, re- 

spectively 
AP = pressure drop corresponding to height difference, 

h 
q;  q H g  = volumetric flow rate of the gas and of the mer- 

cury, respectively 
r; rHg = radius of gas capillary and of mercury tube, re- 

spectively 
R = gas law constant 
So = area of the interface mercury-gas at  zero inclina- 

tion of the viscometer 
S = area of the interface mercury-gas in the viscometer 

reservoirs during a run 
t;  t’ = time required for displacing the mercury and the 

gas during a run, respectively.7 = t’ when P 2 
50 atm. 

of gases A and B 

gas in the viscometer reservoirs 

respectively 

- 

T = absolute temperature 
Xi  = radial distribution function at distance ui from 

the center of a molecule i having diameter ui 

V = volume between contacts el and e2 in reservoir b 
of the viscometer 

V f Vr = gas volume in reservoir b of the viscometer at 
the beginning of the run 

ViI = gas volume in reservoir a of the viscometer at the 
beginning of the run - - - 

V = molar volume 
Z = compressibility factor of the gas, 2 = PT/RT 
Greek Letters 
co = distance between contacts el and e2 in reservoir b 

7; 7 H g  = viscosity of the gas and of the mercury, respec- 

0 
p; pHg = density of the gas and of the mercury, respec- 

ui = molecular diameter of specie i ( i  = A, B, AB) 
a d ;  a, = generalized collision integrals for mass diffusiv- 

ity and for viscosity of molecular pair AB, respec- 
tively 

at zero inclination of the viscometer 

tively 
= inclination angle of the viscometer 

tively 

6 = parameter, defined by Equations (24),  ( 2 5 ) ,  re- 
lated to the volume change of the gas during its 
displacement through the capillary 

Subscripts 
( ) 1  = for viscosity and for mass diffusivity at P = 1 atm. 
i 
1; 2 = for quantities a t  the beginning and at  the end of 

eff = for effective displaced volume of gas through the 

= for component i ( i  = A, B, AB) 

a run, respectively 

capillary 
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Comparison of Lagrangian Time Correlations Obtained from Dispersion 

Experiments and from Space-Time Correlation Functions 

J. M. RODRIGUEZ and G. K. PATTERSON 
University of Missouri-Rolla, Rolla, Missouri 

The relation between Lagrangian and Eulerian statistics 
for turbulent flow has been approached only through ap- 
proximations or models of the actual motion. Some of these 
approaches have been motivated by a purely theoretical 

interest in the problem (1 to 5 )  and others by need to 
justify the interpretation of an experimental measurement 
(6  to 10).  Altogether, little progress has been made in this 
endeavor despite its importance in the research on tur- 
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bulent dispersion, mixing, and theoretical models for tur- 
bulence. 

The most direct technique for gaining information about 
a turbulent field in the Lagrangian sense is the measure- 
ment of dispersion rate of an injected material or of heated 
fluid into a turbulent stream. This was done by Baldwin 
and Walsh (6) in a pipe where they heated the flowing 
air with a wire and measured temperature profiles down- 
stream. They calculated Lagrangian time correlation func- 
tions using such data by applying the Taylor theory of 
continuous movements (1 1 ) . Results of this type have also 
been obtained by Uberoi and Corrsin ( 8 ) ,  Mickelsen (9), 
and Hay and Pasquill (10). 

Since this measurement is based on the spreading rate 
of material (a rate of dispersion in the lateral direction) 
the Lagrangian time correlation obtained applies only to 
that direction unless the turbulence is isotropic. Lagrangian 
correlations applying to the longitudinal direction could 
probably be derived by measuring the longitudinal spread 
of a pulse of material as it moved downstream, in a way 
very similar to the time response studies in process dynam- 
ics. Such attempts are not known to the authors. 

Baldwin and Walsh attempted to relate their Lagrangian 
time correlations derived from lateral diffusion measure- 
ments to Eulerian space-time correlations measured with 
hot-wire anemometers. Their space-time correlations in- 
volved correlations over a range of time delays at several 
longitudinal probe separations. They showed that with the 
following approximations the locus of their space-time 
correlation maxima corresponds to a Lagrangian time cor- 
relation function. 

1. terms higher than second order in a series expansion 
are negligible. 

2. the turbulence is homogeneous in the longitudinal 
direction. 

3. the turbulence is stationary. 
4. Burger’s approximation of the Lagrangian time de- 

rivative is applicable [ ( d u / d t )  = ( & / a t )  + U (  du/ay)  1. 
5. and u’La = u’Eu 

They compared experimental results from the diffusion 
experiments and from the longitudinal space-time correla- 
tions even though the former experiment yields correlations 

1 a2u 5 )  _ -  a2R(t;, T’) 1 a 2 u ( 0 ) u ( t ; )  1 
- -_u(O)  - _ -  - ac2 u2 a52 c = o  u2 ac2 

0.4 

5=0 

Favre? et. a l .  Data 
y ,mm g”,mm 

I 50.8 
0 I 25.4 
A 4  5 0.8 
A 4  25.4 

-Baldwin & Walsh 
Dispersion Data 

,,,Baldwin & Walsh Long. 
Space-Time Corr. 

0 

a y., \ 

I T”, 
O.* t 

based on lateral dispersion and in the latter all the informa- 
tion is in the longitudinal direction. With complete isotropy 
this may have been a valid comparison, but the pipe flow 
conditions involved do not yield isotropy. As shown by 
Figure 1 the function shapes and magnitudes for the two 
approaches are significantly different. 

Corrsin ( 3 )  and Phillip ( 5 )  developed relations be- 
tween the Lagrangian time correlation RL(T’) and the 
space-time correlation R ( ( , y ,  r ’ ) ,  where y is the longi- 
tudinal separation in turbulence with no mean velocity 
and t; is the lateral separation. The form used by Phillip is 

where @( 5, y, T’)  is the probability of a particle released at 
(0, 0, 0)  being at ( t ; , ~ ,  T ’ )  . To test the relation Phillip as- 
sumed a Gaussian distribution for 8 ( [ ,  y, T’)  and used a 
model equation for R ( 5 ,  y, r ’) having good integral proper- 
ties. With known probability density distributions and a 
space-time correlation map of isotropic turbulence this 
relation could be tested by numerical integration then 
comparison with an RL ( T ’ )  derived from dispersion mea- 
surements in the same isotropic turbulence. For a turbulent 
field with a mean flow, y must be expressed as ( yu - Ur’) , 
as shown by Phillip. 

With the absence of such data, an attempt was made to 
develop a good approximation to the Lagrangian time cor- 
relation using only space-time correlation data. I t  is the 
purpose of the following argument to show that space-time 
correlations with lateral as well as longitudinal probe sep- 
arations are necessary for derivation of a function compa- 
rable to the Lagrangian time correlation derived from dis- 
persion results. The development is similar to that used 
by Baldwin and Walsh for the longitudinal space-time 
correlation. 

Let R (  5, yu, T ~ )  = R ( 5 , ~ ’ ;  yu, T )  , the space-time cor- 
relation function where 5 is the lateral separation distance 
and r’ is the difference between rT, the optimum delay 
time at ( 5 ,  y u ) ,  and T,  the optimum delay time at (0, yu )  , 
and yv is the longitudinal separation distance with a mean 
velocity U.  Assume at large values of yu and small values 
of 5 that R(5,  r’) and R ( y u ,  T )  are independent, where 
R (  5, T’) at any large value of yv is R (  5, r’; yu, r )  / R  (yu, T)  . 
Then: 

(3)  
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2 au au ’a 

R ( ~ , T ’ )  - 1 - 2  - [ V2( %) + 2V- - + (SY] 
2u2 85 87’ 

Let (du/d~’) FJ (du/d~’) + V ( d u / d < ) ,  a form of the 
Burgers approximation to the Lagrangian derivative. Then: 

The Lagrangian correlation may be expanded for the 
lateral direction as follows: 

u ( 0  ) u ( T ’ )  assuming symmetry in time. Since RL(T’) = 
242 

, 
where u(0) and u(T‘) are the velocities of the same fluid 

S O :  RL(T’) - R(5, T’ )  = R ( 5 ,  yu, TT)/R(O,  yu, T), where 

The applicability of this result was tested in a crude 
fashion by making use of the data of Favre, Gaviglio, and 
Dumas (12). They made space-time correlations for both 
longitudinal and lateral probe separations in a boundary 
layer using several stationar -probe distances from the 

Probe positions are summarized in the following table 
where y‘ is the separation of the stationary probe from the 
wall, 6 is the boundary layer thickness, yv is the longitudi- 
nal probe separation, and 5‘ is the lateral probe separation: 

TT = 7’ + 7. 

wall. For these comparisons Y our sets of data were used. 

y’, mm. 6, mm. yv, mm. [’, mm. 
1.0 16.8 25.4 -0.2 to -1.8 
1.0 16.8 50.8 $0.5 to -2.0 
4.0 16.8 25.4 +3.3 to -2.0 
4.0 16.8 50.8 +2.5 to -1.5 

(+ distances are 
toward the wall) 

U was 12.00 m./sec. in the free stream. 
Since convection of velocity eddies (as shown by the 

loci of maxima in the space-time correlations) was not 
perfectly longitudinal, but tended away from the wall, the 
value for R((’ ,  7 , O )  with which to normalize the derived 
Lagrangian correlation was taken as the maximum value 
of the set of correlation values at their optimum delay 
times for each longitudinal separation distance. The value 
of 5 was assumed zero at that point, even though 5‘ would 

have some value. T’ was calculated by subtracting the opti- 
mum delay time for the R(”, T ,  0 )  value from the opti- 
mum delay time for each of the other correlation values. 
In order to allow comparison with data from other sources, 
the delay times T’ were then normalized to obtain: 

Figure 1 shows the results of that procedure. The points 
calculated from the Favre, et al. data are compared with 
the result derived from lateral dispersion (indicated by a 
solid line) obtained by Baldwin and Walsh. Considering the 
diversity of the data sources and the difficulty of using the 
Favre, et al. data outside their intended purpose, the com- 
parison shows good agreement both in the shape of the 
functions and their magnitudes at various time delays. 
The dotted line shows the longitudinal space-time correla- 
tion maxima of Baldwin and Walsh. 

This has been only a crude test, so space-time correla- 
tion and dispersion data specifically intended for such 
comparisons as these should be obtained in order to more 
fully test the relationship proposed here and the relation 
of Corrsin ( 3 )  and Phillip ( 5 ) .  This paper was written 
to encourage more experimental work in this area. 

NOTATION 

R (  5, T ’ )  = lateral Eulerian space-time correlation function 
R (yo,  T )  = longitudinal Eulerian space-time correlation 

R ( 5 ,  y, T’ )  = Eulerian space-time correlation function 
RL ( 7 ’ )  = Lagrangian correlation function for time delay T’ 

t = time 
u = longitudinal fluctuating velocity 
U = time mean longitudinal velocity 
u’ = root-mean-square longitudinal fluctuating velocity 
V = lateral velocity scale 
y’ = lateral distance from wall 

function 

Greek Letters 
5 = boundary layer thickness 
y 
yu 

= longitudinal separation distance with no mean flow 
= longitudinal separation distance with mean veloc- 

itv U 
S = llteral separation distance 
e(  5, 7,~’)  = probability that a particle released at (0 ,  0, 0) 

T 

T’ 

T~ 
T* 

is at ( 5 ,  Y, 7’)  

= optimum delay time at (0, y u )  
= Lagrangian correlation delay time 
= optimum delay time at ( 5 ,  yv) 
= normalized value of T’ 
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