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Mass Transfer Inside Liquid Droplets and 
Gas Bubbles Accompanied by a 
Second-Order Chemical Reaction 

Y > 

Y sinh Y cosh Y 

+- 
6 tanh Y , 

R. J. BRUNSON and R. M. WELLEK 
Department of Chemical Engineering 

University of Missouri-Rolla, Rolla, Missouri 65401 

Mass transfer accompanied by chemical reaction inside 
falling or rising fluid spheres is of interest as a means of 
using the reaction to enhance the rate of mass transfer or 
i is  a means of bringing together two reactants initially in 
mutually insoluble phases. This work considers a second- 
order, irreversible chemical reaction within the dispersed 
phase, which is related by the following stoichiometric 
cquation: 

The a reactant diffuses into the sphere from the continu- 
ous phase, and the b reactant, which is initially within the 
dispersed phase, is insoluble in the continuous phase. In 
order to focus attention on mass transfer and chemical re- 
action withiii the dispersed phase, it is assumed that there 
is no resistance to mass transfer in the continuous phase. 

The most useful quantitative means of presenting re- 
sults for mass transfer with chemical reaction is through 
the use of the variable, the total mass transferred x,,,t, 
which is defined as follows: 

( 2 )  
Previous investigators (9, 10, 12, 13) have presented 

a + z b 4 products (1) 

- 
A,,,t = (Fa + C a r ) / C a s  

their results in terms of an enhancement factor 4. 
- 

( 3 )  
Amt (for k R  # 0) 

Amt (for k R  1 0) 
d = -  

The results of these investigators are presented in the 
next section. 

EXISTING MODELS 

It was possible in this work to adapt certain existing 
theories to the problem of mass transfer with chemical 
reaction inside fluid spheres, even though the existing 
theories are based on much simpler physical models. The 
existing models are based on the following simultaneous, 
differential solute balance equations: 

and the boundary conditions 

Correspondence concerning this article should be addresscd to Prof. 
H. M. Wellek. 

W [l - f (0 .85dW2Rc + W ) ]  
4 = 1 +  (8) Rc W + exp (-0.35 WR,) 

where the function f is defined by 
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The total mass transferred xmt can be found from either 
Equation (6)  or (8) by the following relation: 

Both the film theory and the penetration theory assume 
that the b reactant is always present at some distance H 
away from the interface. This is not true at large contact 
times inside a sphere surrounded by a continuous phase. 
Thus it becomes necessary to use a physical model which 
can account for the complete depletion of the b reactant. 
The development of such a model is given in the next 
section. 

THEORETICAL DEVELOPMENT 

Johns and Beckmann (8) recently presented a solution 
for unsteady state mass transfer without chemical reaction 
inside a circulating fluid sphere using the equation of 
continuity and the Hadamard ( 6 )  stream functions. The 
assumptions introduced in their development which are 
used in this work are summarized as follows: 

All solutions are dilute so that the flow and diffusion 
equations are uncoupled. 
The dispersed phase is a viscous sphere in linear or 
creeping motion. 
The continuous phase resistance to solute diffusion is 
negligible. 

In addition, we assume in this work that the heat of re- 
action is low enough so that heat effects do not cause 
variations in any of the physical properties of the solutions. 

The velocity components which follow from the Hada- 
mard derivation are 

( 1  - ~ 2 )  case (12) vt Pc v,= -- - 
2 Pc + P d  

( 1  - 2R2) sin e (13) 
vg=-- vt Ilc 

2 Pc -k Pd 

The streamlines are shown in Figure 1. Strictly speaking, 
Equations (12) and (13) are valid only for Reynolds 
numbers less than 1; however, Horton, Fritsch, and Kint- 
ner ( 7 )  measured velocity profiles within liquid droplets 
and found that their results compared favorably with the 
Hadamard theory relations for Reynolds numbers as high 
as 19. There is evidence that the Hadamard velocity pro- 
file is valid at least qualitatively for much higher Reynolds 
numbers for liquid droplets (14). 

Substituting the expressions for the velocity components 
into the equations of continuity for components a and b 
inside the dispersed phase and introducing certain dimen- 
sionless terms, one obtains the following relations describ- 
ing dispersed phase mass transfer with a second-order 
chemical reaction: 

-=- +--+-- +-- aA a2A 2 aA 1 a2A cote aA 
ar a~ R aR ~2 ae2 ~2 ae 

aA + Npe [ (1  - R2) cose- 
aR 

(1  - 2R2) - sin e * ] - k R  AB (14a) 
R ae 

and 

+-- cote aB I aB a2B 2 aB 1 a2B 
-=I&,[ aT -+-- aR2 R a~ +-- RZ aez RZ as 
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Fig. 1. Hadamard streamlines. 

(1  - 2R2) - sin 0 - aB ] - a, k R A B  (15a) 
R ae 

with the boundary conditions 

A(0, R, 0) = 0 (14b) B(O, R, 0) = 1 (15b) 

dA a B  
ae ae 

- ( r ,R ,O)  = O  (14e) - (r ,R,O) = O  (15e) 

where the dimensionless terms are 

A = Ca/Ca, 

B = C b / C b o  

R = r /a  
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Equations (14)  and (15) were solved by an explicit 
finite-difference method. Employing the DuFort and 
Frankel (5) substitution, we obtain the following for the 
a component: 

(16) 

and for component b: 

At the center of the dispersed phase all angular de- 
pendence of concentration vanishes. By using L’Hospital’s 
method to find the limit of terms which become indeter- 
minant in the differential equation and then making the 
finite-difference substitutions, one obtains the following 
finite-difference equations: 

Ao,,,k t 1 11 + 6s It k~ATBo,j,kl 
= &,j,k-l [ 1 - 6s - k~ABo,j,k] + 12s A1,j.k (20) 

BO,j,k+ I [I ~ R D S  R&RATAO,~.~I 

= BO,j,k-I [ 1 - 6&S - Rck~A~Ao,j,k] ERDS Bl,j,k 
(21) 

Again applying L’Hospital’s rule and the boundary con- 
ditions (14e), ( 14f), (15e), and (l5f) to Equations 
(14a) and (15a), one obtains the following finite-differ- 
ence equations at the angular boundaries: 

El3 i, j, k+l 

i-l,j, k 

i,j+l,k 

i + l , j , k  

T =  (k+I)A.-C 

2= k AT 

7=  ( k - I )  AT 

Fig. 2. Calculation scheme for the numerical solution of the partial 
differential equations. 
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TABLE 1. THE DEPENDENT VAFUABLES STUDIED IN DIMENSIONLESS FORM 

Symbol 

- 
A 

- 
B 

N 

- 
N 

Variable Method of calculation* 

1 
v o  
1 
v '0 

Volume averaged concentration of a 

Volume averaged concentration of b 

= - rVAdV' 

= - fVBdV' 

Total mass of a transferred 

Flux of a 

Time average flux of a 

Sherwood number 

Time average Sherwood number 

6J Enhancement factor 

3 
2' 

- - - [ Ndr' 

was in general calculated by the first method indicated. See Appendix A for the derivation of this equation. 

where the top sign in the above equations is for e equal to 
zero ( j  = 0) ,  and the bottom sign is for e equal to ~ ( j  = 
m ) .  The complete details for the development of these 
finite-difference equations are given elsewhere ( 4 ) .  

The calculation scheme for solving the finite-difference 
equations is briefly indicated in Figure 2. The grid points 
indicated by circles were used to calculate the point at a 
future time step. The future time step is indicated by a 
cross. 

For most computer solutions of the finite-difference 
equations, the increments used were AT = 2 ( AR 
= 1/40, and A 0  = ~ / 3 1 .  However, when the reaction 
number exceeded 160, the concentration gradients be- 
came so large that it was necessary to reduce the radial 
increment to 1/80 and the time increment to 10-4, leav- 
ing the angular increment as before. To perform calcula- 
tions for Peclet numbers as high as 500, the angular and 
radial increments were kept as originally stated, and the 
dimensionless time increment was reduced to 2 x 
To check the accuracy of the numerical solution, the in- 
crements  w e r e  r e d u c e d  unti l  further reduct ion  did not af- 
f e c t  the concentra t ion  profile. 

The finite-difference substitutions used to solve Equa- 
t ions (14) and (15) involve the central  difference ap- 

proximation for the time derivative. This is more accurate 
than the forward difference approximation used in most 
explicit finite-difference equations. The use of the central 
difference approximation allowed the use of larger time 
increments than would have been possible with other ex- 
plicit methods. 

DISCUSSION AND RESULTS 

The concentration profiles for reactants a and b depend 
on four dimensionless parameters (kR, RD, R,, and N p e )  
in addition to the dimensionless time, radius, and angle. 
The dependent variables calculated from the concentration 
profiles are shown in Table 1. All eight of the dependent 
variables shown in Table 1 were calculated for the com- 
plete range of dimensionless parameters and for dimen- 
sionless times encountered in both liquid extractions and 
gas absorptions. See Table 2 for the range of parameters 
used. 

TABLE 2a. VALUES OF DEPENDENT VARIABLES STUDIEI) 

(all possible combinations) 

RD 1 
N p e  0 40 100 
Rc 0 0.2 1 00 
kR 0 40 160 640 00 

TABLE 2b. SPECIAL COhIBINATIONS OF VARIABLES STUDIED 

Special 
study 

number 1 2 3 4 5 6 

R D  5 0.2 5 0.2 0 00 

N p e  100 100 0 0 0 0 
RC 0.2 0.2 0.2 0.2 0.2 0.2 
kH 640 640 640 640 640 640 

AlChE Journal (Vol. 17, No. 5 )  Page 1126 September, 1971 
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TABLE 2c. A SPECIAL STUDY OF HIGH PECLET NUMBERS 

R,  = 0.2, k~ = 40, and Npe = 150, For RD = 1, 

Table 1 defines the instantaneous flux of a both in terms 
of the radial derivative of the concentration at the surface 
and a5 the time derivative of the total mass transferred. AS 
an internal check of the accuracy of the program, both 
methods were used to calculate the flux. The deviation be- 
tween the two calculated fluxes did not exceed 2 %. 

The most important dependent variable for use in com- 
paring theoretical results with experimental data or for 
use in designing reactor-contactors is the total mass trans- 
ferred xnt. The total mass transferred is the moles of com- 
ponent a present in the sphere (in the reacted and un- 
reacted states) divided by the product of the volume of 
the sphere and the surface concentration of component a. 
Figures 4 through 7 show representative curves of &,t 
versus dimensionless time for various parametric values. 
Tabular values for xmt and the seven other dependent 
variables given in Table 1 are deposited elsewhere for 
the complete range of independent variables.' 

Figure 3 shows the effect of reaction number on the 
total mass transferred. When the reaction number is zero, 
the solution reduces to mass transfer without reaction as 
presented by Johns and Beckmann (8). This reference 
solution was used as a check for the program written for 
this article. 

For an infinitely fast reaction (kR 4 co) and a diffusiv- 
ity ratio of 1, the expression for the enhancement factor 
developed by Brunson and Wellek ( 3 )  and Toor (20)  ap- 
plies. Thus the total mass transferred to the dispersed 
phase when the reaction is instantaneous is equal to the 
product of the mass transferred without reaction and (1 
+ l / R c ) .  The relation developed by the above authors 
was checked for R, = 5,  RD = 1, kR = 640, and N p e  = 0. 
For dimensionless times larger than the maximum 
deviation between the analytic relation of Brunson and 
Wellek and the numerical solution is less than 1 %. 

Curves for some intermediate values of reaction number 
kR are shown to allow interpolation. The mass flux to the 
sphere is proportional to the slope of the graphical relation 
of total mass transferred versus dimensionless time. Thus, 
from Figure 3 it can be seen that at small dimensionless 
times, the flux increases with increasing reaction number. 
At large times the b reactant inside the dispersed phase 
has been depleted if the reaction is rapid but some b 
reactant is still present for slow reactions. Thus the flux 
for mass transfer with a slow reaction is-larger than the 
flux for mass transfer with a fast reaction; however, the 
total mass transferred at any given time increases with in- 
creasing reaction number. 

Figure 4 shows the dependence of the total mass trans- 
ferred on parametric values of concentration ratio R,. For 
a concentration ratio of zero the b reactant is in such ex- 
cess that the reaction is pseudo first-order. At the other 
extreme when the concentration ratio becomes infinite, 
there is no b reactant present, and the total mass trans- 
ferred can be found from the problem for mass transfer 
with no reaction as originally solved by Johns and Beck- 
mann (8). Each of the curves in Figure 4 for intermediate 
values of the concentration ratio approaches an asymptotic 
value of 1 + WR,. 

*Tabular material has been depnsited as document No. 01456 
with the ASIS National Auxiliary Service, c/o CCM information Sci- 
ences, Inc., 909 Third Ave., New York 10022 and may be obtained 
fnr $2.00 for microfiche or $5.00 for photocopies. 
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kR =O 

0 0.04 0.08 0.12 0.16 0.20 0.24 

DIMENSIONLESS T I M E , T  

Fig. 3. Total mass transferred x13Lt as a function of dimensionless 
time t for parametric values of the reaction number kR. 

I- 
E 
la 
a- 10 
w 
CL 
CL 
W 
k 8  
v) z 
LT c 

U J  

I 
1 4  

i- 
0 
I- 

a 

m 6  
a 

a 

2 

0 

L 

0 0.04 0.08 0.12 0.16 0.20 0.24 

DIMENSIONLESS T I M E , T  

Fig. 4. Total mass transferred Xmt as a function of dimensionless 
time T for parametric values of the Concentration ratio Rc. 
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The dependence of the total mass transferred Xmt on 
the diffusivity ratio RD is indicated in Figure 5. For a 
given value of dimensionless time, the total mass trans- 
ferred increases with increasing diffusivity ratio R D ,  be- 
cause the rate of reaction is fastest if the b reactant is 
mobile enough to maintain a large concentration near the 
surface of the sphere. The two extremes of diffusivity ratio 
equal to zero and approaching infinity may not be of prac- 
tical importance; however they are included in the figure 
to show the complete range of parameters. The solution 
for an infinite diffusivity ratio was obtained numerically 
by setting the concentration of b at each grid point equal 
to the average concentration of b after each time interac- 
lion. 

For a pseudo first-order reaction, the concentration of 
component b remains constant; therefore the effect of the 
diffusivity ratio disappears when the concentration ratio 
becomes zero. The importance of the diffusivity ratio is 
also small for large concentration ratios, because the total 
mass transferred xnzt approaches an asymptotic value 
within the time range studied For a concentration ratio R, 
of unity and a diffusivity ratio RD of unity, the total mass 
transferred is within 1% of its asymptotic value at a di- 
mensionless time T of 0.24. This does not allow a larger 
diffusivity ratio to greatly increase the total mass trans- 
ferred. Thus the effect of the diffusivity ratio is most im- 
portant for concentration ratios R, between 0 and 1. 

The effect of the diffusivity ratio increases with increas- 
ing reaction number. This is due to the fact that as the 
reactants become depleted by a faster reaction, it becomes 
more important how rapidly the reactants diffuse toward 
each other. 

The effect of the diffusivity ratio decreases as the Peclet 
number increases. As the Peclet number increases, transfer 
by bulk flow becomes more important than solute transfer 
by diffusion. For example, when R, = 0.2, kR = 640, and 
NPe = 100, the total mass transferred changes by less than 

I- 
E 
la 
a- 

R, =0.2 

k, = 640 
Np, = O  

Db 
R D = Z  

w 
U 
rY 
W 
LL 
0 
Z 

U 
I- 
v) 
v) 

2 

-1 

0 
I- 

a 

a 

F 

10 - 

- 

8 -  

- 

6 -  

- 

0 0.04 0.08 0.12 0.16 0.20 0.24 

DIMENSIONLESS TIME,T 

Fig. 5. Total mass transferred Trnt as a function of dimensionless 
time T for parametric values of the diffusivity ratio RD. 
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one part in four thousand when the diffusivity ratio is 
increased from 0.2 to 5. 

Figure 6 shows the effect of internal circulation on the 
total mass transferred predicted by the model. The com- 
plete extensions of all of the curves are not shown in 
Figure 6, to avoid unnecessary clutter. The curves for the 
empirical solution of the penetration theory by Kishinov- 
skii and Kornienko ( 1 0 )  and the film theory approximate 
solution by Van Krevelen and Hoftijzer (15)  both asymp- 
totically approach the curve for the numerical solution of 
the penetration theory obtained by Pearson ( 1 2 ) .  For the 
example used in Figure 6, the curve of xmt as a function 
of r for a Peclet number equal to 40 approaches the curve 
for a Peclet number equal to 100 at both large and small 
values of dimensionless time. 

the total mass 
transferred calculated from Equations (14) and (15) 
differs from that predicted by either the film theory or 
the penetration theory by less than 5%. This is the range 
of dimensionless time important in many liquid extraction 
iipplications. Thus the correlations by Van Krevelen and 
Hoftijzer ( 1 5 )  or by Kishinevskii and Kornienko (10) 
[that is, Equations ( 2 )  and (4) ,  respectively] are suffi- 
ciently accurate for most work in liquid extraction with ir- 
reversible, second-order chemical reactions. At higher 
contact times, the assumption of a flat interface which is 
basic to both of the above applications of the film theory 
iind penetration theory is no longer valid. At large dimen- 
sionless times ( T > 0.02), which include dimensionless 
times important for gas absorption, both the fiIm theory 
and the penetration theory predict values of the total mass 
transfer greater than is possible. This is due to the inability 
of either theory to allow for the eventual depletion of the 
b reactant within the sphere. 

No attempt was made in this work to solve analytically 
for mass transfer with reaction for a Peclet number ap- 
proaching infinity as was done by Kronig and Brink ( 1  1 ) 

For dimensionless times less than 

R, = I I 

8 -  

- 

6 -  

- 

4 -  

- 

0 0.04 0.08 0.12 0.16 0 . 2 0  0.24 

DIMENSIONLESS TIME, T 

Fig. 6. Total mass transferred Trnt as a function of dimensionless 
time T showing effect of the Peclet number NP,. 
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for mass transfer without chemical reaction. However, it 
was possible to increase the Peclet number until the total 
inass transferred &t approached a constant value. This 
occurred at a Peclet number about equal to 100 for both 
mass transfer without reaction and for mass transfer with 
a rapid chemical reaction. Larger Peclet numbers were 
required to reach the asymptotic effect of Peclet number 
for intermediate reaction numbers, especially if the con- 
centration ratio was small. Mass transferred at a given di- 
mensionless time increased with increasing Peclet number 
up to a Peclet number of 500 for the following example 
where kR = 40, R, = 0.2, R D  = 1.0, and 7 = 0.05: 

N P e  0 100 200 300 400 500 
&,,lt 1.0026 1.1816 1.2863 1.3350 1.3616 1.37G2 

Although it was not emphasized earlier in this paper, 
the solution of this model was dependent upon the as- 
sumption that the multicomponent molecular diffusivities 
D, and Db are constant. Thus, when applying the model, 
one would probably have to use good space and time aver- 
age estimates of the diffusivities. The model considers a 
wide range of values of C, and Ct, in the dispersed phase 
(C, = 0 + Cas; Cb = CbO + 0, respectively); and hence 
if solutions are not dilute, the diffusivities would have to 
be averaged over the concentration changes expected. 

COMMENTS ON APPLICATIONS 

Industrial second-order reactions which involve two liq- 
uid phases include saponification of esters, nitration, and 
sulfonation (16). Danckwerts (1 7) lists several gas-liquid, 
second-order, reacting systems. Reactions are also used 
to enhance the rate and extent of liquid extraction and gas 
absorption. 

Johnson and Bliss (19) concluded from their study of 
nonreacting spray towers that unless the flow rate of the 
extructing phase is much less than the flow rate of the 
other phase, it is better to disperse the extracting phase. 
The work presented in this paper describes and solves a 
mathematical model for mass transfer into and simultane- 
ous reaction within the dispersed phase. 

As with any model the results of this work are limited 
by the assumptions made in the section entitled Theoreti- 
cal Development. However, several guidelines can be 
drawn from this work, and the results of this work may 
apply qualitatively or even quantitatively beyond the 
limitations imposed by the assumptions incorporated in 
the mathematical model. 

Materials 
If reaction is used to enhance the rate of solute transfer to 

a separating phase, the designer is usually free to choose both 
the identity and the concentration of reactant b. 

The most important factors to consider in selecting compo- 
nent b are cost and rate of reaction. From Figure 3 it can be 
seen that even a moderate reaction rate is sufficient in gas bub- 
bles, whereas for a liquid droplet, it is important to have as 
high a reaction rate as possible. As an approximate rule of 
thumb, one can conclude from this work that it is advantageous 
to pay twice as much for a reactant if the reaction rate con- 
stant can be increased by an orcler of magnitude (see Fig- 
ure 3 ).  

Since the total mass transferred becomes insensitive to the 
diffusivity ratio at large Peclet numbers, the diffusivity of 
component b is not important. However, it is important that 
component b does not greatly increase the viscosity of the dis- 
persed phase. In many cases it will be important that compo- 
nent b can be regenerated and used again. 

The effect of the concentration of the b reactant is related 
to both the dimensionless reaction number and the concentra- 

AlChE Journal (Vol. 17, No. 5) 

tion ratio; however the effect is most pronounced as a result 
of changes in the concentration ratio shown in Figure 4. In 
general, the total mass transferred increases as CbO is increased. 
However, a large concentration of reactant b could greatly 
change the viscosity of the dispersed phase. Therefore, if pos- 
sible, C ~ O  should be just large enough to iipproach ii pseudo 
first-order reaction. For the complete range of variables studied, 
the total mass transferred could not be increased by as much 
as 5%, no matter how much the concentration ratio was re- 
duced below two-tenths for dimensionless times less than 0.01, 
which is the time region of interest if the dispersed phase is a 
liquid. 

Equipment 

After the chemicals and concentrations for a contactor are 
selected, the size of the drops formed depends on the nozzle 
design and operating conditions. Reducing the drop size in- 
creases the dimensionless time but reduces the dimensionless 
reaction constant and the Peclet number. Because of the way 
the dimensionless reaction constant varies with drop size, the 
reduction of drop size is not as important for mass transfer with 
reaction as it is for mass transfer without reaction. Despite this 
effect it is still desirable to form small drops. Although the 
drops fornied will not be of uniform size, work by Gal-Or 
and Hoelscher (18) for transfer from drops with and without 
reaction indicates that there is little error if the mean drop 
size is used. 

Reaction inside the fluid sphere keeps the driving force for 
mass transfer from decreasing rapidly with time. For example, 
at a Peclet number of 100, if there is no chemicd reaction, the 
dimensionless flux of a reduces from 29.77 at a dimensionless 
time of 0.001 to 0.02 at a dimensionless time of 0.24. However, 
if there is a chemical reaction (for example, R, = 0 and kR = 
160) the dimensionless flux of a has a value of 35.89 at a 
dimensionless time of 0.001 and has only reduced to 23.79 at 
a dimensionless time of 0.24. This can be seen graphically by 
examining Figure 4. The slope of the graph of the total mass 
transferred versus dimensionless time ( which is proportional 
to the flux of a )  is initially large for all values of R,. At large 
times the slope of the graph for R, = 0 is still large, but the 
curve representing no reaction is almost horizontal. Since the 
presence of a chemical reaction reduces the effect of the time 
of contact on the flux of a, it is not necessary to redisperse the 
extracting phase as often as must be done when there is no 
reaction present. This means that if backmixing can be toler- 
ated (as is the case with nitration, sulfonation, and saponifica- 
tion), fewer perforated plates are needed per unit length of 
column. This fact also inakes the spray tower feasible for more 
applications. 

CONCLUSIONS 

This work examined mass transfer with a second-order, 
irreversible chemical reaction inside circulating fluid 
spheres. The velocity components inside the dispersed 
phase were described by the Hadamard relations for the 
laminar flow regime. It was found that the mass transfer 
indices (listed in Table 1) were a function of five dimen- 
sionless parameters: a diffusivity ratio, a concentration 
ratio, a reaction number, the Peclet number, and the di- 
mensionless contact time. A range of the dimensionless 
parameters was studied to determine their effect on eight 
different dispersed phase mass transfer indices. 

In addition to using more accurate geometrical and fluid 
flow descriptions than the theories previously available, 
this work allows for the complete depletion of the reactant 
initially in the dispersed phase. None of the previously 
available theories are able to predict accurately mass 
transfer after the b reactant has been depleted. 

If the fluid sphere is a liquid, either the film theory or 
the penetration theory may be used with confidence. How- 
ever, the numerical solutions obtained in this work must 

September, 1971 Page 1129 

 15475905, 1971, 5, D
ow

nloaded from
 https://aiche.onlinelibrary.w

iley.com
/doi/10.1002/aic.690170518 by M

issouri U
niversity O

f Science, W
iley O

nline L
ibrary on [09/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



be used if the dispersed pliase is a spherical gas bubble. 
The  analytic enhancement factor relation for infinitely 

fast chemical reactions developed by Toor and others was 
verified by the results of the numerical solution for mass 
trmsfer with chemical reaction inside fluid spheres. Since 
the diffusivity ratio was found in this work to have little 
effect on the mass transfer rate a t  high Peclet numbers, 
the relation can be  used for very high Peclet numbers 
even if the diffusivity ratio is not close to 1. 
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NOTATION 

n =  
a = 
A =  
A,. = 
- 
Amt = 
b =  
B =  
c, = 
Car = 

c,, = 

CIJO = 
D, = 

h =  
I1 = 

cb = 

Db = 

i =  
j =  
k =  
k., = 
kR = 
m =  
n =  
Alpe = 
P =  
P2 = 

R =  
R, = 
R D  = 
s =  
sz = 
so = 
t =  
v =  
v, = 
vn = 
vt = 

- r - 

w =  
x =  
Y =  

- - - - 

radius of sphere, cm. 
reactant initially in continuous phase 
dimensionless concentration of a, C,/Cn, 
dimensionless amount of solute reacted in the 
sphere, C a r / C o s  
total mass transferred (see Table l), dimensionless 
reactant soluble only in dispersed phase 
dimensionless concentration of b, C b / C b O  

concentration of a, moles/liter 
moles of a reacted per volume of sphere, moles/ 
liter 
surface concentration of a, moles/liter 
concentration of b, moles/liter 
initial concentration of b, moles/liter 
diffusivity of component a ,  sq.cm./sec. 
diffusivity of component b, sq.cm./sec. 
distance from the interface, cm. 
distance from interface wherein diffusion is im- 
portant: film thickness for film theory and ap- 
proaching infinity for penetration theory, cm. 
index of grid point in radial direction 
index of grid point in angular direction 
index of grid point in time dimension 
second-order reaction constant, liter/mole/sec. 
dimensionless reaction number, k2a2Cbo/D, 
number of grid points in angular direction 
number of grid points in radial direction 
Peclet ]lumber, ( a V t / X I , )  [ p J  (p(i + pc) I 
AT/ ( 
AT/ (2h9) 
radial distance, cm. 
dimensionless radius, r / a  
concentration ratio, z C a s / C ~ ~ a  
diffusivity ratio, &,/Do 
A T / ( A R ) Z  
A r /  ( ~ A R )  
surface area of sphere, sq.cm. 
contact time, sec. 
volume of sphere, cu.cm. 
velocity in radial direction, cni./sec. 
velocity in angular direction, cm./sec. 
terminal velocity of sphere relative to surrounding 
fluid, cm./sec. 
parameter in Equation (8) as defined by Equa-  
tion ( 1 0 )  
parameter in Equation (9) = 0.85dW2R, + W 
parameter in Equation (6)  and defined by Equa- 
tion ( 7 )  
stoichiometric coefficient in  Equation ( 1) 

Greek Letters 

pc 
p(1 

= viscosity of continuous phase, poise 
= viscosity of dispersed phase, poise 
= enhancement factor, 

= dimensionless time, t Da/a2 

= Kronecker delta (one for penetration theory and 

L X m t ( k R  # O ’ ) I / [ x m t ( k R  = 011 
T 

6’ = ungle 
S 

zero for film theory) 
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APPENDIX A: CALCULATION OF THE TOTAL MASS 
TRANSFERRED xmt 

Equation ( 2 )  can be rewritten as 
- - 
Amt = Ca/Cas + Car/Cns 

The first term on the right-hand side of the above equation is, 
by definition, x. Therefore the first term can be found by aver- 
aging A over the volume of the sphere. The second term on the 
right-hand side can be found by a material balance on compo- 
ncnt b. The total amount of b which has reacted per unit vol- 
ume is the initial concentration less the amount of b still pres- 
ent, CbO - c b .  Then, according to the stoichiometry of Equa- 
tion ( l ) ,  the moles of a reacted per volume of sphere Car are 
( C I A  - E b ) / Z .  Thus 

CbO/CbO - cb/CbO 

Z cas/cbO 
- - 

= ( 1  - B ) / R ,  
- - ‘I‘heref ore 
Amt = A + ( 1  - x ) / R c  

.\ larztz ,cr ipt  receioed February 26, 1970; reaision vecezoed July 1, 
1970, mzper accepted J u l y  15, 1970. 
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