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but, in the limit of large numbers of particles and low 
dosage per particle, the effects are the same. This approach 
would seem to be desirable especially for highly soluble 
medications. Formulations based on this principle presently 
exist in crude form; however, quantitative analyses of 
their design and operation have not been reported. 

The required distribution of inert shell thicknesses for 
a uniform pattern of release times may be easily deter- 
mined. Because the rate of decrease of particle mass may 
be equated to the rate of mass transfer to the surrounding 
fluid, then 

- d (4d/3) /dt  k,A (47rr’) ( XAO - X A - )  / ( 1 - X A O )  

(7)  

d@/dt = E $12 (8) 

For constant XAO, and k, proportional to r-112 

where E is a constant. This equation indicates that the 
time required for complete dissolution of a shell from an 
outer radius R to an inner radius R, will be 

release time = E’ - Rc3/2) (9) 
Assuming that the optimum situation is one in which 

each capsule carries the same dose, then Rc will be the 
same for all capsules, and the distribution times will de- 
pend only on the distribution of the outer shell radii R, 
as shown in the above result. For production purposes the 
easiest way to achieve the desired ran e of bead sizes 

make many single batches of uniformly sized beads and 
blend the batches. How many different bead sizes would 
be needed to give a close approach to a continuous-size- 
distribution is a subject which requires deeper analysis 
and will not be explored here. 

Certainly serious qualifications concerning the desirabil- 
ity, practicality, and feasibility of the administration of 
medicine by the above methods may be raised. The pur- 
pose of this paper has been to give initial insight into the 
nature and requirements of these approaches. Whether or 
not these techniques will be adjudged to have great, mod- 
erate, or little merit remains to be shown. 

(and, therefore, of release times) woul % probably be to 

NOTATION 

A 
B 
c 
d,, 
E,  E’ = constants 
i, i = arbitrary chemical species 
k,, 

sq.cm.-sec. 
K .  K‘ = constants 

= the medicinal compound being bansIerrad 
= the inert carrier compound 
= total molar concentration of fluid, mole/cc. 
= sphere diameter at any arbitrary time, an. 

= mean mass transfer coefficient from sphere, mole/ 

n 

R 
Rc 
R* 
sc  
t 

W 

T 

0 

XAO 
XoAO 

= total number of species present 
= radial coordinate, cm. 
= radius of spheres at start of dissolution, cm. 
= inner radius of time capsule shell, c m  
= radius of sphere corresponding to XAO = X ’ A ~  
= Schmidt number, dimensionless 
= time, sec. 
= fluid velocity, cm./sec. 
= mass transfer rate, mole/cc. 
= mole fraction of A at sphere surface at any time 
=mole fraction of A at sphere surface at start of 

dissolution 

ing to saturation 
X+AO = mole fraction of A at sphere surface correspond- 

X a m  

p 
p =fluid phase density, g./cc. 

= mole fraction of A in bulk of fluid stream 
= void fraction in bed of particles, dimensionless 
= fluid phase viscosity, g./cm.-sec. 

LITERATURE CITED 

Bird, R. B., W. E. Stewart, and E. N. Lightfoot, “Trans- 
port Phenomena,” John Wiley and Sons, New York (1980). 
Chang, T. M. S., F. C. MacIntosh, and S .  G .  Mason, 
Can. J. Physiol. Pharmacol. 44, 115 ( 1966). 
Guyton, A. C., “Textbook of Medical Physiology” 3rd 
ed., W. B. Saunders Co., Philadelphia (1966). 
Yoshida, F., D. Ramaswami, and 0. A. Hougen, AlChE J. ,  
8,5  (1962). 

A Stable Explicit Method for Simultaneous Quasi-Linear 
Differential Equations 

ROY J. BRUNSON and ROBERT M. WELLEK 
University of Missouri-Rollo, Rollo, Missouri 

Differential equations that are encountered in studies of 
transport phenomena, such as mass transfer with a chemi- 
cal reaction (1) and the transfer of heat generated by a 
temperature sensitive chemical reaction ( 2 ) ,  are often of 
the form 

and 
av a2v av 
at ax2 ax 

- bo- + bl -  + b2 V 

where ao, al, &, bo, bl ,  and b2 may be functions of x, t ,  
U ,  and V .  

The method described for simultaneously solving sets 
of partial differential equations is not limited to just two 
differential equations or to two independent variables. For 
simplicity, the method is described in terms of Equations 
(1) and (2) .  Equations of the form of Equations ( 1) and 
(2)  are not readily solved by analytical methods. They 
are best solved by finite difference methods. 

Implicit, finite difference methods are cumbersome be- 
cause when they are applied to nonlinear partial differen- 
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tid equations they usually result in a system of nonlinear 
algebraic equations. Also, implicit methods become pro- 
gressively more complicated as the number of simultaneous 
differential equations are increased. 

Explicit finite difference methods are not greatly compli- 
cated by the nonlinar portions of the partial differential 
equations but require small time steps to assure stability. 

It is the purpose of this communication to call attention 
to a stable explicit difference method which has been seem- 
ingly overlooked in solutions of engineering problems 
where it could have been most helpful. This difference 
method can be extended for the purpose of solving systems 
of simultaneous, nonlinear partial differential equations. 
The equations derived in this communication have a com- 
bination of simplicity and stability that is not found in 
previous methods. 

PREVIOUS WORK 

The central difference approximations for the first-order 
partial derivatives are, according to DuFort and Frankel 

aU - Ui,j+t - ui,j-i 

at 2At 

av - Vi,j+l - Vi,j-1 

at 2At 

aU - Ui+w - Ui-1.j 

aV - Vi+l,j - Vi-1.j 

(3) 

(3) 

(4) 

( 5 )  

(6) 

In their study of the solution of one independent, partial 
differential equation, DuFort and Frankle found that to 
insure stability the second-order derivatives should be ap- 
proximated by 

-- 

-- 

-- 
ax 2Ax 

-- 
ax 2AX 

(7)  

( 8 )  

a2U - u i + l j  - ui,j+l - ui,j-l + ui-1,j 

ax2 (bx)2 

d2V - Vi+l,j - Vi,j+l - Vi,j-1 + Vi-1,j 

ax2 (Ax)2  

-- 

-- 

DuFort and Frankel suggested that their method could 
be used to solve a single partial differential equation of 
the form of either Equation (1) or (2) by using the space 
averaged value of the dependent variable. 

PURPOSE OF THIS WORK 

We will show that the DuFort and Frankel method is 
valid for not only a single equation but also for simultane- 
ous partial differential equations if, instead of spaceaver- 
aged variables, time-averaged variables are used as follows: 
For Equation (1) 

( 9a) 

v = Vf,5 (9b) 

u = u,, ( 1 0 a )  

ui,j+1 + Uij-1 

2 
u =  

and in Equation (2) 

Equations (9) and (10) are a combination of the finite 
difference approximations suggested by DuFort and 
Frankel and the forward difference methods. This particu- 
lar combination is necessary to maintain the stability of 
the method and at the same time to keep the resulting 
algebraic equations in their simplest form. 

By substituting the above relations into Equations ( 1 )  
and (2),  the following is obtained: 

1 - a0 S 4- % At 

14- a0 8 - @ A t  ] UiJ-1 ui,j + 1 = 

+ [ 14- S - @ At 
aos+ ] ui+l,j 

and 

1 - bo s + bz At 

1 + bo s - bz At 
] ViJ-1 Vi,j + 1 = 

bo + b1 ' ] Vi+I,j 
[1 + bo s - bz At 

where 

In order to avoid nonlinearity in the resultin algebraic 
equations, Q, al, and % should be evaluatecf by using 
V = V1,j and either U = Ui,j or U = (Ui+I,j + U i - l ~ ) / 2 -  

The terms bo, bl, and bz should be evaluated by using 
U = Ui,j and either V = Vi,j or V 1 (Vi+l,j + Vi-lj)/2. 

DuFort and Frankel have shown that for the linear case 
the above method was stable for any value of the coef6- 
cients in Equations (11) and ( 1 2 )  and thus for any size 
of time increment. They also suggested without proof that 
their method could be used for single, nonlinear, partial 
differential equations. The stability and simplicity of their 
explicit method, modified to apply to systems of nonlinear, 
partial differential equations, are dependent upon the par- 
ticular combination of substitutions given by Equations 
(9) and ( 1 0 ) .  An analytical proof of this stability has not 
been developed, but it shall be shown empirically by the 
following example. 

Example 
Consider one directional diffusion in a finite porous slab 

accompanied by chemical reaction. Assume that all of the 
resistance to mass transfer is in the slab and that one of 
the reactants u is soluble only in the phase of interest. If 
the diffusivities of the two reactants are equal and the 
initial concentration of the reactant soluble in only one 
phase (component u )  is the same as the surface concen- 
tration of the reactant which is soluble in both phases 
(component u )  , then the dimensionless equations describ- 
ing this process are 

au a w  
aT ax2 
av a v  
dT axa 

-=-- R 

R - ---- 

where R is the rate of reaction given by 
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with the boundary conditions 

at x=o;  u =  

at 

dV 
1, - = o  ax 

aU av X = l ;  - z o o ,  - = o  
dX dX 

and the initial conditions 

at  T = O ;  U = O ,  V = l  (19) 
Because the DuFort and Frankel method requires two 

previous values, it is necessary to calculate values for U 
and V at T = AT. This was done using the forward differ- 
ence method ( 4 ) .  

u1.1 = S’/2 (20a) 

UiJ = 0 i >  1 (20b) 
Vo,l = 1 - KAT (20c) 
Vi.1 = 1, i > O  ( 2 0 4  

U0.l = 1 (20e )  

and from the boundary condition (17) 

By substituting the finite difference approximations of 
Equations (3 )  through (8) into Equations (14) and ( 15) ,  
one obtains 

( 1  + S’) ui,j+1 = ( 1  - s.’) ui,j-i + S’(Uit1.j 

+ Ui-1,j) - 2AT Ri,j (21) 
( 1  + S’) Vi,j+1 = ( 1  - S’) Vi,j-l + S’(Vi+l,j 

+ Vi-1,j) - 2AT Ri,j (22) 
By applying the finite difference approximations of 

Equation ( 5 )  and (6) to the boundary Equations (17) 
and (18) 

V-1.j = Vt1.j (23a) 

v N + l , j  = vN--l,j (23b) 

UN+l,j = UN-lj (24a) 

u,j = 1 (24b) 

and for the remaining boundary condition, one obtains 
from Equation (17) 

The rate of reaction at each grid point Ri,j will be ap- 
proximated by different finite difference approximations 
to show why the substitutions of Equations (9) and (10) 
are preferred. The only substitutions considered for Ri,j 

K = 1000 I EQUATION 125) 

A T =  00001 2 EQUATION 1261 

AX= 005 3 EQUATION (27 )  

0 
4 EQUATION 128) 

g o a  

0 07 

0 
p 0 2  
L 

01 
YI VI 

c 
* o  

z -01 c o  

- 
- 

0 4  0 8  I 2  16 2 0  29 2 8  3 2  36 

n Dimensionless Time, T x lo3 
Fig. 1. Dimensionless surface concentration o f  component v, V,,j as 
a function of dimensionless time T using various methods to approxi- 

mate the nonlinear term. 

are those which result in linear, explicit finite difference 
equations. 

The most straightforward approximation for Equation 
(16) would be 

Ri,j = K Ui,j Vi,j (25) 

DuFort and Frankel suggested a space averaged ap- 
proximation for nonlinear terms. This could lead to the 
following relation for both Equations (21) and (22) 

K 
4 

Xi,j = - (ui+l,j + Ui-1.j) (Vi+I,j + Vi-1,j) ( 2 6 )  

Another workable approximation for Equation (21) 
might be 

and for Equation (22) 

K 
2 Ri.j = - ui.j (Vi+I,j + Vi-1,j) (27b) 

The approximations in Equations ( 2 5 ) ,  (26), and (27) 
will be compared with the approximations suggested in this 
article which lead to 

K 
2 R . ’ - -  (ui,j+l + Uij-l)Vi,j (28a) 1,3 - 

for Equation (21) ,  and 

K 
2 R . .  133 - - - ut.j(Vi,j+l + Vi.i-1) (28b)  

for Equation ( 2 2 ) .  
The results obtained using the four methods of treating 

the nonlinear portion of Equations (14) and (15) are 
shown in Figure 1. The surface concentration of compo- 
nent 2) seemed to be the point concentration most sensitive 
to instability and error. The surface concentration of com- 
ponent v,  V0.j is plotted as a function of dimensionless 
time T.  

Curve (1) represents the solution of Equations (21) 
and (22) in which the nonlinear term is approximated by 
Equation (25) .  As time increases, this solution oscillates 
with increasing amplitude about the true solution. This 
is due to the fact that one of the coefficients in the finite 
difference equation is negative when the approximation in 
Equatior? (25) is used. This causes the solution to be 
alternately too large and then too small. 

Curves ( 2 )  and (3)  are both based on space-averaged 
approximations to eliminate the problem of a negative 
coefficient discussed above. However, curves (2)  and ( 3 )  
both show values of the surface concentration of compo- 
nent o which are too low-and even become negative at 
the larger dimensionless times shown. This is due to the 
fact that when the boundary condition (23a) is applied 
to either Equation (26) or Equation (27b) at the bound- 
ary ( i  = 0) ,  the V value in the reaction term is actually 
the V value for one space increment away from the 
boundary. This value of V is always larger than should 
be used in approximating the reaction term. Thus, too 
large a number is subtracted in calculating the new value 
of V at the surface, and so the value of V at the surface 
is always too small. A secondary effect causes curve (2) 
to be higher than curve ( 3 ) .  This error is also due to the 
space-averaging approximation for the nonlinear term. 
Equations (26) and (27a) are good approximations only 
if the concentration profile of component u at any given 
time is nearly linear. However, at small dimensionless 
times, the concentration profile of component u near the 
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TABLE 1. DIMENSIONLESS CONCENTRATION F’ROFILE 
OF COMPONENT U 

(ForK= 1,000atT=0.01) 

Equation/X 0.05 0.10 0.15 0.20 

(05) -0.2512 0.2952 -0.6836 0.3629 

(26) 0.4802 0.1508 0.0246 0.0012 

(27) 0.4332 0.0863 0.0038 -0.0001 

(0.4870) (0.1802) (0.0510) (0.0118) 

(0.4855) (0.1778) (0.0486) (0.0105) 

(0.4817) (0.1738) (0.0468) (0.0100) 

(0.4854) (0.1790) (0.0502) (0.0114) 
(28) 0.4900 0.1830 0.0536 0.0134 

surface is very curved and is concave upward. Thus at any 
given time step, Equation (26) uses too large a value for 
the reaction term causing the value of V at one space in- 
crement from the boundary to be smaller than it should 
be. This then partially offsets the error discussed above in 
calculating the surface value of V for the next time step 
by using the value of V one space increment from the 
surface. 

Evidence of the inaccuracy of both curve (2)  and curve 
(3)  is the fact that both curves predict surface concentra- 
tions less than zero. Also the fact that curves (2)  and (3)  
both become broken lines at large dimensionless times 
indicates slight instability; however, it is not the type of 
instability which grows as was the case with curve (1) .  
The inaccuracy of the use of either Equation (26) or 
Equation (27) was less apparent far away from the bound- 
aries. The errors discussed above in usin either Equation 
(26) or Equation (27) could be reducei by reducing the 
size of the space increments, but very large reductions 
would be necessary before the solution would become ac- 
curate and the additional computing time required makes 
this impractical. Alternatively, the approximation given by 
Equation (25) could be imposed at the surface and either 
Equation (26) or (27) could be used away from the sur- 
face. However, this would result in the same type of in- 
stability as shown in curve (1) .  In addition, the concept 
of space-averaging becomes more complex if there is more 
than one distance coordinate. 

When Equations (28a) and (28b) are substituted into 
Equations (21) and (22), respectively, the results are 
analogous to Equations (11) and (12) where a0 = bo = 
1, = bl = 0, = -KVi,j and b2 = -KUi,j. The re- 
sults of this finite difference equation are represented by 
curve (4)  in Figure 1. Although curve (1)  and curves 
(2)  and (3)  can be made to approach curve (4) by re- 
ducing the size of the time increments [for curve ( l ) ]  
and the space increments [for curves (2) and (3)], the 
factor of considerably increased computing time makes 
further increment size reduction unacceptable. 

By reducing the time increments used for calculating 
curve (1)  to AT = 0.00001, the new curve would differ 
from curve (4)  by < 1%. However, this would increase 
the necessary computing time by a factor of 10. 

When the size of the space increment was decreased to 
AX = 0.01, the results corresponding to curve (3)  oscil- 
lated more than the original curve (3) ,  but the oscillation 
was within a band of values between the original curve 
(4)  and 25% greater than curve (4) .  For this example, 
this reduction of the size of the space increment increased 
the necessary computing time b a factor of 5. However, 
for a two-dimensional problem t K, e computing time would 
be increased by a factor of 25. 

To simplify Figure 1, these two revised curves were 
not shown. 

The concentration profile of the component U being 

transferred is shown in Table 1 for the dimensionless time 
equal to 0.01. The first value shown in each case was cal- 
culated using the same increment sizes as were used in 
preparing Figure 1 (AT = 0.0001 and L\x = 0.05). 

The second value in Table 1, shown in parentheses, was 
calculated by reducing the size of both the time and space 
increments. For Equations (26), (27), and (28), the size 
of the increments was reduced to .AX = 0.0125 and AT = 
0.00002. However, the substitution of Equation (25) did 
not lead to a stable solution for 4x = 0.0125 even when 
the time increment was reduced to AT = 5 x 10-8. There- 
fore the increment sizes used for the term in parentheses 
for Equation (25) were 4x = 0.025 and AT = 5 x 10-8. 
Even at this reduced time increment size, the value of the 
concentration of component u oscillated with a range of 
as much as 0.01. Because of this oscillation, the values 
given in parentheses in Table 1 for Equation (25) were 
averaged as 

(ui,j) = (Ui.j-1 + 2 ui,j + ui,j+1)/4 
Table 1 confirms the conclusions drawn from Figure 1, 

and the numbers in parentheses show that the approxima- 
tions given by Equations (25), (26), and (27) approach 
the approximation of Equation (28),  as the size of the 
time and space increments is reduced. 

In conclusion, the method developed and resulting in 
Equations (11) and (12) is the only one recommended 
as an explicit method for simultaneous quasi-linear differ- 
ential equations. Other methods appear to require much 
greater computer time. 

NOTATION 

ao, u1, = arbitrary functions of x, t 
bo, bl, bz = arbitrary functions of x, t, U, and V 
C ,  = concentration of component u, moles/l. 
C,, = surface concentration of component u, moles/l. 
C ,  = concentration of component u, moles/l. 
Cu0 = initial concentration of component u, moles/l. 
D = diffusivity of U, cm.2/sec. 
i = index of grid point in distance direction, X/AX 
j = index of grid point in time direction, T/AT 
K = reaction rate constant, K2L2Cuo/D 
K 2  = second-order reaction rate constant, liter/moles- 

L = length of diffusion path, cm. 
n = number of distance grid points, L/AX 
p =At/& 
R = dimensionless rate of reaction, KUV 
s = 2 h t / ( A ~ ) ~  

t = time, sec. 
T = dimensionless time, Dt/L2 
U 
u 
V 
u 
x = distance variable, cm. 
X = dimensionless distance, x /L  

sec. 

S’ = 2 AT/(AX)~ 

= any dependent variable, for example, C,/C,, 
= reactant being transferred into reaction phase 
= any dependent variable, for example, C,/Cuo 
= reactant soluble only in the reaction phase 
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